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Machine Learning: Optimization

I Most machine learning algorithms involve some form of
optimization

I We have covered a generic optimization algorithm: gradient
descent/ascent

I As presented, it requires:
I Unconstrained Objective function
I Differentiable Objective function

Example:

Rep: f (x) =
d∑

i=1

wixi + w0 where x = (x1, . . . , xd)

Obj: g(w0, . . . ,wd) =
n∑

k=1

(
y (k) − f

(
x(k)

))2
+ λ

d∑
i=1

w2
i



Unconstrained versus Constrained Optimization

Unconstrained
Minimize: g(w1, . . . ,wd)

Read as: find values of w1, . . . ,wd such that the function g is
minimized.

Constrained

Minimize: g0(w1, . . . ,wd)

Subject to: gi (w1, . . . ,wd) ≤ 0 for i = 1 to n

Note: This formulation is general because equality constraints
gi (w1, . . . ,wd) = 0 can be written as two constraints
gi (w1, . . . ,wd) ≤ 0 and −gi (w1, . . . ,wd) ≤ 0.



Some Terminology

I w1, . . . ,wd are the optimization variables or parameters and g is
the objective function.

I gi (w1, . . . ,wd) ≤ 0, i = 1 to n are called the constraints.

I The set of points satisfying the constraints is called the feasible set.

I A point w1, . . . ,wd in the feasible set is called a feasible point.

I The optimal value p∗ of the problem is defined as

p∗ = min {g0(w1, . . . ,wd) | (w1, . . . ,wd) satisfies all constraints}

(technically min should be inf).

I (w∗
1 , . . . ,w

∗
d ) is the optimal point if it is feasible and

g0(w∗
1 , . . . ,w

∗
d ) = p∗



Lagrangian Formulation

Constrained: For simplicity of notation, let w = (w1, . . . ,wd).
Our optimization problem can be stated as:

Minimize: g0(w)

Subject to: gi (w) ≤ 0 for i = 1 to n

The Lagrangian for the optimization problem is

L(w , α) = g0(w) +
n∑

i=1

αigi (w)

where αi ’s are called Lagrange multipliers (also called the dual
variables).



Why Lagrangian?
Maximum over Lagrangian is equivalent to the original problem!

max
α≥0

L(w , α) = max
α≥0

(
g0(w) +

n∑
i=1

αigi (w)

)

=

{
g0(w) if gi (w) ≤ 0 for all i
∞ otherwise.

I Let us say a constraint, gi (w) is violated. Then gi (w) > 0. Thus,
the max value of the term in brackets is reached when αi =∞
which means that the max over the sum in the brackets will be ∞.

I If all the constraints are satisfied then gi (w) ≤ 0, which means to
maximize, we should have αi = 0 (or gi (w) = 0). Then

∑
i αigi (w)

will be zero. Thus, the max over the sum in the brackets = g0(w).

Therefore, the optimal value of the optimization problem is

p∗ = min
w

max
α≥0

L(w , α)



Primal versus Dual Formulation

I Primal problem:

p∗ = min
w

max
α≥0

L(w , α)

I Dual problem (Flip max and min):

d∗ = max
α≥0

min
w

L(w , α)

I Verify that min of max is always greater than or equal to max
of min. Therefore, p∗ ≥ d∗.

For any point (w ′, α′), we have:
minw L(w , α′) ≤ L(w ′, α′) ≤ maxα L(w ′, α)

Therefore,maxα minw L(w , α) ≤ minw maxα L(w , α)
https://en.wikipedia.org/wiki/Max-min_inequality

https://en.wikipedia.org/wiki/Max-min_inequality


Primal and Dual Solution

I Primal problem:

p∗ = min
w

max
α≥0

L(w , α)

I Dual problem (Flip max and min):

d∗ = max
α≥0

min
w

L(w , α)

I When we have a Convex objective function and affine
constraints p∗ = d∗. Thus, we can solve the dual in lieu of
the primal problem.

I Why use the dual? It might be easier.



Karush-Kuhn-Tucker (KKT) conditions

At the optimal solution (w∗, α∗):

∂L(w∗, α∗)

∂wi
= 0 for i = 1 to d

α∗i gi (w
∗) = 0 for i = 1 to n

gi (w
∗) ≤ 0 for i = 1 to n

α∗i ≥ 0 for i = 1 to n



Linear SVM Optimization Problem: Revisited

minimize
1

2
wTw =

1

2
||w||2 (objective function)

subject to yi (x
T
i w + b) ≥ 1 (i = 1, · · · , n)

OR

minimize
1

2
||w||2 (objective function)

subject to 1− yi (x
T
i w + b) ≤ 0, (i = 1, · · · , n)



Lagrange Formulation for Linear SVMs

minimize
1

2
||w||2 (objective function)

subject to 1− yi (x
T
i w + b) ≤ 0, (i = 1, · · · , n)

The problem can be solved by Lagrange multipliers method.

L(w, b, α) =
1

2
||w||2 +

n∑
i=1

αi (1− yi (x
T
i w + b))



Primal or Dual Problem

The primal problem is given by:

min
w,b

max
α

L(w, b, α)

= min
w,b

max
α

{
1

2
||w||2 +

n∑
i=1

αi (1− yi (x
T
i w + b))

}

with respect to w, b and the Lagrange coefficients αi ≥ 0.

The dual problem is given by:

max
α

min
w,b

L(w, b, α)

= max
α

min
w,b

{
1

2
||w||2 +

n∑
i=1

αi (1− yi (x
T
i w + b))

}

with respect to w, b and the Lagrange coefficients αi ≥ 0.



Apply KKT conditions on the Dual problem

max
α

min
w,b

L(w, b, α)

= max
α

min
w,b

{
1

2
||w||2 +

n∑
i=1

αi (1− yi (x
T
i w + b))

}

with respect to w, b and the Lagrange coefficients αi ≥ 0. We let

∂

∂w
L(w, b, α) = 0,

∂

∂b
L(w, b, α) = 0

These lead, respectively, to

w =
n∑

j=1

αjyjxj , and
n∑

i=1

αiyi = 0



Dual Problem

Dual: max
α

min
w,b

{
1

2
||w||2 +

n∑
i=1

αi (1− yi (x
T
i w + b))

}
Substituting the two equations

w =
n∑

j=1

αjyjxj , and
n∑

i=1

αiyi = 0

into the Dual problem, we get:

max
α

L(α) = max
α


n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj


subject to αi ≥ 0,

n∑
i=1

αiyi = 0



Simplified Dual versus Primal Form

Primal:

min
w,b

max
α

L(w, b, α)

= min
w,b

max
α

{
1

2
||w||2 +

m∑
i=1

αi (1− yi (x
T
i w + b))

}

with respect to w, b and the Lagrange coefficients αi ≥ 0.

Dual:

max
α

L(α) = max
α


n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj


subject to αi ≥ 0,

n∑
i=1

αiyi = 0



Example

Dual : L(α) =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj

subject to αi ≥ 0,
n∑

i=1

αiyi = 0

Consider the following 2-D dataset (x1
and x2 are the attributes and y is the
class variable).

x1 x2 y

0 0 +1
0 1 −1
1 0 −1
1 1 +1

Write the expression for the dual problem. Let α1, α2, α3, α4 be the Lagrangian
multipliers associated with the four data points.

(α1 + α2 + α3 + α4)− 1

2
{ sixteen tuples . . .}

subject to α1, α2, α3, α4 ≥ 0 and α1(+1) + α2(−1) + α3(−1) + α4(+1) = 0.

The last constraint simplifies to α1 − α2 − α3 + α4 = 0.



Steps in constructing the Dual

Start with an empty objective function

I Add the term
∑n

i=1 αi to the objective function
I Construct the so-called Kernel matrix K (xi , xj) which stores

xTi xj for all indexes i , j over the example. The cell (i , j) in the
matrix is the dot product of the features associated with the
i-th and j-th example respectively.

I For example, the dot product of the examples (x1, x2, y):
(1,0,-1) and (1,1,+1) is 1*1+0*1=1.

I For (i , j), compute K (xi , xj) ∗ yi ∗ yj and add
−1

2

∑n
i=1

∑n
j=1 αiαjK (xi , xj) ∗ yi ∗ yj to the objective function

I Add the constraints αi ≥ 0 and
∑n

i=1 αiyi = 0.



Complexity

O(d) for each element of the kernel matrix. There are n2

elements. Therefore, the complexity of constructing the Kernel
matrix is O(n2d). There are O(n2) terms in the objective function
and each takes O(1) for lookup (once the Kernel matrix is
constructed). Therefore the overall complexity is O(n2d) for
constructing the optimization problem.


