Optimization: SVMs

Vibhav Gogate

THE UNIVERSITY OF TEXAS AT DALLAS
Erik Jonsson School of Engineering and Computer Science

Machine Learning: Optimization

- Most machine learning algorithms involve some form of optimization
- We have covered a generic optimization algorithm: gradient descent/ascent
- As presented, it requires:
- Unconstrained Objective function
- Differentiable Objective function

Example:

$$
\begin{gathered}
\text { Rep: } f(\mathbf{x})=\sum_{i=1}^{d} w_{i} x_{i}+w_{0} \text { where } \mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \\
\text { Obj: } g\left(w_{0}, \ldots, w_{d}\right)=\sum_{k=1}^{n}\left(y^{(k)}-f\left(\mathbf{x}^{(k)}\right)\right)^{2}+\lambda \sum_{i=1}^{d} w_{i}^{2}
\end{gathered}
$$

Unconstrained versus Constrained Optimization

Unconstrained

$$
\text { Minimize: } g\left(w_{1}, \ldots, w_{d}\right)
$$

Read as: find values of w_{1}, \ldots, w_{d} such that the function g is minimized.

Constrained

$$
\begin{aligned}
\text { Minimize: } & g_{0}\left(w_{1}, \ldots, w_{d}\right) \\
\text { Subject to: } & g_{i}\left(w_{1}, \ldots, w_{d}\right) \leq 0 \text { for } i=1 \text { to } n
\end{aligned}
$$

Note: This formulation is general because equality constraints $g_{i}\left(w_{1}, \ldots, w_{d}\right)=0$ can be written as two constraints $g_{i}\left(w_{1}, \ldots, w_{d}\right) \leq 0$ and $-g_{i}\left(w_{1}, \ldots, w_{d}\right) \leq 0$.

Some Terminology

- w_{1}, \ldots, w_{d} are the optimization variables or parameters and g is the objective function.
- $g_{i}\left(w_{1}, \ldots, w_{d}\right) \leq 0, i=1$ to n are called the constraints.
- The set of points satisfying the constraints is called the feasible set.
- A point w_{1}, \ldots, w_{d} in the feasible set is called a feasible point.
- The optimal value p^{*} of the problem is defined as

$$
p^{*}=\min \left\{g_{0}\left(w_{1}, \ldots, w_{d}\right) \mid\left(w_{1}, \ldots, w_{d}\right) \text { satisfies all constraints }\right\}
$$

(technically min should be inf).

- $\left(w_{1}^{*}, \ldots, w_{d}^{*}\right)$ is the optimal point if it is feasible and $g_{0}\left(w_{1}^{*}, \ldots, w_{d}^{*}\right)=p^{*}$

Lagrangian Formulation

Constrained: For simplicity of notation, let $w=\left(w_{1}, \ldots, w_{d}\right)$. Our optimization problem can be stated as:

$$
\begin{aligned}
\text { Minimize: } & g_{0}(w) \\
\text { Subject to: } & g_{i}(w) \leq 0 \text { for } i=1 \text { to } n
\end{aligned}
$$

The Lagrangian for the optimization problem is

$$
L(w, \alpha)=g_{0}(w)+\sum_{i=1}^{n} \alpha_{i} g_{i}(w)
$$

where α_{i} 's are called Lagrange multipliers (also called the dual variables).

Why Lagrangian?

Maximum over Lagrangian is equivalent to the original problem!

$$
\begin{aligned}
\max _{\alpha \geq 0} L(w, \alpha) & =\max _{\alpha \geq 0}\left(g_{0}(w)+\sum_{i=1}^{n} \alpha_{i} g_{i}(w)\right) \\
& = \begin{cases}g_{0}(w) & \text { if } g_{i}(w) \leq 0 \text { for all } i \\
\infty & \text { otherwise. }\end{cases}
\end{aligned}
$$

- Let us say a constraint, $g_{i}(w)$ is violated. Then $g_{i}(w)>0$. Thus, the max value of the term in brackets is reached when $\alpha_{i}=\infty$ which means that the max over the sum in the brackets will be ∞.
- If all the constraints are satisfied then $g_{i}(w) \leq 0$, which means to maximize, we should have $\alpha_{i}=0$ (or $g_{i}(w)=0$). Then $\sum_{i} \alpha_{i} g_{i}(w)$ will be zero. Thus, the max over the sum in the brackets $=g_{0}(w)$.

Therefore, the optimal value of the optimization problem is

$$
p^{*}=\min _{w} \max _{\alpha \geq 0} L(w, \alpha)
$$

Primal versus Dual Formulation

- Primal problem:

$$
p^{*}=\min _{w} \max _{\alpha \geq 0} L(w, \alpha)
$$

- Dual problem (Flip max and min):

$$
d^{*}=\max _{\alpha \geq 0} \min _{w} L(w, \alpha)
$$

- Verify that min of max is always greater than or equal to max of min . Therefore, $p^{*} \geq d^{*}$.

For any point $\left(w^{\prime}, \alpha^{\prime}\right)$, we have:
$\min _{w} L\left(w, \alpha^{\prime}\right) \leq L\left(w^{\prime}, \alpha^{\prime}\right) \leq \max _{\alpha} L\left(w^{\prime}, \alpha\right)$
Therefore, $\max _{\alpha} \min _{w} L(w, \alpha) \leq \min _{w} \max _{\alpha} L(w, \alpha)$ https://en.wikipedia.org/wiki/Max-min_inequality

Primal and Dual Solution

- Primal problem:

$$
p^{*}=\min _{w} \max _{\alpha \geq 0} L(w, \alpha)
$$

- Dual problem (Flip max and min):

$$
d^{*}=\max _{\alpha \geq 0} \min _{w} L(w, \alpha)
$$

- When we have a Convex objective function and affine constraints $p^{*}=d^{*}$. Thus, we can solve the dual in lieu of the primal problem.
- Why use the dual? It might be easier.

Karush-Kuhn-Tucker (KKT) conditions

At the optimal solution $\left(w^{*}, \alpha^{*}\right)$:

$$
\begin{aligned}
\frac{\partial L\left(w^{*}, \alpha^{*}\right)}{\partial w_{i}}=0 & \text { for } i=1 \text { to } d \\
\alpha_{i}^{*} g_{i}\left(w^{*}\right)=0 & \text { for } i=1 \text { to } n \\
g_{i}\left(w^{*}\right) \leq 0 & \text { for } i=1 \text { to } n \\
\alpha_{i}^{*} \geq 0 & \text { for } i=1 \text { to } n
\end{aligned}
$$

Linear SVM Optimization Problem: Revisited

$$
\begin{array}{cl}
\operatorname{minimize} & \frac{1}{2} \mathbf{w}^{T} \mathbf{w}=\frac{1}{2}\|\mathbf{w}\|^{2} \quad \text { (objective function) } \\
\text { subject to } & y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}+b\right) \geq 1 \quad(i=1, \cdots, n)
\end{array}
$$

OR

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2}\|\mathbf{w}\|^{2} \quad \text { (objective function) } \\
\text { subject to } & 1-y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}+b\right) \leq 0, \quad(i=1, \cdots, n)
\end{aligned}
$$

Lagrange Formulation for Linear SVMs

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2}\|\mathbf{w}\|^{2} \quad \text { (objective function) } \\
\text { subject to } & 1-y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}+b\right) \leq 0, \quad(i=1, \cdots, n)
\end{aligned}
$$

The problem can be solved by Lagrange multipliers method.

$$
L(\mathbf{w}, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}+b\right)\right)
$$

Primal or Dual Problem

The primal problem is given by:

$$
\begin{array}{r}
\min _{\mathbf{w}, b} \max _{\alpha} L(\mathbf{w}, b, \alpha) \\
=\min _{\mathbf{w}, b} \max _{\alpha}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}+b\right)\right)\right\}
\end{array}
$$

with respect to \mathbf{w}, b and the Lagrange coefficients $\alpha_{i} \geq 0$.
The dual problem is given by:

$$
\begin{array}{r}
\max _{\alpha} \min _{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) \\
=\max _{\alpha} \min _{\mathbf{w}, b}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}+b\right)\right)\right\}
\end{array}
$$

with respect to \mathbf{w}, b and the Lagrange coefficients $\alpha_{i} \geq 0$.

Apply KKT conditions on the Dual problem

$$
\begin{array}{r}
\max _{\alpha} \min _{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) \\
=\max _{\alpha} \min _{\mathbf{w}, b}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}+b\right)\right)\right\}
\end{array}
$$

with respect to \mathbf{w}, b and the Lagrange coefficients $\alpha_{i} \geq 0$. We let

$$
\frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}, b, \alpha)=0, \quad \frac{\partial}{\partial b} L(\mathbf{w}, b, \alpha)=0
$$

These lead, respectively, to

$$
\mathbf{w}=\sum_{j=1}^{n} \alpha_{j} y_{j} \mathbf{x}_{j}, \quad \text { and } \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

Dual Problem

$$
\text { Dual: } \max _{\alpha} \min _{\mathbf{w}, b}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}+b\right)\right)\right\}
$$

Substituting the two equations

$$
\mathbf{w}=\sum_{j=1}^{n} \alpha_{j} y_{j} \mathbf{x}_{j}, \quad \text { and } \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

into the Dual problem, we get:

$$
\max _{\alpha} L(\alpha)=\max _{\alpha}\left\{\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}\right\}
$$

subject to $\quad \alpha_{i} \geq 0, \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0$

Simplified Dual versus Primal Form

Primal:

$$
\begin{array}{r}
\min _{\mathbf{w}, b} \max _{\alpha} L(\mathbf{w}, b, \alpha) \\
=\min _{\mathbf{w}, b} \max _{\alpha}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}+b\right)\right)\right\}
\end{array}
$$

with respect to \mathbf{w}, b and the Lagrange coefficients $\alpha_{i} \geq 0$.
Dual:

$$
\max _{\alpha} L(\alpha)=\max _{\alpha}\left\{\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}\right\}
$$

subject to $\quad \alpha_{i} \geq 0, \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0$

Example

$$
\begin{gathered}
\text { Dual : } \\
\quad L(\alpha)=\quad \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\
\\
\text { subject to } \quad \alpha_{i} \geq 0, \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{gathered}
$$

Consider the following 2-D dataset (x_{1} and x_{2} are the attributes and y is the class variable).

x_{1}	x_{2}	y
0	0	+1
0	1	-1
1	0	-1
1	1	+1

Write the expression for the dual problem. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ be the Lagrangian multipliers associated with the four data points.

$$
\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)-\frac{1}{2}\{\text { sixteen tuples } \ldots\}
$$

subject to $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \geq 0$ and $\alpha_{1}(+1)+\alpha_{2}(-1)+\alpha_{3}(-1)+\alpha_{4}(+1)=0$.
The last constraint simplifies to $\alpha_{1}-\alpha_{2}-\alpha_{3}+\alpha_{4}=0$.

Steps in constructing the Dual

Start with an empty objective function

- Add the term $\sum_{i=1}^{n} \alpha_{i}$ to the objective function
- Construct the so-called Kernel matrix $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ which stores $\mathbf{x}_{i}^{T} \mathbf{x}_{j}$ for all indexes i, j over the example. The cell (i, j) in the matrix is the dot product of the features associated with the i-th and j-th example respectively.
- For example, the dot product of the examples $\left(x_{1}, x_{2}, y\right)$:

$$
(1,0,-1) \text { and }(1,1,+1) \text { is } 1^{*} 1+0 * 1=1 .
$$

- For (i, j), compute $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) * y_{i} * y_{j}$ and add $-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) * y_{i} * y_{j}$ to the objective function
- Add the constraints $\alpha_{i} \geq 0$ and $\sum_{i=1}^{n} \alpha_{i} y_{i}=0$.

Complexity

$O(d)$ for each element of the kernel matrix. There are n^{2} elements. Therefore, the complexity of constructing the Kernel matrix is $O\left(n^{2} d\right)$. There are $O\left(n^{2}\right)$ terms in the objective function and each takes $O(1)$ for lookup (once the Kernel matrix is constructed). Therefore the overall complexity is $O\left(n^{2} d\right)$ for constructing the optimization problem.

