Optimization: SVMs

Vibhav Gogate

Machine Learning: Optimization

- Most machine learning algorithms involve some form of optimization
- We have covered a generic optimization algorithm: gradient descent/ascent
- As presented, it requires:
 - Unconstrained Objective function
 - Differentiable Objective function

Example:

Rep:
$$f(\mathbf{x}) = \sum_{i=1}^{d} w_i x_i + w_0$$
 where $\mathbf{x} = (x_1, \dots, x_d)$

Obj:
$$g(w_0, ..., w_d) = \sum_{k=1}^n (y^{(k)} - f(\mathbf{x}^{(k)}))^2 + \lambda \sum_{i=1}^d w_i^2$$

Unconstrained versus Constrained Optimization

Unconstrained

```
Minimize: g(w_1, \ldots, w_d)
```

Read as: find values of w_1, \ldots, w_d such that the function g is minimized.

Constrained

 $\begin{array}{ll} \text{Minimize:} & g_0(w_1,\ldots,w_d)\\ \text{Subject to:} & g_i(w_1,\ldots,w_d) \leq 0 \text{ for } i=1 \text{ to } n \end{array}$

Note: This formulation is general because equality constraints $g_i(w_1, \ldots, w_d) = 0$ can be written as two constraints $g_i(w_1, \ldots, w_d) \le 0$ and $-g_i(w_1, \ldots, w_d) \le 0$.

Some Terminology

- ▶ w₁,..., w_d are the optimization variables or parameters and g is the objective function.
- $g_i(w_1, \ldots, w_d) \leq 0$, i = 1 to *n* are called the **constraints**.
- The set of points satisfying the constraints is called the **feasible set**.
- A point w_1, \ldots, w_d in the feasible set is called a **feasible point**.
- The optimal value p* of the problem is defined as

 $p^* = \min \{g_0(w_1, \dots, w_d) \mid (w_1, \dots, w_d) \text{ satisfies all constraints}\}$

(technically min should be inf).

• (w_1^*, \ldots, w_d^*) is the **optimal point** if it is feasible and $g_0(w_1^*, \ldots, w_d^*) = p^*$

Lagrangian Formulation

Constrained: For simplicity of notation, let $w = (w_1, \ldots, w_d)$. Our optimization problem can be stated as:

$$\begin{array}{ll} {\sf Minimize:} & g_0(w) \\ {\sf Subject to:} & g_i(w) \leq 0 \ {\sf for} \ i=1 \ {\sf to} \ n \end{array}$$

The Lagrangian for the optimization problem is

$$L(w,\alpha) = g_0(w) + \sum_{i=1}^n \alpha_i g_i(w)$$

where α_i 's are called Lagrange multipliers (also called the dual variables).

Why Lagrangian?

Maximum over Lagrangian is equivalent to the original problem!

$$\max_{\alpha \ge 0} L(w, \alpha) = \max_{\alpha \ge 0} \left(g_0(w) + \sum_{i=1}^n \alpha_i g_i(w) \right)$$
$$= \begin{cases} g_0(w) & \text{if } g_i(w) \le 0 \text{ for all } i \\ \infty & \text{otherwise.} \end{cases}$$

- Let us say a constraint, g_i(w) is violated. Then g_i(w) > 0. Thus, the max value of the term in brackets is reached when α_i = ∞ which means that the max over the sum in the brackets will be ∞.
- If all the constraints are satisfied then g_i(w) ≤ 0, which means to maximize, we should have α_i = 0 (or g_i(w) = 0). Then ∑_i α_ig_i(w) will be zero. Thus, the max over the sum in the brackets = g₀(w).

Therefore, the optimal value of the optimization problem is

$$p^* = \min_{w} \max_{\alpha \ge 0} L(w, \alpha)$$

Primal versus Dual Formulation

Primal problem:

$$p^* = \min_{w} \max_{\alpha \ge 0} L(w, \alpha)$$

Dual problem (Flip max and min):

$$d^* = \max_{\alpha \ge 0} \min_{w} L(w, \alpha)$$

► Verify that min of max is always greater than or equal to max of min. Therefore, p^{*} ≥ d^{*}.

For any point (w', α') , we have: $\min_{w} L(w, \alpha') \leq L(w', \alpha') \leq \max_{\alpha} L(w', \alpha)$

Therefore, $\max_{\alpha} \min_{w} L(w, \alpha) \leq \min_{w} \max_{\alpha} L(w, \alpha)$ https://en.wikipedia.org/wiki/Max-min_inequality

Primal and Dual Solution

Primal problem:

$$p^* = \min_{w} \max_{\alpha \ge 0} L(w, \alpha)$$

Dual problem (Flip max and min):

$$d^* = \max_{\alpha \ge 0} \min_{w} L(w, \alpha)$$

- When we have a Convex objective function and affine constraints p* = d*. Thus, we can solve the dual in lieu of the primal problem.
- Why use the dual? It might be easier.

Karush-Kuhn-Tucker (KKT) conditions

At the optimal solution (w^*, α^*) :

$$\frac{\partial L(w^*, \alpha^*)}{\partial w_i} = 0 \quad \text{for } i = 1 \text{ to } d$$

$$\alpha_i^* g_i(w^*) = 0 \quad \text{for } i = 1 \text{ to } n$$

$$g_i(w^*) \le 0 \quad \text{for } i = 1 \text{ to } n$$

$$\alpha_i^* \ge 0 \quad \text{for } i = 1 \text{ to } n$$

Linear SVM Optimization Problem: Revisited

minimize
$$\frac{1}{2} \mathbf{w}^T \mathbf{w} = \frac{1}{2} ||\mathbf{w}||^2$$
 (objective function)
subject to $y_i(\mathbf{x}_i^T \mathbf{w} + b) \ge 1$ $(i = 1, \dots, n)$

OR

minimize
$$\frac{1}{2} ||\mathbf{w}||^2$$
 (objective function)
subject to $1 - y_i(\mathbf{x}_i^T \mathbf{w} + b) \le 0$, $(i = 1, \dots, n)$

Lagrange Formulation for Linear SVMs

minimize
$$\frac{1}{2} ||\mathbf{w}||^2$$
 (objective function)
subject to $1 - y_i(\mathbf{x}_i^T \mathbf{w} + b) \le 0$, $(i = 1, \dots, n)$

The problem can be solved by Lagrange multipliers method.

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i=1}^n \alpha_i (1 - y_i(\mathbf{x}_i^T \mathbf{w} + b))$$

Primal or Dual Problem

The primal problem is given by:

$$\min_{\mathbf{w},b} \max_{\alpha} L(\mathbf{w}, b, \alpha)$$
$$= \min_{\mathbf{w},b} \max_{\alpha} \left\{ \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i=1}^n \alpha_i (1 - y_i(\mathbf{x}_i^T \mathbf{w} + b)) \right\}$$

with respect to **w**, b and the Lagrange coefficients $\alpha_i \ge 0$.

The dual problem is given by:

$$\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha)$$
$$= \max_{\alpha} \min_{\mathbf{w}, b} \left\{ \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i (\mathbf{x}_i^T \mathbf{w} + b)) \right\}$$

with respect to **w**, *b* and the Lagrange coefficients $\alpha_i \geq 0$.

Apply KKT conditions on the Dual problem

$$\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha)$$
$$= \max_{\alpha} \min_{\mathbf{w}, b} \left\{ \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i (\mathbf{x}_i^T \mathbf{w} + b)) \right\}$$

with respect to **w**, b and the Lagrange coefficients $\alpha_i \geq 0$. We let

$$\frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}, b, \alpha) = 0, \quad \frac{\partial}{\partial b} L(\mathbf{w}, b, \alpha) = 0$$

These lead, respectively, to

$$\mathbf{w} = \sum_{j=1}^{n} \alpha_j y_j \mathbf{x}_j, \text{ and } \sum_{i=1}^{n} \alpha_i y_i = 0$$

Dual Problem

Dual:
$$\max_{\alpha} \min_{\mathbf{w}, b} \left\{ \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i=1}^n \alpha_i (1 - y_i (\mathbf{x}_i^T \mathbf{w} + b)) \right\}$$

Substituting the two equations

$$\mathbf{w} = \sum_{j=1}^{n} \alpha_j y_j \mathbf{x}_j, \text{ and } \sum_{i=1}^{n} \alpha_i y_i = 0$$

into the Dual problem, we get:

$$\max_{\alpha} L(\alpha) = \max_{\alpha} \left\{ \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j \right\}$$
subject to $\alpha_i \ge 0, \quad \sum_{i=1}^{n} \alpha_i y_i = 0$

Simplified Dual versus Primal Form

Primal:

$$\min_{\mathbf{w},b} \max_{\alpha} L(\mathbf{w}, b, \alpha)$$
$$= \min_{\mathbf{w},b} \max_{\alpha} \left\{ \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i=1}^m \alpha_i (1 - y_i(\mathbf{x}_i^T \mathbf{w} + b)) \right\}$$

with respect to **w**, *b* and the Lagrange coefficients $\alpha_i \ge 0$.

Dual:

$$\max_{\alpha} L(\alpha) = \max_{\alpha} \left\{ \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \right\}$$

subject to $\alpha_{i} \ge 0$, $\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$

Example

$$\begin{aligned} \text{Dual}: \quad \mathcal{L}(\alpha) &= \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j \\ \text{subject to} \quad \alpha_i \geq 0, \quad \sum_{i=1}^{n} \alpha_i y_i = 0 \end{aligned}$$

Consider the following 2-D dataset (x_1 and x_2 are the attributes and y is the class variable).

<i>x</i> ₁	<i>x</i> ₂	У
0	0	+1
0	1	-1
1	0	-1
1	1	+1

Write the expression for the dual problem. Let $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ be the Lagrangian multipliers associated with the four data points.

$$(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4) - \frac{1}{2} \{ \text{ sixteen tuples} \ldots \}$$

subject to $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \ge 0$ and $\alpha_1(+1) + \alpha_2(-1) + \alpha_3(-1) + \alpha_4(+1) = 0$. The last constraint simplifies to $\alpha_1 - \alpha_2 - \alpha_3 + \alpha_4 = 0$.

Steps in constructing the Dual

Start with an empty objective function

- Add the term $\sum_{i=1}^{n} \alpha_i$ to the objective function
- Construct the so-called Kernel matrix K(x_i, x_j) which stores x_i^Tx_j for all indexes i, j over the example. The cell (i, j) in the matrix is the dot product of the features associated with the *i*-th and *j*-th example respectively.
 - ► For example, the dot product of the examples (x₁, x₂, y): (1,0,-1) and (1,1,+1) is 1*1+0*1=1.
- For (i, j), compute $K(\mathbf{x}_i, \mathbf{x}_j) * y_i * y_j$ and add $-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j) * y_i * y_j$ to the objective function
- Add the constraints $\alpha_i \ge 0$ and $\sum_{i=1}^n \alpha_i y_i = 0$.

Complexity

O(d) for each element of the kernel matrix. There are n^2 elements. Therefore, the complexity of constructing the Kernel matrix is $O(n^2d)$. There are $O(n^2)$ terms in the objective function and each takes O(1) for lookup (once the Kernel matrix is constructed). Therefore the overall complexity is $O(n^2d)$ for constructing the optimization problem.