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What We have Learned
So Far?

Decision Trees

Naive Bayes

Linear Regression
Logistic Regression
Perceptron

Neural networks
K-Nearest Neighbors

I I

« Which of the above are linear and which are not?
* (1) (6) and (7) are non-linear

o (2)is linear under certain restrictions
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g(x) = w' X +Db (Neural nets)




Today: Support Vector
Machine (SVM)

A classifier derived from statistical learning theory by
Vapnik, et al. in 1992

SVM became famous when, using images as input, it
gave accuracy comparable to neural-network with
hand-designed features in a handwriting recognition task

Currently, SVM is widely used in object detection &
recognition, content-based image retrieval, text
recognition, biometrics, speech recognition, etc.

Also used for regression (will not cover today)

Chapter 5.1, 5.2, 5.3, 5.11 (5.4%) in Bishop 7

SVM tutorial (start reading from Section 3) V. Vapnik



Outline

Linear Discriminant Function
Large Margin Linear Classifier
Nonlinear SVM: The Kernel Trick
Demo of SYM



Linear Discriminant Function

or a Linear ClassifierTe semowes 1

« Given data and two t % WTx +b >0l O denotes -1

classes, learn a function
of the form:

g(xX)=w'x+Db

= A hyper-plane in the
feature space

= Decide class=1 if g(x)>0
and class=-1 otherwise




Linear Discriminant

Function

« How would you classify 4 X,
these points using a linear
discriminant function in
order to minimize the error
ratee

= Infinite number of answers!

d

@® denotes +1

O denotes -1




Linear Discriminant

FunCt]‘On O denotes -1
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Linear Discriminant

* How would you classify
these points using a linear
discriminant function in
order to minimize the error
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L.inear Discriminant

FunC tl()n @ denotes +1

O denotes -1

+ How would you classify 4 X,
these points using a linear
discriminant function in
order to minimize the error
ratee

= Infinite number of answers! _

d

= Which one is the best? )




Large Margin Linear
Classifier

The linear discriminant
function (classifier) with the
maximum margin is the best

= Margin is defined as the
width that the boundary
could be increased by before
hitting a data point

= Why it is the best?

= The larger the margin the
better generalization

X2

@® denotes +1

O denotes -1

Margin

"safe zone"

= Robust to outliers




Large Margin Linear
Class

« Aim: Learn alarge
margin classifier.

« Given a set of data
points, define:

Fory =+1, w'x, +b>1

Fory =-1, w'x, +h<-1

« Give an algebraic

expression for the width

of the margin.

A

ifier

2

"safe zone"

@® denotes +1

O denotes -1

Margin




Algebraic Expression for
Width of a Margin

Given 2 parallel lines with equations “safe zone" Margin

ax+by+c =0
and
ax+by+c=0
the distance between them is given by:
4 |¢2—cil
Va2 + b?
QOur lines in 2-D are:
WiXi +WoXxo +b—1=0and wyx;y + woxo +b+1=0

Distance = b-1-b-1]_ 2
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Large Margin Linear

Classifier

« Aim: Learn alarge margin t X,
classifier

« Mathematical Formulation:

2
maximize —:;

wi

such that
Fory, =+1, w'x, +b=>1
Fory, =—1, w'x, +b<-1

Common theme in machine learning:

@® denotes +1

O denotes -1

Margin

LEARNING IS OPTIMIZATION




Large Margin Linear

Classifier S e
O denotes -1
Formulation: + X, Margin

. . 1 2
minimize EHWH

such that

Fory =+1, w'x, +b>1

Fory =-1, w'x +b<-1




Large Margin Linear

e (o @® denotes +1
- Classifier .
« Formulation: 4 X, Margin

. . 1 2
minimize EHWH

such that

y.(W'x +b)>1




Large Margin Linear
Classifier

Formulation:
. 1, 2
minimize EHWH
such that
y.(W'x +b)>1
« Thisis a Quadratic programming problem with linear

constraints
o Off-the-shelf Software

However, we will convert it to Lagrangian dual in order
to use the kernel trick!



Solving the Optimization

Problem
Quadratic 1
programming minimize —HWHZ
with linear 2

constraints
st. y.(w'x +b)>1

Lagrangian '
Function

minimize L (w,b,¢;) = %HWHZ - Zn:ai (yi (W'x. +b) —1)
1=1

st. o =0




Solving the Optimization
Problem

minimize L (w,b,¢;) = %HWHZ - Zn:ai (yi (W'X. +Db) —1)
1=1

st. =0




Solving the Optimization
Problem

minimize L (w,b,¢;) = %HWHZ - Zn:ai (yi (WX +Db) —1)
1=1

st. =0

Lagrangian Dual '
Problem

maximize Za ——ZZaa V,YX{ X,

ljl

st. « =20, and Zloqyi =
i1




Solving the Optimization
Problem

= From the equations, we can prove
that: (KKT conditions):

a, (yi (W'x +b)—1):0

= Thus, only support vectors have ¢; #0

= The solution has the form:

W:Zn:aiYi i = Zaiyixi
i1

1eSV

get b from y (w'x. +b)—-1=0,
where X. IS support vector



Solving the Optimization
Problem

= The linear discriminant function is:

g(X) =w'x+b= > ax x+b

1eSV

= Notice it relies on a between the test point x
and the support vectors x;

= Also keep in mind that solving the optimization problem
Involved computing the X;'x; between all pairs
of training points



Large Margin Linear
Classifier

What if data is not linear
separable? (noisy data,

outliers, etfc.)

Slack variables ¢ can be
added to allow mis-
classification of difficult
or noisy data points

-*
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@® denotes +1

O denotes -1




Large Margin Linear
Classifier

= Formulation:

.1 ”
minimize EHWH2+CZ_1:<§ minimize %HWH2

such that sty (w'x, +b)>1

Yi (WTXi "‘b) Zl_é

Without slack variables

£20

= Parameter C can be viewed as a way to control over-fitting.



Large Margin Linear
Classifier

= Formulation: (Lagrangian Dual Problem)

maximize Za ——ZZ(Z.O!,Y.Y,

=l j=1

such that



Non-linear SVMs

= Datasets that are linearly separable with noise work out great:

@ @ |©—. :X

= But what are we going to do if the dataset is just too hard?

= Kernel Trick!!!
= SVM = Linear SVM + Kernel Trick

TFhis slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm _tutorial.ppt



Kernel Trick Motivation

Linear classifiers are well understood, widely-used
and efficient.

How to use linear classifiers to build non-linear ones?

Neural networks: Construct non-linear classifiers by
using a network of linear classifiers (perceptrons).

Kernels:

o Map the problem from the input space to a new higher-dimensional
space (called the feature space) by doing a non-linear tfransformation
using a special function called the kernel.

o Then use a linear model in this new high-dimensional feature space. The
linear model in the feature space corresponds to a non-linear model in
the input space.



Non-linear SVMs: Feature Space

= General idea: the original input space can be mapped to
some higher-dimensional feature space where the
training set is separable:
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TFhis slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm _tutorial.ppt °



Nonlinear SVMs: The Kernel Trick

= With this mapping, our discriminant function is now:

g(x) =W g(x)+b =D ag(x;)" $(x)+Db

1eSV

= No need to know this mapping explicitly, because we only use
the of feature vectors in both the training and test.

= A IS defined as a function that corresponds to
a dot product of two feature vectors in some expanded feature
space:

K (X, %;) =¢(x)" ¢(x;)



Nonlinear SVMs: The Kernel Trick

= An example:
2-dimensional vectors X=[x; X,];
let K(x;,X;)=(1 + %;7X;)*
Need to show that K(x;,x;) = @(x;) 'o(X;):
K(X;,X;)=(1 + X;Tx;)?
= 1+ X252 + 2 XigXig XipXigt Xip?Xio? + 2Xi1 X1 + 2

= [1 X2 V2 Xy Xip Xi? V2% V2% T[L X2 V2 Xy X5, Xip? V2%, V2x,]
= @(x) To(x;)), Where @(x) = [1 X;2 V2 XX, X,2 V2X; V2X,]

TFhis slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm _tutorial.ppt



Nonlinear SVMs: The Kernel Trick

= Examples of commonly-used kernel functions:
. _ i
o Linear kernel: -~ K(X;,X;) = X; X;
: : _ T p
2 Polynomial kernel: - K (X;,X;) = (L+X; X;)

o Gaussian (Radial-Basis Function (RBF) ) kernel:
2
[ x|

)

K(Xi’Xj) = exp(—
20
o Sigmoid:

K (X ’Xj) — ta-nh(ﬂoXiTXj + /)

= In general, functions that satisfy Mercer’s condition can be
kernel functions: Kernel matrix should be positive semidefinite.



Nonlinear SVM:
Optimization
= Formulation: (Lagrangian Dual Problem)

maximize Za ——ZZa a;yy KX, X;)

=1l j=1
such that 0<q <C
n

Zai y, =0
i-1

= The solution of the discriminant function is

9(x) = Y &K (x,, %) +b

1eSV
= The optimization technique is the same.



Support Vector Machine:
Algorithm

1. Choose a kernel function
2. Choose a value for C

3. Solve the quadratic programming
problem (many software packages
available)

e 4. Construct the discriminant function

from the support vectors



Some Issues

e Choice of kernel
- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed

- domain experts can give assistance in formulating
appropriate similarity measures

Choice of kernel parameters
- e.g. 0 in Gaussian kernel

- 0 is the distance between closest points with different
classifications

- In the albsence of reliable criteria, applications rely on the use
of a validation set or cross-validation to set such parameters.

Optimization criterion — Hard margin v.s. Soft margin

- a lengthy series of experiments in which various parameters
are tested

Fhis slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm _tutorial.ppt °



summary: Support Vector
Machine

« 1. Large Margin Classifier
o Better generalization ability & less over-fitting

« 2.The Kernel Trick

o Map data points to higher dimensional space in order to make them
linearly separable.

o Since only dot product is used, we do not need to represent the mapping
explicitly.



Additional Resource

* hitp://www.kernel-machines.org/



