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What We have Learned 
So Far? 

1. Decision Trees 

2. Naïve Bayes 

3. Linear Regression 

4. Logistic Regression 

5. Perceptron 

6. Neural networks 

7. K-Nearest Neighbors 

 

• Which of the above are linear and which are not? 

• (1) (6) and (7) are non-linear 
o (2) is linear under certain restrictions 

 



Decision Surfaces 
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Today: Support Vector 
Machine (SVM) 

• A classifier derived from statistical learning theory by 

Vapnik, et al. in 1992 

• SVM became famous when, using images as input, it 

gave accuracy comparable to neural-network with 

hand-designed features in a handwriting recognition task 

• Currently, SVM is widely used in object detection & 

recognition, content-based image retrieval, text 

recognition, biometrics, speech recognition, etc. 

• Also used for regression (will not cover today) 

 

• Chapter 5.1, 5.2, 5.3, 5.11  (5.4*) in Bishop 

• SVM tutorial (start reading from Section 3) V. Vapnik 



Outline 
• Linear Discriminant Function 

• Large Margin Linear Classifier 

• Nonlinear SVM: The Kernel Trick 

• Demo of SVM 

 



Linear Discriminant Function 
or a Linear Classifier 

• Given data and two 

classes, learn a function 

of the form: 

( ) Tg b x w x

x1 

x2 

wT x + b < 0 

wT x + b > 0 

 A hyper-plane in the 

feature space 

 Decide class=1 if  g(x)>0 

and class=-1 otherwise 

 

denotes +1 

denotes -1 



Linear Discriminant 
Function 

• How would you classify 
these points using a linear 
discriminant function in 
order to minimize the error 
rate? 

denotes +1 

denotes -1 

x1 

x2 

 Infinite number of answers! 
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x1 

x2 

Linear Discriminant 
Function 

• How would you classify 
these points using a linear 
discriminant function in 
order to minimize the error 
rate? 

denotes +1 

denotes -1 

 Infinite number of answers! 

 Which one is the best? 



Large Margin Linear 
Classifier  

• The linear discriminant 

function (classifier) with the 

maximum margin is the best 

“safe zone” 

 Margin is defined as the 

width that the boundary 

could be increased by before 

hitting a data point 

 Why it is the best? 

 The larger the margin the 

better generalization 

 Robust to outliers 

Margin 

x1 

x2 

denotes +1 

denotes -1 



Large Margin Linear 
Classifier  

• Aim: Learn a large 

margin classifier. 

• Given a set of data 

points, define: 

 

 

 

• Give an algebraic 

expression for the width 

of the margin. 

 

“safe zone” 
Margin 

x1 

x2 

denotes +1 

denotes -1 

For 1,   1

For 1,   1

T

i i

T

i i

y b

y b

   

    

w x

w x



Algebraic Expression for 
Width of a Margin 

“safe zone” 
Margin 

x1 



Large Margin Linear 
Classifier  

• Aim: Learn a large margin 

classifier 

• Mathematical Formulation:  

x1 

x2 
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Common theme in machine learning: 

LEARNING IS OPTIMIZATION 



Large Margin Linear 
Classifier  

• Formulation:  
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Large Margin Linear 
Classifier  

• Formulation:  

x1 

x2 
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Large Margin Linear 
Classifier  

• Formulation: 

 

 

 

 

 

• This is a Quadratic programming problem with linear 

constraints 
o Off-the-shelf Software 

• However, we will convert it to Lagrangian dual in order 

to use the kernel trick! 
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Solving the Optimization 
Problem  

( ) 1T

i iy b w x

21
minimize  

2
w

s.t. 

Quadratic 

programming  

with linear 

constraints 

 
2

1

1
minimize  ( , , ) ( ) 1

2

n
T

p i i i i

i

L b y b 


   w w w x

s.t. 

Lagrangian  

Function  

0i 



Solving the Optimization 
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Solving the Optimization 
Problem  
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Solving the Optimization 
Problem  

 The solution has the form:  

 ( ) 1 0T

i i iy b   w x

 From the equations, we can prove 

that: (KKT conditions): 

 Thus, only support vectors have   0i 
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Support Vectors 



Solving the Optimization 
Problem  

SV

( ) T T

i i

i

g b b


   x w x x x

 The linear discriminant function is:  

 Notice it relies on a dot product between the test point x 

and the support vectors xi 

 Also keep in mind that solving the optimization problem 

involved computing the dot products xi
Txj between all pairs 

of training points 



Large Margin Linear 
Classifier  

• What if data is not linear 

separable? (noisy data, 

outliers, etc.) 

 Slack variables ξi can be 

added to allow mis-

classification of difficult 

or noisy data points 

x1 

x2 

denotes +1 

denotes -1 

1
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Large Margin Linear 
Classifier  

 Formulation: 

( ) 1T

i i iy b   w x
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 Parameter C can be viewed as a way to control over-fitting. 
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Large Margin Linear 
Classifier  

 Formulation: (Lagrangian Dual Problem) 
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Non-linear SVMs 
 Datasets that are linearly separable with noise work out great: 

0 x 

0 x 

 But what are we going to do if the dataset is just too hard?  

 Kernel Trick!!! 

 SVM = Linear SVM + Kernel Trick 

 

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt  



Kernel Trick Motivation 
• Linear classifiers are well understood, widely-used 

and efficient. 

• How to use linear classifiers to build non-linear ones? 

• Neural networks: Construct non-linear classifiers by 

using a network of linear classifiers (perceptrons). 

• Kernels: 
o Map the problem from the input space to a new higher-dimensional 

space (called the feature space) by doing a non-linear transformation 

using a special function called the kernel. 

o Then use a linear model in this new high-dimensional feature space. The 

linear model in the feature space corresponds to a non-linear model in 

the input space. 



Non-linear SVMs:  Feature Space 

 General idea:  the original input space can be mapped to 

some higher-dimensional feature space where the 

training set is separable: 

Φ:  x → φ(x) 

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt  



Nonlinear SVMs: The Kernel Trick 

 With this mapping, our discriminant function is now: 

SV

( ) ( ) ( ) ( )T T

i i

i

g b b   


   x w x x x

 No need to know this mapping explicitly, because we only use 

the dot product of feature vectors in both the training and test. 

 A kernel function is defined as a function that corresponds to 

a dot product of two feature vectors in some expanded feature 

space: 

( , ) ( ) ( )T

i j i jK  x x x x



Nonlinear SVMs: The Kernel Trick 

 2-dimensional vectors x=[x1   x2];   

 

     let K(xi,xj)=(1 + xi
Txj)

2
, 

  

     Need to show that K(xi,xj) = φ(xi) 
Tφ(xj): 

   

     K(xi,xj)=(1 + xi
Txj)

2
, 

                           = 1+ xi1
2xj1

2 + 2 xi1xj1
 xi2xj2+ xi2

2xj2
2 + 2xi1xj1 + 2xi2xj2 

       = [1  xi1
2  √2 xi1xi2   xi2

2  √2xi1  √2xi2]
T [1  xj1

2  √2 xj1xj2   xj2
2  √2xj1  √2xj2]  

       = φ(xi) 
Tφ(xj),    where φ(x) =  [1  x1

2  √2 x1x2   x2
2   √2x1  √2x2] 

 

 An example: 

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt  



Nonlinear SVMs: The Kernel Trick 

 Linear kernel: 

2

2
( , ) exp( )

2

i j

i jK



 

x x
x x

( , ) T

i j i jK x x x x

( , ) (1 )T p

i j i jK  x x x x

0 1( , ) tanh( )T

i j i jK   x x x x

 Examples of commonly-used kernel functions: 

 Polynomial kernel: 

 Gaussian (Radial-Basis Function (RBF) ) kernel: 

 Sigmoid: 

 In general, functions that satisfy Mercer’s condition can be 

kernel functions: Kernel matrix should be positive semidefinite. 



Nonlinear SVM: 
Optimization 

 Formulation: (Lagrangian Dual Problem) 

1 1 1

1
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 The solution of the discriminant function is 

SV

( ) ( , )i i

i

g K b


 x x x

 The optimization technique is the same. 



Support Vector Machine: 
Algorithm 

• 1. Choose a kernel function 

 

• 2. Choose a value for C 

 

• 3. Solve the quadratic programming 
problem (many software packages 
available) 

 

• 4. Construct the discriminant function 
from the support vectors  



Some Issues 

• Choice of kernel 
    - Gaussian or polynomial kernel is default 

    - if ineffective, more elaborate kernels are needed 
    - domain experts can give assistance in formulating 

appropriate similarity measures 

 

• Choice of kernel parameters 
   - e.g. σ in Gaussian kernel 

   - σ is the distance between closest points with different 
classifications  

   - In the absence of reliable criteria, applications rely on the use 
of a validation set or cross-validation to set such parameters.  

 

• Optimization criterion – Hard margin v.s. Soft margin 
   - a lengthy series of experiments in which various parameters 

are tested  

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt  



Summary: Support Vector 
Machine 

• 1. Large Margin Classifier  
o Better generalization ability & less over-fitting 

 

• 2. The Kernel Trick 
o Map data points to higher dimensional space in order to make them 

linearly separable. 

o Since only dot product is used, we do not need to represent the mapping 

explicitly. 



Additional Resource 
• http://www.kernel-machines.org/ 


