
Studies in Solution Sampling

Vibhav Gogate and Rina Dechter
Donald Bren School of Information and Computer Science,

University of California, Irvine, CA 92697, USA.
{vgogate,dechter}@ics.uci.edu

Abstract

We introduce novel algorithms for generating random so-
lutions from a uniform distribution over the solutions of
a boolean satisfiability problem. Our algorithms operate
in two phases. In the first phase, we use a recently in-
troduced SampleSearch scheme to generate biased samples
while in the second phase we correct the bias by using
either Sampling/Importance Resampling or the Metropolis-
Hastings method. Unlike state-of-the-art algorithms, our al-
gorithms guarantee convergence in the limit. Our empirical
results demonstrate the superior performance of our new al-
gorithms over several competing schemes.

Introduction

In this paper we present novel algorithms for sampling so-
lutions uniformly from hard combinatorial problems. Our
schemes are quite general and can be applied to complex
graphical models like Bayesian and Markov networks which
have deterministic relationships (Richardson and Domingos,
2006; Fishelson and Geiger, 2003). However, in this pa-
per, we focus on boolean satisfiability problems only. Our
work is motivated by a wide application of solution sam-
pling in fields such as verification and probabilistic rea-
soning as elaborated in earlier work (Dechter et al., 2002;
Wei et al., 2004; Gomes et al., 2007).

The solution sampling task is closely related to the #P-
Complete problem of counting the number of solutions of a
satisfiability problem. In fact, it is easy to show that if one
can sample solutions from a uniform distribution then one
can exactly count the number of solutions. Conversely, one
can also design an exact solution sampling algorithm from
an exact counting algorithm.

This latter approach was exploited in (Dechter et al.,
2002) where an exact bucket elimination counting algo-
rithm was used to sample solutions uniformly. Since bucket
elimination is time and space exponential in a graph pa-
rameter called the treewidth, it cannot be used when the
treewidth is large. Therefore, in a subsequent paper (Gogate
and Dechter, 2006), we proposed a search based sampling
scheme called SampleSearch. SampleSearch is a random-
ized backtracking procedure whose value selection is guided
by sampling from approximate (polynomial time) solution

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

counters based on mini-bucket elimination or generalized
belief propagation. We found that SampleSearch is com-
petitive with then state-of-the-art solution sampler based on
Walksat (Wei et al., 2004). In spite of good empirical per-
formance, we showed in our previous work (Gogate and
Dechter, 2007) that SampleSearch has a serious shortcoming
in that it generates samples from the backtrack-free distribu-
tion which can sometimes be quite far from the uniform dis-
tribution over the solutions. A similar shortcoming is shared
by all other approximate solution samplers that were intro-
duced so far (Wei et al., 2004; Gomes et al., 2007).

The main contribution of this paper is in correcting
this deficiency by augmenting SampleSearch with sta-
tistical techniques of Sampling/Importance Resampling
(SIR) and the Metropolis-Hastings (MH) method yield-
ing SampleSearch-SIR and SampleSearch-MH respectively.
Our new techniques operate in two phases. In the first phase,
they use SampleSearch to generate a set of solution samples
and in the second phase they thin down the samples by ac-
cepting only a subset of good samples. By carefully select-
ing this acceptance criteria, we can prove that the samples
generated by our new schemes converge in the limit to the re-
quired uniform distribution over the solutions. This conver-
gence is important because, as implied by sampling theory
(Rubinstein, 1981), it is expected to yield a decreasing sam-
pling error (and thus more accurate estimates) as the number
of samples (or time) is increased. In contrast, pure Sam-
pleSearch will converge to the wrong backtrack-free distri-
bution as time increases thereby yielding a constant error.
Therefore, in theory, our new techniques should always be
preferred over SampleSearch.

Our empirical evaluation shows that our new schemes
have better performance in terms of sampling error (accu-
racy as a function of time) than pure SampleSearch and Sam-
pleSAT (Wei et al., 2004) on a diverse set of benchmarks;
demonstrating their practical value.

Preliminaries and Related Work

For the rest of the paper, let |X|= n be the propositional vari-
ables. A variable assignment X = x, x = (x1, . . . ,xn) assigns
a value in {0,1} to each variable in X. We use the nota-
tion xi to mean the negation of a value assignment xi. Let
F = F1 ∧ . . .∧Fm be a formula in conjunctive normal form
(cnf) with clauses F1, . . . ,Fm defined over X and let X = x

be a variable assignment. If X = x satisfies all clauses of F ,
then X = x is a solution of F .

Definition 1 (The Solution Sampling task). Let S =
{x|x is a solution o f F} be the set of solutions of formula F .
Given a uniform probability distribution P(x ∈ S) = 1/|S|
over all solutions of F and an integer M, the solution sam-
pling task is to generate M solutions such that each solution
is generated with probability 1/|S|.

Previous work

An obvious way to solve the solution sampling task is to first
generate (and store) all solutions and then generate M sam-
ples from the stored solutions such that each solution is sam-
pled with equal probability. The problem with this approach
is obvious; in most applications we resort to sampling be-
cause we cannot enumerate the entire search space.

A more reasonable approach formally presented as
Algorithm 1 works as follows. We first express the uniform
distribution P(x) over the solutions in a product factored
form: P(x = (x1, . . . ,xn)) = ∏n

i=1 Pi(xi|x1, . . . ,xi−1).
Then, we use a standard Monte Carlo (MC) sampler
(also called logic sampling (Pearl, 1988)) to sample along
the ordering O = 〈X1, . . . ,Xn〉 implied by the product
form. Namely, at each step, given a partial assignment
(x1, . . . ,xi−1) to the previous i − 1 variables, we assign
a value to variable Xi by sampling it from the distribu-
tion Pi(Xi|x1, . . . ,xi−1). Repeating this process for each
variable in the sequence produces a sample (x1, . . . ,xn).

Algorithm 1: Monte-Carlo Sampler (F,O,P)

Input: A Formula F , An Ordering O = (x1, . . . ,xn) and the
uniform distribution over the solutions P

Output: M Solutions drawn from the uniform distribution
over the solutions

for j = 1 to M do1

x = φ ;2

for i = 1 to n do3

p = a random number in (0,1);4

If p < Pi(Xi = 0|x) Then x = x∪ (Xi = 0) Else5

x = x∪ (Xi = 1);
end6

Output x;7

end8

The probability Pi(Xi = xi|x1, . . . ,xi−1) can be obtained by
computing the ratio between the number of solutions that the
partial assignment (x1, . . . ,xi) participates in and the number
of solutions that (x1, . . . ,xi−1) participates in.

Example 1. Figure 1(a) shows a complete search tree for the
given SAT problem. Each arc from a parent Xi−1 = xi−1to
a child Xi = xi in the search tree is labeled with the ratio of
the number of solutions below the child (i.e. the number of
solutions that (x1, . . . ,xi) participates in) and the number of
solutions below the parent (i.e. the number of solutions that
(x1, . . . ,xi−1) participates in) which corresponds to the prob-
ability Pi(Xi = x1|X1 = x1, . . . ,Xi−1 = xi−1). Given random
numbers {0.2,0.3,0.6}, the solution highlighted in bold in
Figure 1(a) will be generated by Algorithm 1.

(Dechter et al., 2002) used bucket elimination based so-
lution counting scheme to compute Pi(Xi|x1, . . . ,xi−1) from

a SAT formula. In this scheme, the bucket elimination al-
gorithm is run just once as a pre-processing step so that
Pi(Xi|x1, . . . ,xi−1) can be computed for any partial assign-
ment (x1, . . . ,xi−1) to the previous i − 1 variables by per-
forming a constant time table look-up. However, the time
and space complexity of this pre-processing scheme is expo-
nential in a graph parameter called the treewidth and when
the treewidth is large, bucket elimination is impractical.

To address the exponential blow up, (Dechter et al., 2002;
Gogate and Dechter, 2006) propose to compute an approx-
imation Qi(Xi|x1, . . . ,xi−1) of Pi(Xi|x1, . . . ,xi−1) by using
polynomial schemes like mini-bucket elimination (MBE) or
generalized belief propagation (GBP). However, MBE and
GBP approximations may be too weak permitting the gen-
eration of inconsistent tuples. Namely, a sample generated
from Q may not be a solution of the formula F and would
have to be rejected. In some cases (e.g. for instances in the
phase transition) almost all samples generated will be non-
solutions and will be rejected. To circumvent this rejection
problem, we proposed the SampleSearch scheme (Gogate
and Dechter, 2006) which we present next.

SampleSearch and its sampling distribution

Algorithm 2: SampleSearch SS(F,Q,O)

Input: A cnf formula F , a distribution Q and an Ordering O
Output: A solution x = (x1, . . . ,xn)
UnitPropagate(F);1

IF there is an empty clause in F THEN Return 0;2

IF all variables are assigned a value THEN Return 1;3

Select the earliest variable Xi in O not yet assigned a value;4

p = Generate a random number between 0 and 1;5

IF p < Qi(Xi = 0|x1, . . . ,xi−1) THEN set xi = 0 ELSE set6

xi = 1;
return SS((F ∧ xi),Q,O) ∨ SS((F ∧ xi),Q,O)7

SampleSearch (Gogate and Dechter, 2006) (see Algo-
rithm 2) is a DPLL-style backtracking procedure whose
value selection is guided by sampling from a specified
distribution Q. It takes as input a formula F , an or-
dering O = 〈X1, . . . ,Xn〉 of variables and a distribution
Q = ∏n

i=1 Qi(xi|x1, . . . ,xi−1). Given a partial assignment
(x1, ...,xi−1) already generated, a value Xi = xi for the
next variable is sampled from the conditional distribu-
tion Qi(xi|x1, . . . ,xi−1). Then the algorithm applies unit-
propagation with the new unit clause Xi = xi created over the
formula F . Note that the unit-propagation step is optional.
Any backtracking style search can be used, with any of the
current advances (in that SampleSearch is a family of algo-
rithms). If no empty clause is generated, then the algorithm
proceeds with the next variable. Otherwise, the algorithm
tries Xi = xi, performs unit propagation and either proceeds
forward (if no empty clause generated) or it backtracks. The
output of SampleSearch is a solution of F (assuming a so-
lution exists). To generate M samples, the algorithm will be
invoked M times.

We showed (Gogate and Dechter, 2006) that Sample-
Search is competitive with another solution sampling ap-
proach called SampleSAT (Wei et al., 2004) which is based
on the WalkSAT solver. Subsequently, we proved that

Root

C=0 C=1 C=0 C=1 C=0 C=1 C=0 C=1

B=0 B=1 B=0 B=1

A=0 A=1

3/4 1/4

2/3 1/3

1

0

1/2 1/2 10 0 0 0

1

(a)

Root

C=0 C=1 C=0 C=1 C=0 C=1 C=0 C=1

B=0 B=1 B=0 B=1

A=0 A=1

0.8 0.2

0.6 0.4

0.1

0.5

0.5 0.5 0.80.9 0.2 0.7 0.3

0.5

(b)

Root

C=0 C=1 C=0 C=1 C=0 C=1 C=0 C=1

B=0 B=1 B=0 B=1

A=0 A=1

0.8 0.2

0.6 0.4

1

0

0.5 0.5 10 0 0 0

1

(c)

SAT Problem: (A∨¬B∨¬C)∧ (¬A∨B∨C)∧ (¬A∨¬B∨C)∧ (¬A∨¬B∨¬C)

Figure 1: (a)Search tree for a SAT problem and its distribution for exact sampling, (b) A proposal distribution Q and (c)
Backtrack-free distribution of Q.

the distribution of samples generated from SampleSearch
converges to the backtrack-free distribution defined below
(Gogate and Dechter, 2007).

Definition 2 (Backtrack-free distribution). Given a dis-
tribution Q(x) = ∏n

i=1 Qi(xi|x1, . . . ,xi−1) , an ordering
O = 〈x1, . . . ,xn〉 and a cnf formula F , the backtrack-
free distribution is QF(x) = ∏n

i=1 QF
i (xi|x1, . . . ,xi−1) where

QF
i (xi|x1, . . . ,xi−1) is defined as follows:

1. QF
i (xi|x1, . . . ,xi−1) = 0 if (x1, . . . ,xi−1,xi) cannot be ex-

tended to a solution of F .
2. QF

i (xi|x1, . . . ,xi−1) = 1 if (x1, . . . ,xi−1,xi) can be extended
to a solution but (x1, . . . ,xi−1,xi) cannot be extended to a
solution of F .

3. QF
i (xi|x1, . . . ,xi−1) = Qi(xi|x1, . . . ,xi−1) if both

(x1, . . . ,xi−1,xi) and (x1, . . . ,xi−1,xi) can be extended to a
solution of F .

Example 2. Figure 1(b) shows a distribution Q defined as a
probability tree while Figure 1(c) displays the backtrack-free
distribution QF of Q. QF is constructed from Q as follows.
Given a parent and its two children one which participates
in a solution and the other which does not, the edge-label of
the child participating in a solution is changed to 1 while the
edge-label of the other child which does not participate in
a solution is changed to 0. If both children participate in a
solution, the edge labels remain unchanged.

So, while SampleSearch samples from the backtrack-free
distribution QF , it still does not solve the solution sampling
problem because QF may still be quite far from the uniform
distribution over the solutions. In the next two sections, we
present the main contribution of this paper. Specifically we
augment SampleSearch with ideas presented in the statistics
literature − the Metropolis-Hastings method and the Sam-
pling/Importance Resampling theory so that in the limit the
sampling distribution of the resulting techniques is the target
uniform distribution over the solutions.

SampleSearch-MH

The main idea in the Metropolis-Hastings (MH) simulation
algorithm (Hastings, 1970) is to generate a Markov Chain
whose limiting or stationary distribution is equal to the tar-
get distribution P . A Markov chain consists of a sequence
of states and a transition-rule T (y|x) for moving from state
x to state y. Given a transition function T (y|x), an accep-
tance function 0 ≤ A(y|x) ≤ 1 and a current state xt , the
Metropolis-Hastings algorithm works as follows:

• Draw y from T (y|xt).

• Draw p uniformly from [0,1] and update

xt+1 =

{
y if p ≤ A(y|xt)
xt otherwise

(Hastings, 1970) proved that the stationary distribution of
the above Markov Chain converges to P when it satisfies
the detailed balance condition:

P(x)T (y|x)A(y|x) = P(y)T (x|y)A(x|y)

Algorithm 3: SampleSearch−MH(F,Q,O,M)

Input: A formula F , A distribution Q, An ordering O, Integer
M

Output: M solutions
x0 = SampleSearch(F,O,Q);1

for t = 0 to M−1 do2

y = SampleSearch(F,O,Q);3

Generate a random number p in the interval [0,1];4

If p ≤
QF (xt)

QF (xt)+QF (y)
Then xt+1 = y Else xt+1 = xt ;5

end6

We can use the general MH principle for solution sampling
in a straight-forward way as described by Algorithm 3.
Here, we first generate a solution sample y using Sam-
pleSearch and then accept the solution with probability

QF (x)
QF (x)+QF (y)

. We can prove that:

Proposition 1. The Markov Chain of SampleSearch-MH
satisfies the detailed balance condition.

Proof. Note that because we are supposed to gener-
ate samples from a uniform distribution over the solu-
tions P(x) = P(y), the detailed balance condition re-
duces to:T (y|x)A(y|x) = T (x|y)A(x|y) Because each sample

is generated independently from QF , we have:T (y|x) =
QF (y) and T (x|y) = QF (x). Also, from Step 5 of
SampleSearch-MH the acceptance probability is:A(y|x) =

QF (x)
QF (x)+QF (y)

and A(x|y) =
QF (y)

QF (x)+QF (y)
Consequently,

T (y|x)A(y|x) = QF (y)
QF (x)

QF (x)+QF (y)

= QF (x)
QF (y)

QF (x)+QF (y)
= T (x|y)A(x|y)

Integrating MH with SampleSearch opens the way for apply-
ing various improvements to MH proposed in the statistics
literature. We describe next the integration of an improved
MH algorithm with SampleSearch.

Improved SampleSearch-MH In SampleSearch-MH, we
generate a state (or a sample) from the backtrack-free dis-
tribution and then a decision is made whether to accept
the state based on an acceptance function. In Improved
SampleSearch-MH (see Algorithm 4), we first widen the ac-
ceptance by generating multiple states instead of just one
and then accept a good state from these multiple options.
Such methods are referred to as multiple trial MH (Liu, Jun
S. et al.,2000). Given a current sample x, it generates k can-
didates y1, . . . ,yk from the backtrack-free distribution QF in
the usual SampleSearch style. It then selects a (single) sam-
ple y from the k candidates with probability proportional to
1/QF(y j). Sample y is then accepted according to the fol-
lowing acceptance function:

A(y|x) =
W

W − 1
QF (y)

+ 1
QF (x)

where W =
k

∑
j=1

1

QF(y j)
(1)

Using results from (Liu, Jun S. et al.,2000), it is easy to
prove that:

Proposition 2. The Markov Chain generated by Improved-
SampleSearch-MH satisfies the detailed balance condition.

Algorithm 4: Improved-SampleSearch-MH (F,Q,O,M,k)

Input: A formula F , A distribution Q, An ordering O, Integer
M and k

Output: M solutions
Generate x0 using SampleSearch(F,O,Q);1

for t = 0 to M−1 do2

Y = φ ;3

for j = 1 to k do4

y j = SampleSearch(F,O,Q);5

Y = Y∪y j;6

end7

Compute W = ∑k
j=1

1
QF (y j)

;8

Select y from the set Y by sampling each element y j in Y9

with probability proportional to 1
QF (y j)

;

Generate a random number p in the interval [0,1];10

If p ≤ W

W − 1

QF (y)
+ 1

QF (xt)

Then xt+1 = y Else xt+1 = xt ;
11

end12

Clearly, it follows that:

THEOREM 1. The stationary distribution of SampleSearch-
MH and Improved-SampleSearch-MH is the uniform distri-
bution over the solutions.

Proof. Proof follows from proposition 1 and 2 and the
Metropolis-Hastings theory (Hastings, 1970).

SampleSearch-SIR

We now discuss our second algorithm which augments
SampleSearch with Sampling/Importance Resampling (SIR)
(Rubin, 1987) yielding the SampleSearch-SIR technique.
Standard SIR (Rubin, 1987) aims at drawing random sam-
ples from a target distribution P(x) by using a given pro-
posal distribution Q(x) which satisfies P(x) > 0 ⇒ Q(x) >
0. First, a set of independent and identically distributed ran-
dom samples A = (x1, . . . ,xN) are drawn from a proposal
distribution Q(x). Second, a possibly smaller number of

samples B = (y1, . . . ,yM) are drawn from A with or with-
out replacement with sample probabilities which are pro-
portional to the weights w(xi) = P(xi)/Q(xi) (this step is
referred to as the re-sampling step). The samples from SIR
will, as N → ∞, consist of independent draws from P .

We can easily augment SampleSearch with SIR as de-
scribed in Algorithm 5. Here, a set A = (x1, . . . ,xN) of
solution samples (N > M) is first generated from Sam-
pleSearch. Then, M samples are drawn from A with or
without replacement with sample probabilities proportional
to 1/QF(xi). Note that when sampling with replacement
a solution may be generated multiple times in the final
set of samples B while when sampling without replace-
ment each solution will appear only once in the final set.

Algorithm 5: SampleSearch−SIR(F,Q,O,N,M)

Input: A formula F , A distribution Q, An ordering O,
Integers M and N, N > M

Output: M solutions
Generate N i.i.d. samples A = {x1, . . . ,xN} by executing1

SampleSearch(F,O,Q) N times;
Compute importance weights2

{w1 = 1
QF (x1)

, . . . ,wN = 1
QF (xN)

} for each sample where QF is

the backtrack-free distribution;
Normalize the importance weights using w̃i = wi/∑N

j=1 w j;3

Re-sampling Step: Generate M i.i.d. samples {y1, . . . ,yM}4

from A by sampling each sample xi with probability w̃i.;

THEOREM 2. As N → ∞, the samples generated by
SampleSearch−SIR consist of independent draws from the
uniform distribution over the solutions of F.

Proof. From SIR theory (Rubin, 1987), it follows that
SampleSearch− SIR generates solutions from uniform dis-
tribution P if each sample is weighed as:

wi ∝
P(xi)

QF (xi)
∝

1

QF (xi)
Since the weight of solution xi, is 1/QF(xi) (Step 2 of

SampleSearch−SIR), the proof follows.

The integration of SampleSearch within the SIR frame-
work allows us to use various improvements proposed in
the statistics literature to the basic SIR framework. In the
following subsection, we consider one such improvement
known as the Improved SIR framework.

Improved SampleSearch-SIR Under certain restrictions
(Skare et al., 2003) prove that the convergence of SIR is
proportional to O(1/N). To speed up this convergence to

O(1/N2), they propose the Improved SIR framework. For
our purposes, Improved SIR only changes the weights dur-
ing resampling as follows.

In case of sampling with replacement the Improved
SampleSearch-SIR weighs each sample as:

w(xi) ∝
1

S−i ∗QF (xi)
where S−i =

M

∑
j=1

1

QF (x j)
−

1

QF (xi)
(2)

The first draw of Improved SampleSearch-SIR without re-
placement is specified by the weights in Equation 2. For the
kth draw, k > 1, the distribution of w is modified to:

w(xk) ∝
1

QF (xk)(∑N
j=1

1
QF (x j)

−∑k−1
j=1

1
QF (x j)

− k 1
QF (xk)

)

Discussion

Theorems 1 and 2 are important because they guarantee
that as the sample size increases, the samples drawn by
SampleSearch-SIR and SampleSearch-MH would converge
to the uniform distribution over the solutions. To our knowl-
edge, the three state-of-the-art schemes in literature (a) Sam-
pleSearch, (b) SampleSAT (Wei et al., 2004) and (c) Xor-
Sample (Gomes et al., 2007) do not have such guarantees.

In particular, SampleSearch (Gogate and Dechter, 2007)
converges to the wrong (backtrack-free) distribution while
it is difficult to characterize the sampling distribution of
SampleSAT. It is possible to make SampleSAT sample uni-
formly by setting the noise parameter appropriately but do-
ing so was shown by (Wei et al., 2004) to compromise sig-
nificantly the time required to generate a solution sample
making SampleSAT impractical. The XorSample algorithm
(Gomes et al., 2007) can be made to generate samples that
can be guaranteed to be within any tiny constant factor of
the uniform distribution by increasing the slack parameter
α . However, for a fixed α , XorSample may not generate
solutions from a uniform distribution (Gomes et al., 2007).

Experimental Evaluation

Implementation details

The performance of MH and SIR is highly dependent on the
choice of Q. We compute Q from the output of Iterative Join
graph propagation (IJGP), a generalized belief propagation
scheme because it was shown to yield better empirical per-
formance than other available choices (Gogate and Dechter,
2006). The complexity of IJGP is time and space exponen-
tial in a parameter i also called as i-bound. We tried i-bounds
of 1, 2 and 3 and found that the results were not sensitive to
the i-bound used and therefore we report results for i-bound
of 1. Since we can use any systematic SAT solver as an un-
derlying search procedure within SampleSearch, we chose
to use the minisat SAT solver (Sorensson and Een, 2005).

We experimented with the following competing
schemes (a) SampleSearch (b) SampleSearch-MH, (c)
SampleSearch-SIR with replacement, (d) SampleSearch-
SIR without replacement and (e) SampleSAT. Following
previous work (Wei et al., 2004), we set the number of
flips to one billion and the noise parameter to 50% in
SampleSAT. We use a resampling ratio M/N = 0.1 = 10%
(chosen arbitrarily) in all our experiments with the SIR
scheme. All experiments are performed using improved
versions of SampleSearch-SIR and SampleSearch-MH. In
case of improved MH, we set the number of tries k to 10.

Results

We evaluate the quality of various algorithms by comput-
ing the average KL distance between the exact marginal
distribution Pe(xi) and the approximate marginal distribu-
tion Pa(xi) of each variable (KL = Pe(xi)ln(Pe(xi)/Pa(xi))).
The exact marginal for each variable Xi can be computed
as: Pe(Xi = xi) = |Sxi

|/|S| where Sxi
is the set of solutions

that the assignment Xi = xi participates in and S is the set
of all solutions. The number of solutions for the SAT prob-
lems were computed using Cachet (Sang et al., 2005). Af-

ter running various sampling algorithms, we get a set of
solution samples φ from which we compute the approxi-
mate marginal distribution as: Pa(Xi = xi) = φ(xi)/|φ | where
φ(xi) is the number of solutions in the set φ in which Xi = xi.

We experimented with four sets of benchmarks (see Table
1): (a) the grid pebbling problems, (b) the logistics plan-
ning instances, (c) circuit instances and (d) flat graph color-
ing instances. The first three benchmarks are available from
Cachet (Sang et al., 2005) and the flat graph coloring bench-
marks are available from Satlib (Hoos and Stützle, 2000).
Note that we used SAT problems whose solutions can be
counted in relatively small amount of time because to com-
pute the KL distance we have to count solutions to n+1 SAT
problems for each formula having n variables.

Table 1 summarizes the results of running each algorithm
for exactly 1 hr on various benchmarks. The second and
the third column report the number of variables and clauses
respectively of each benchmark. For each sampling algo-
rithm, in subsequent columns, we report the number of sam-
ples generated and the average KL distance. Note that lower
the KL distance the more accurate the sampling algorithm
is. We make the following observations from Table 1.

First, on most instances the SIR and MH methods are
more accurate than pure SampleSearch and SampleSAT.
Second, on most instances, SampleSearch generates more
samples and is more accurate than SampleSAT. Third, on
most instances, the number of samples generated by MH and
SIR methods are less than SampleSearch. This is to be ex-
pected because both MH and SIR methods accept only 10%
of the so-called good samples from SampleSearch’s output
and require computation of the backtrack-free distribution.

Finally, in Figures 2 and 3 we show how the KL distance
of various algorithms changes with time on two instances.
The remaining figures are presented in the extended version
of this paper (Gogate and Dechter, 2008). We can see from
Figures 2 and 3 that the KL distance converges rather slowly
towards zero. Note that the convergence to zero described in
Theorems 1 and 2 is only applicable in the limit and not in
finite time. Namely, the sampling error of our schemes may
not strictly decrease as time increases. On most instances,
we found that the KL distance decreases very quickly to a
particular value and stays there (or close to it) for a long
time before decreasing again. At this point, we do not have
a good scientific explanation for this behavior. Explaining
and improving the finite time convergence properties of our
new schemes is therefore a possible avenue for future work.

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500 3000 3500

K
L

D
ist

an
ce

Time in Seconds

sat-grid-pbl-0025.cnf

SampleSearch
MH

SIR-wR

SIR-woR
WALKSAT

Figure 2: Time versus KL distance on Pebbling instance

Problem #Var #Cl SampleSearch SIR-wR SIR-woR MH SampleSAT

#samples KL #samples KL #samples KL #samples KL #samples KL

Pebbling
grid-pbl-10 110 191 9.0E+07 0.08 7.2E+06 0.002 7.2E+06 0.010 1.1E+07 0.030 1.8E+08 0.110
grid-pbl-15 240 436 3.0E+07 0.12 3.7E+06 0.017 3.7E+06 0.050 2.7E+06 0.060 1.2E+08 0.127
grid-pbl-20 420 781 2.0E+07 0.10 3.3E+04 0.008 3.3E+04 0.011 3.5E+04 0.017 4.5E+07 0.153
grid-pbl-25 650 1226 1.2E+08 0.13 1.2E+07 0.027 1.2E+07 0.006 8.0E+06 0.004 1.2E+08 0.138
grid-pbl-30 930 1771 9.3E+05 0.15 1.0E+04 0.040 1.0E+04 0.007 1.2E+04 0.007 3.0E+07 0.154

Circuit
2bitcomp 5 125 310 3.6E+08 0.03 4.5E+07 0.003 4.5E+07 0.006 1.2E+07 0.010 2.9E+08 0.033

2bitmax 6 252 766 3.6E+08 0.11 5.1E+07 0.006 5.1E+07 0.040 1.6E+07 0.053 2.5E+08 0.039
ssa7552-158 1363 3034 6.0E+07 0.06 6.9E+06 0.006 6.9E+06 0.020 3.5E+06 0.040 2.4E+07 0.130
ssa7552-159 1363 3032 6.0E+07 0.06 7.8E+06 0.003 7.8E+06 0.030 3.0E+07 0.040 3.2E+07 0.130

Logistics
log-1 939 3785 7.2E+07 0.08 6.9E+06 0.011 6.9E+06 0.043 2.7E+06 0.044 4.5E+07 0.051
log-2 1337 24777 1.1E+07 0.12 2.0E+04 0.270 2.0E+04 0.107 3.5E+04 0.101 5.0E+04 0.203
log-3 1413 29487 1.0E+07 0.20 3.3E+04 0.128 3.3E+04 0.166 2.7E+04 0.166 3.5E+04 0.176
log-4 2303 20963 1.0E+07 0.21 2.5E+04 0.183 2.5E+04 0.165 3.2E+04 0.156 3.5E+04 0.290
log-5 2701 29534 8.0E+06 0.22 2.5E+04 0.270 2.5E+04 0.160 1.8E+04 0.150 3.3E+03 0.260

Coloring
Flat-100 300 1117 5.1E+07 0.08 1.0E+05 0.001 1.0E+05 0.010 1.1E+05 0.032 1.4E+07 0.020
Flat-200 600 2237 5.1E+06 0.11 1.0E+04 0.016 1.0E+04 0.050 1.6E+04 0.050 4.9E+06 0.030

Table 1: KL distance and the number of samples after running each algorithm for 1hr

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500 3000 3500

K
L

D
ist

an
ce

Time in Seconds

ssa7552-159.cnf

SampleSearch
MH

SIR-wR

SIR-woR
WALKSAT

Figure 3: Time versus KL distance on circuit instance

Conclusion and Summary

The paper provides two new extensions to the Sample-
Search scheme: SampleSearch-MH and SampleSearch-SIR
for sampling solutions uniformly from a satisfiability prob-
lem. The origin for this task is the use of satisfiability based
methods in fields such as verification and probabilistic rea-
soning. Our new schemes are guaranteed to (robustly) con-
verge to the uniform distribution over the solutions as the
sample size increases. Our empirical evaluation demon-
strates substantial improved performance over earlier pro-
posals for solution sampling.

Acknowledgements

This work was supported in part by the NSF under award
numbers IIS-0331707, IIS-0412854 and IIS-0713118.

References

Gogate, V. and Dechter, R. (2008). Studies in solution sampling.
Technical Report, University of California, Irvine, CA, USA.

Dechter, R., Kask, K., Bin, E., and Emek, R. (2002). Generating
random solutions for constraint satisfaction problems. In AAAI,
pages 15–21.

Fishelson, M. and Geiger, D. (2003). Optimizing exact genetic
linkage computations. In RECOMB 2003.

Gogate, V. and Dechter, R. (2006). A new algorithm for sampling
csp solutions uniformly at random. CP, pages 711–715.

Gogate, V. and Dechter, R. (2007). Approximate counting by
sampling the backtrack-free search space. In AAAI, pages 198–
203.

Gomes, C. P., Sabharwal, A., and Selman, B. (2007). Near-
uniform sampling of combinatorial spaces using xor constraints.
In NIPS. pages 481–488.

Hastings, W. K. (1970). Monte carlo sampling methods using
markov chains and their applications. Biometrika, 57(1):97–109.

Hoos, H. H. and Stützle, T. (2000). SATLIB: An Online Resource
for Research on SAT. pages 283–292.

Liu, Jun S., Liang, Faming, and Wong, Wing Hung (2000). The
multiple-try method. Journal of the American Statistical Associ-
ation, (449):121–134, .

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann.

Richardson, M. and Domingos, P. (2006). Markov logic net-
works. Machine Learning, 62(1-2):107–136.

Rubin, D. B. (1987). The calculation of posterior distributions by
data augmentation. Jornal of the American Statistical Associa-
tion, 82:543–546.

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo
Method. John Wiley & Sons, Inc., New York, NY, USA.

Sang, T., Beame, P., and Kautz, H. A. (2005). Heuristics for fast
exact model counting. In SAT, pages 226–240.

Skare, O., Bolviken, E., and Holden, L. (2003). Improved
sampling-importance resampling and reduced bias importance
sampling. Scandinavian Journal of Statistics, 30(4): 719–737.

Sorensson, N. and Een, N. (2005). Minisat v1.13-a sat solver with
conflict-clause minimization. In SAT.

Wei, W., Erenrich, J., and Selman, B. (2004). Towards efficient
sampling: Exploiting random walk strategies. In AAAI, pages
670–676.

