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Abstract

The maximum likelihood estimator (MLE) is gener-
ally asymptotically consistent but is susceptible to over-
fitting. To combat this problem, regularization meth-
ods which reduce the variance at the cost of (slightly)
increasing the bias are often employed in practice. In
this paper, we present an alternative variance reduction
(regularization) technique that quantizes the MLE es-
timates as a post processing step, yielding a smoother
model having several tied parameters. We provide and
prove error bounds for our new technique and demon-
strate experimentally that it often yields models hav-
ing higher test-set log-likelihood than the ones learned
using the MLE. We also propose a new importance
sampling algorithm for fast approximate inference in
models having several tied parameters. Our experiments
show that our new inference algorithm is superior to
existing approaches such as Gibbs sampling and MC-
SAT on models having tied parameters, learned using
our quantization-based approach.

Introduction
Weight (parameter) learning is a central problem in prob-
abilistic graphical models. It is often expressed as the fol-
lowing maximum likelihood estimation (MLE) task: find an
assignment of values to all parameters that maximizes the
log-likelihood of the data. MLE is a popular weight learning
formulation because it has several desirable theoretical prop-
erties including consistency (convergence in the limit to the
correct value), and asymptotic efficiency (best-possible esti-
mator in the limit). However, in practice, when the data size
is small or the number of parameters is large (or both), MLE
yields parameter estimates having high variance, and the re-
sulting models have poor predictive (generalization) accu-
racy. To combat this, regularization methods such as `1 and
`2 regularization, and their Bayesian counterparts Laplace
and Gaussian priors, which reduce the variance by penaliz-
ing large parameter values, are often employed in practice.

In this paper, we consider an alternative regularization
method: parameter tying, which forces several parameters
of the graphical model to take the same value. Roughly

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

speaking, since the sufficient statistics of the tied parame-
ters can be combined, the number of samples used to esti-
mate a specific parameter increases, which in turn reduces
the variance (but increases the bias). Parameter tying is em-
ployed in a large variety of graphical models and their exten-
sions such as hidden Markov models (Baum et al. 1970), dy-
namic Bayesian networks (Murphy 2002), conditional ran-
dom fields (Lafferty, McCallum, and Pereira 2001), and sta-
tistical relational models (Getoor and Taskar 2007). How-
ever, a key feature of this existing work is that it assumes that
the tied parameters are specified apriori. As a result, the full
power of parameter tying as a regularization method has not
yet been exploited. We deviate from the existing approach
and seek methods that automatically tie the parameters by
analyzing the data.

A straight-forward approach to solve the parameter tying
problem is to express it as a constrained optimization prob-
lem. Given m parameters and a hyperparameter k, which
bounds the maximum number of tied parameters and con-
trols the amount of regularization, find a set of at most k
equality constraints that are mutually exclusive (no two con-
straints have the same parameter) and exhaustive (all param-
eters are included) such that the likelihood is maximized.
Unfortunately, this problem is computationally difficult as it
includes structure learning as a special case.

To obviate this computational difficulty, we propose a
greedy approach that ties parameters by quantizing the
learned weights. Namely, we propose to find a many-to-one
function f that maps m parameter values to a set having
k values, such that the sum of the Euclidean distance be-
tween a parameter w and its quantized value f(w) is mini-
mized. This problem can be solved optimally using dynamic
programming (Wang and Song 2011). We show that despite
its simplicity, our new approach has several desirable theo-
retical properties and guarantees. In particular, we provide
and prove novel error bounds which show that if the quan-
tization is accurate then the difference between the average
log-likelihoods of the original model and quantized model
is quite small. Experimentally, we show that the quantized
model often outperforms the untied model on a wide range
of datasets.

A key benefit of parameter tying is that it introduces
symmetries in the probabilistic model, and exploiting them
makes inference easier and more efficient. To this end, we



develop a novel importance sampling algorithm for fast, ac-
curate sampling in parameter tied models. Our experiments
conclusively show that our new sampling algorithm outper-
forms MC-SAT (Poon and Domingos 2006), a popular sam-
pling algorithm that combines Markov Chain Monte Carlo
sampling and satisfiability solution sampling, and Gibbs
sampling (baseline) in the presence of tied parameters.

Background
We represent variables by capital letters (e.g., X), values in
the domain of a variable by corresponding small letters (e.g.,
x) and an assignment of a value x to a variable X by x̄. We
represent sets of variables by bold capital letters (e.g., X)
and assignment of values to all variables in the set X by
x̄. For simplicity of presentation, we will assume that all
domains are binary unless otherwise noted.

A log-linear probabilistic graphical model (PGM), de-
noted byM is a triple 〈X,F ,θ〉 whereX = {X1, ..., Xn}
is a set of variables, F = {F1, ..., Fm} is a set of features
and θ = {θ1, . . . , θm} is the set of weights (parameters)
such that θi is the weight of feature Fi. M represents the
following probability distribution

Pθ(x̄) =
1

Z(θ)
exp

(∑
i

θiFi(x̄)

)
where Fi(x̄) is 1 if the assignment x̄ evaluates Fi to true
and 0 otherwise, and Z(θ) =

∑
x exp (

∑
i θiFi(x̄)) is the

normalization constant or the partition function.
Bayesian networks are directed graphical models in which

each parameter θi has a probabilistic interpretation and
equals the log of a conditional probability, and the partition
function equals one. The two main inference problems over
PGMs are: (1) marginal inference which is defined as com-
puting the marginal probability of a variable given an assign-
ment to a subset of variables (evidence) and (2) maximum-
a-posteriori inference, which is defined as finding an assign-
ment of values to all non-evidence variables that has the
maximum probability. In this paper, we focus on the former.

Weight (Parameter) Learning
We assume that the PGM structure is known, namely the
variables and the features are given while the weights are
unknown and need to be estimated from data. We further
assume that our dataset is such that all variables are observed
and there are no missing values. Under these assumptions,
given a training data set D = {x̄(1), ..., x̄(D)} for variables
X , the weight learning task can be expressed as maximizing
the following log-likelihood function.

`(D : θ) = log

D∏
i=1

Pθ(x̄
(i)) =

D∑
i=1

logPθ(x̄
(i))

This method of parameter learning or estimation is referred
to as Maximum Likelihood Estimation (MLE). MLE has
the desirable consistency property, which guarantees that the
MLE solution converges to the true unknown parameter with
high probability for sufficiently large samples. Under the as-
sumptions given above, the log-likelihood function is con-
cave. The optimum and thus the parameters (MLE solution)

can be found using standard gradient descent methods. In
Bayesian networks, the MLE solution can be computed in
closed form (since each parameter is a conditional probabil-
ity).

Importance Sampling
Importance Sampling (IS) (Liu 2001) is a Monte Carlo sim-
ulation technique, commonly used to evaluate the expecta-
tion, EP [f(X)] =

∑
x̄∈X f(x̄)P (x̄) of a real function f(·)

according to a probability distribution P (·). The general idea
is to generate samples x̄(1), ..., x̄(N) from a proposal distri-
bution Q, satisfying f(x̄) > 0 ⇒ Q(x̄) > 0, and then esti-
mate EP [f(X)] as follows

EP [f(X)] ≈
∑N

i=1 f(x̄
(i))w(x̄(i))∑N

i=1 w(x̄
(i))

where w(x̄(i)) = P (x̄(i))
Q(x̄(i))

is called the importance weight of

the sample x̄(i). Note that the importance weight needs to be
known only up to a multiplicative constant. Importance sam-
pling can be used to estimate both the partition function (nor-
malizing constant) as well as one variable marginals. In this
paper we focus on computing the single variable marginal
probability, which can be estimated as

P̂N (x̄) =

∑N
i=1 1{x̄(i)}w(x̄(i))∑N

i=1 w(x̄(i))
(1)

where 1{x̄} = 1 iff x̄ contains the assignment x̄, and 0

otherwise, and w(x̄) =
exp(

∑
i θiFi(x̄))

Q(x̄) . In this paper, we
will make the standard assumption that Q is a Bayesian net-
work (Fung and Chang 1989; Ortiz and Kaelbling 2000;
Cheng and Druzdzel 2001; Gogate 2009), since it is easy
to generate independent samples from a Bayesian network
using logic (forward) sampling (Pearl 1988). The quality of
estimation, namely the accuracy of P̂N (x̄) is highly depen-
dent on how far Q is from P , and as a result most of the
research on importance sampling is about designing a good
Q. In this paper, we design a Q for parameter tied PGMs.

Quantization, Clustering and Partition
Quantization is the process of mapping a larger set of real
numbers to a smaller set. Formally, given two sets of real
numbersw and v, a quantization functionQ, called a quan-
tizer, is a surjective function from elements of x to elements
of y where |x| ≥ |y|, such that |xi − Q(xi)| ≤ εi for all
xi ∈ x. Here εi is referred to as error of quantization. Often
we are interested inQ which minimizes the average error of
quantization (i.e., 1

|x|
∑
i |xi −Q(xi)|).

The optimal quantization problem is closely related to the
optimal k-means clustering problem which is defined as fol-
lows: given a set of observations x = {x1, ..., xn}, find a
k-partition S = {S1, ...,Sk} of x (namely, ∀i Si ⊆ x and
∪ki=1Si = x) such that following objective function is min-
imized

argmin
S

k∑
i=1

∑
x∈Si

||x− µSi ||d



where ||·||d is a distance measure and µSi (called the cluster
center), is the mean of elements in Si. The most popular
distance measure is Euclidean distance.

A function Q : x→ µ, defined as Q(x) = µSi iff x is in
cluster Si, where µ = {µS1 , ..., µSk}, is clearly a quantizer
ofx. Hence, we can use any clustering algorithm (e.g., the k-
means algorithm) for quantization. In this work, it turns out
that we will only need to solve one dimensional clustering
problems, which can be solved in polynomial time,O(m2k),
using dynamic programming (Wang and Song 2011). In this
paper, we leverage this algorithm for finding optimal quan-
tizations.

Quantization for Weight Learning
We define a parameter tied graphical modelMt, as a tuple
〈X,θ, C〉, whereX is the set of variables, θ is the parameter
set, and C is a set of equality constraints of the form θi = θj ,
for some θi, θj ∈ θ. Since equality constraints are equiva-
lence relations, C induces a partition over θ where each part
of the partition corresponds to an equivalence class. We are
interested in learning the optimal parameter tied modelM∗t
from data. This problem can be defined as follows. Given
training data D on variablesX , find the constraint set C and
parameters θ such that C induces a k-partition on θ and the
(log)likelihood of data is maximized.

Solving the aforementioned optimization problem is hard
because it requires searching over all possible constraint
sets, which is clearly impractical. In particular, the number
of possible constraint sets of size k for m parameters equals
the number of partitions of size k for a set of size m (de-
noted by

{
m
k

}
). This number is given by the so-called Stir-

ling numbers of the second kind which grows exponentially
with m. The total number of partitions of a set is given by
the Bell number, Bm =

∑m
k=1

{
m
k

}
.1

Our approach. To remedy this computational difficulty,
we propose the following greedy approach. First, we learn
the parameters of the log-linear model using MLE. Then,
we quantize these parameters to k levels using the one-
dimensional k-means clustering algorithm.

Error bound for Quantization
Although, our approach is simple and straightforward, we
show next that it will yield models that have high log-
likelihood score yet fewer parameters under the assump-
tion that the quantization error is small. Formally, let θ =
(θ1, . . . , θm) denote the parameters of a log-linear model
learned from a dataset D having D examples. Without loss
of generality, we assume that all weights are positive. Let
µ = (µ1, . . . , µk), k ≤ m be a quantization of θ with re-
spect to the quantizer Q between θ and µ such that for all
θi ∈ θ, the following holds

|θi −Q(θi)| ≤ ε

1The fact that the optimization problem is computationally dif-
ficult also follows from the observation that it includes structure
learning as a special case where the number of true features is k−1.

where ε ≥ 0 is a small constant. Let `(θ : D) and `(µ :
D) denote the log-likelihoods of D with respect to θ and µ
respectively. Then, we can prove that the difference between
the average log-likelihood scores of the quantized model and
the original model is bounded by 2mε. Formally, (proof is
available in the extended version)

Theorem 1.
1

D
(`(θ : D)− `(µ : D)) ≤ 2mε.

As the number of quantization levels (k) increases, the
quantization error ε decreases, and vanishes when k = m.
As a result, the bound specified in Theorem 1 becomes
tighter, and our greedy learning approach yields more ac-
curate results while using a smaller number of parameters.

Relearning
The log-likelihood score of the quantized log-linear model
can be further improved by simply relearning the model,
treating all parameters that are quantized to the same value
as tied. Formally, since the quantizerQ induces a k-partition
on the original parameter set θ, we set up the learning prob-
lem as follows

maximize
θ

`(θ : D)

subject to {θi = θj |θi, θj ∈ θ,Q(θi) = Q(θj)}.
(2)

The optimization problem given above has a concave ob-
jective function, and therefore has a single maximum, and
therefore can be solved using the same approaches (e.g.,
gradient descent) that are used to solve the MLE problem.
As mentioned earlier, the key benefit of the formulation in
Eq. (2) is that it has fewer (unique) parameters and there-
fore the data statistics are estimated using a larger sample
size than the ones used in the unconstrained (MLE) version
of this problem. From standard sampling theory (Liu 2001),
this reduces the variance of the estimates.

Proposition 1. Let µ denote set of quantized parameters,Q
be the corresponding quantizer and ρ be the relearned pa-
rameters (optimal solution of the optimization problem given
in Eq. (2)), then

`(ρ : D) ≥ `(µ : D).

Proof. Since µ is a feasible solution of the problem given
in Eq. (2) (it satisfies all the the constraints) and ρ is the
optimal solution, it follows that `(ρ : D) ≥ `(µ : D).

Slice Importance Sampling
We observe that parameter tying introduces symmetries in
the network which can be exploited to design a fast, approx-
imate inference algorithm. In this section, we propose one
such algorithm, which is based on slice importance sampling
(Neal 2000; Gogate and Domingos 2010).



In slice importance sampling, the proposal distribution is
defined over the features rather than over the variables. For
instance, we can define a proposal distribution

Q(F ) = Q(F1)

m∏
i=2

Q(Fi|F1, . . . , Fi−1)

over the set of features F . Sampling each feature in or-
der from Q yields a 0/1 assignment to the features where
0 indicates that the negation of the feature is true while
1 indicates that the feature is true. We can consider this
0/1 assignment as a slice over the possible assignments to
the variables in the following sense. All (variable) assign-
ments that satisfy all features assigned to 1 and all nega-
tions of features assigned to 0 will have the same proba-
bility. Uniformly sampling over this subset of variable as-
signments (the slice) gives us the required sample. The ben-
efit of slice sampling is that all variable assignments hav-
ing the same probability in the distribution represented by
the log-linear model have the same probability (assuming
uniform sampling over the slice can be done) in the pro-
posal distribution. This reduces the variance (Neal 2000;
Gogate and Domingos 2010).

In our new algorithm, our main idea is to define the pro-
posal distribution over the tied features rather than over the
individual features, further reducing the variance. We first
create a set of ‘super-features’ G, such that each of them
contains features with tied parameters, i.e.,

Gi = {Fj |Fj has parameter θi}, (3)

and defined a proposal over them as follows (using the chain
rule):

Q(G) = Q(G1)

k∏
i=2

Q(Gi|G1, . . . ,Gi−1).

However, one problem with defining a proposal over the
super-features is that the number of values each super-
feature Gi can take is exponential in the number of fea-
tures it contains, namely exponential in |Gi|. To com-
pactly represent these exponentially many assignments, we
use the so-called counting assignments (Milch et al. 2008;
Jha et al. 2010) as follows. We partition the assignments to
the features in the setGi into |Gi|+1 subsets where the j-th
subset contains all assignments in which exactly j features
inGi are assigned to true and the remaining are assigned to
false. Thus, each super-featureGi can take |Gi|+ 1 values,
yielding exponential reduction in complexity.

Another benefit of using counting assignments is that they
yield better proposal distributions. In particular, the set of
valid counting assignments to all super-features partitions
the set of assignments to the variables into equiprobable sub-
sets, where each subset is composed of assignments to vari-
ables that satisfy a counting assignment to all super-features.
In an ideal proposal distribution all such assignments must
have the same probability, and defining the proposal over the
counting assignments preserves this property.
Example 1. Consider a log-linear model having three fea-
tures F1 = a ∨ b, F2 = b ∨ c and F3 = a ∨ c and three

Algorithm 1 Tied Weight Importance Sampling
Input: A log-linear modelM = 〈X,F ,µ〉 with k unique

weights, Number of samples N
Output: Importance weighted samples

1: Create one super-featureGi for each parameter µi
2: Construct a proposal distribution Q(G) over the super-

features
3: for s = 1 to N do
4: S = ∅; w(s) = 1
5: for i = 1 to k do
6: ji ∼ Q(Gi|G1, . . . ,Gi−1)
7: Add ji randomly selected features fromGi to S
8: Add the negation of the features from Gi not

selected in the previous step to S
9: w(s) = w(s) ×

(|Gi|
ji

) exp(jiµi)
Q(Gi|G1,...,Gi−1)

10: end for
11: Sample x̄(s) ∼ USAT (S)
12: w(s) = w(s) ×#S
13: end for
14: return (x̄(s), w(s)) for s = 1 to N

binary variables a, b, and c. Let the features F1 and F2

have the same weight θ1 and θ2 be the weight associated
with F3. We define two super-features: G1 = {F1, F2} and
G2 = {F3}. G1 has four possible assignments: {(F1 =
0, F2 = 0), (F1 = 0, F2 = 1), (F1 = 1, F2 = 0), (F1 =
1, F2 = 1)} but only three possible counting assignments
{0, 1, 2}, where 0, 1 and 2 correspond to the subset of as-
signments {(F1 = 0, F2 = 0)}, {(F1 = 0, F2 = 1), (F1 =
1, F2 = 0)} and {(F1 = 1, F2 = 1)} respectively. The
reader can verify that the assignments to the the variables
that satisfy either (F1 = 0, F2 = 1) or (F1 = 1, F2 = 0)
have the same probability.

However, counting assignments introduce the following
problem. To generate a sample, we need to generate an as-
signment to variables uniformly at random from the subset
of variable assignments that satisfy the counting assignment.
Unfortunately, this problem is extremely challenging and to
our knowledge no general-purpose algorithms exist for it. To
alleviate this computational difficulty, we propose to use the
following proposal distribution:

Q(F1, . . . , F|Gi||∀j Fj ∈ Gi,Gi = t) =
1(|Gi|
t

) (4)

Sampling from this proposal distribution yields a 0/1 as-
signment to the features and the only problem that re-
mains to be solved is generating an assignment to vari-
ables uniformly at random from the subset of variable as-
signments that satisfy the given assignment to the fea-
tures. This problem can be reduced to the uniform solu-
tion sampling problem, a well-researched problem for which
a number of general-purpose solvers and techniques exist
(Gogate and Dechter 2011; Wei, Erenrich, and Selman 2004;
Gogate 2009).

Algorithm 1 formally describes our proposed slice im-
portance sampling algorithm. The sampling process begins



by constructing a proposal distribution Q over the super-
features Gi associated with the same parameter µi. Then
we sample assignments (ji) for each super-feature Gi from
the proposal Q in a selected order (step 6). Then we select
ji random features from Gi and set their assignment as 1.
The rest of the features in Gi are assigned 0. This sampled
0/1 assignment to all features defines a satisfiability prob-
lem S. Solutions of this satisfiability problem correspond to
the subset of variable assignments that have the same prob-
ability. Thus to generate a sample, all we have to do is uni-
formly sample the solutions of S (step 11). For this (proce-
dure USAT ), we can use uniform solution samplers such as
SampleSAT (Wei, Erenrich, and Selman 2004) and Sample-
Search (Gogate and Dechter 2011). In our experiments, we
used the latter. The weight w(s) of the generated sample is
proportional to the ratio between the probability of generat-
ing the sample fromM and the probability of generating it
from the proposal distribution and is computed iteratively in
Steps 9 and 12.

In our experiments, we have used a simple proposal which
factorizes independently over the super-features, i.e.,

Q(G) =

k∏
i=1

Q(Gi).

Let µ1, . . . , µk be the parameters and let Gi denote the
super-feature that is associated with µi. We define Q(Gi)
as the following binomial distribution

Q(Gi = t) ,

(
|Gi|
t

)
etµi

(1 + eµi)|Gi|
(5)

where t ∈ {0, . . . , |Gi|}. Notice that the binomial is defined
over |Gi|+1 points as opposed to the conventional proposal
which would have been defined over 2|Gi| points.

Experiments
We evaluated the performance of our quantized ap-
proach on both learning and inference tasks using sev-
eral publicly available benchmark datasets from the
UAI 2008 probabilistic inference competition repository
(http://graphmod.ics.uci.edu/uai08). All experiments were
performed on quad-core Intel i7 based machines with 16GB
of RAM running Ubuntu.

Weight Learning
First, we compared our quantized tied weight learning al-
gorithms to the MLE with a Laplacian prior on a collection
of Bayesian network learning problems. For each selected
Bayesian network, we used forward sampling to generate
100 sets of 6,000 training, 2,000 validation and 2,000 test
data points. Using the training data, we learned three mod-
els corresponding to the MLE, the quantized MLE, and a
MLE obtained by relearning after quantization for differ-
ent values of k. Performance of each learning technique was
evaluated using the average log-likelihood over the test set.
We consider three kinds of Bayesian networks: two-layered
noisy-or Bayesian networks (Savicky and Vomlel 2009), re-
lational Bayesian networks constructed from the Primula

Total # True Est. Max Error
Network Param. k k MLE Q RL

bn2o 20510 20491 500 0.339 0.339 0.299

students 1308 13 20 0.141 0.141 0.140

grid 1089 596 400 0.0186 0.0186 0.0181

friends 3899 6 10 0.008 0.008 0.007

Table 1: Network information and error analysis (MLE, Quantized
and Relearned

tool (UCLA), and grid networks (Sang, Beame, and Kautz
2005). The various networks and the respective number of
parameters in the networks are shown in Table 1.

We experimented on various noisy-or networks. The re-
sults for these networks were consistently similar. Figure 2
(a) shows the result for one of the networks. For these mod-
els, the MLE has a higher average log-likelihood than the
quantized MLE at low values for k, but we obtained a signif-
icant performance improvement over the MLE by relearning
after quantization. As k increases, relearning greatly outper-
forms the MLE and reaches a steady level. The performance
difference tends to zero as k converges to the actual number
of parameter in the network. Even for small k, the relatively
small difference in log-likelihood appears to be a reasonable
trade-off for the drastic reduction in the number of model
parameters.

We also selected two relational networks and one grid net-
work. The results for these models appear in Figure 2 (b)-
(d). The performance for these networks are similar to the
noisy-or networks. For small k, the performance improve-
ment by relearning is realized fairly immediately, while the
quantization also converges to the MLE quickly.

We conducted error analysis on parameter estimation be-
tween the three different learned models and the true model
by using the validation set to obtain an optimally estimated
k. With the exception of bn2o, our estimated k is reason-
ably close to the true k in the various models as shown in
third and fourth column of Table 1. The bn2o networks con-
tains many very similar parameter values and thus resulted
in a much lower estimated k. For each model set, we calcu-
lated the average absolute point-wise error between the true
and learned parameters and selected the maximum among
the experimental set. The results are also shown in Table 1.
The relearning has a consistent lower error rate compared
to MLE and quantization, while the quantization has simi-
lar error rate as MLE with fewer parameters. This reduction
in the number of parameters often translates to better infer-
ence performance at prediction time as we show in the next
subsection.

Inference
We compared our proposed approximate inference method
based on slice importance sampling (denoted TW) to MC-
SAT (Poon and Domingos 2006) in the Alchemy system
(Kok et al. 2006) and Gibbs sampling for inference in
Bayesian networks. Each algorithm was run for 500 sec-
onds and then evaluated by computing the average Hellinger
distance (Kokolakis and Nanopoulos 2001) between the



-19

-18.9

-18.8

-18.7

-18.6

-18.5

 0  100  200  300  400  500  600  700  800  900  1000

A
ve

ra
ge

 L
og

-l
ik

el
ih

oo
d

K

Quantized
Relearned

MLE
-77.95

-77.9

-77.85

-77.8

-77.75

-77.7

-77.65

-77.6

-77.55

 0  100  200  300  400  500  600  700  800  900  1000

A
ve

ra
ge

 L
og

-l
ik

el
ih

oo
d

K

Quantized
Relearned

MLE

(a) bn2o (b) grid

-13.4

-13.2

-13

-12.8

-12.6

-12.4

-12.2

-12

-11.8

 5  10  15  20  25  30  35  40  45  50

A
ve

ra
ge

 L
og

-l
ik

el
ih

oo
d

K

Quantized
Relearned

MLE
-77

-76

-75

-74

-73

 0  50  100  150  200  250  300

A
ve

ra
ge

 L
og

-l
ik

el
ih

oo
d

K

Quantized
Relearned

MLE

(c) students (d) friends

Figure 2: Average log-likelihood on test data plotted for each parameter learned graphical model (MLE, Quantized and Relearned) varying
the value for k level of quantization.

single-variable marginals obtained by each algorithm and
marginals obtained by an exact solver. The results were aver-
aged over 10 runs of each algorithm using the MLE as well
as parameters that were relearned (RL) after quantization.
Figure 3 (a)-(c) shows our experimental results on each the
three types of networks (noisy-or, relational and grid).

The average Hellinger distances are consistently similar
between MC-SAT and our method across the three network
types when no parameters are tied (the MLE case). This
is expected as MC-SAT is a special case of our algorithm.
However, with the relearned parameters, our algorithm sig-
nificantly outperforms both MC-SAT and Gibbs sampling
on the students and grid networks. This shows that even
though the test-set log likelihood of the MLE solution and
the parameter tied models are roughly the same, at predic-
tion time (estimating marginals), models having tied param-
eters outperform untied models provided methods such as
TW that explicitly exploit the tied parameters are used.

One explanation for the poor performance of MC-SAT
on parameter tied models is that MC-SAT is based on lo-
cal search with a strong bias towards features that have
high weights. Thus, without the ability to make large moves,
MC-SAT is not able to efficiently traverse through the state
space. Analogously, MCMC techniques such as Gibbs sam-
pling, can also become trapped within a local region and

may require a large number of samples to escape. Since our
algorithm systematically partitions the overall state-space
through the tied weight structure, it is able to move across
the various regions more easily.

Discussion

We proposed a greedy method to learn tied parameter mod-
els that quantizes the parameters learned via maximum like-
lihood estimation using k-means clustering. Despite its sim-
plicity, we demonstrated empirically that our approach can
be used both as a regularizer and as a technique to re-
duce model complexity while maintaining predictive perfor-
mance, which comports with the theoretical bounds on the
error resulting from quantization that we provided. We also
introduced a new importance sampling technique that ex-
ploits the symmetry resulting from the quantization in order
to sample more effectively from tied parameter models than
MC-SAT and Gibbs sampling. In future work, we plan to
investigate applications of these techniques to Markov net-
works, bounds on the sample complexity required to obtain
the correct quantization, and applications of quantization to
structure learning.
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(a) bn2o (b) students (c) grid

Figure 3: Average Hellinger distance between the exact and the approximate one-variable marginals plotted as a function of k level
of quantization for MS MLE (MC-SAT MLE), MS RL (MC-SAT Relearned), TW MLE (Tied Weight MLE), TW RL (Tied Weight
Relearned), GIBBS MLE (Gibbs MLE) and GIBBS RL (Gibbs Relearned). Result for each of the network types (noisy-or, relational and
grid) are shown.
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