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Abstract

It is well known that the accuracy of importance sampling can be improved by reducing the
variance of its sample mean and therefore variance reduction schemes have been the subject
of much research. In this paper, we introduce a family of variance reduction schemes that
generalize the sample mean from the conventional OR search space to the AND/OR search
space for graphical models. The new AND/OR sample means allow trading time and space
with variance. At one end is the AND/OR sample tree mean which has the same time and
space complexity as the conventional OR sample tree mean but has smaller variance. At other
end is the AND/OR sample graph mean which requires more time and space to compute but
has the smallest variance. Theoretically, we show that the variance is smaller in the AND/OR
space because the AND/OR sample mean is defined over a larger virtual sample size compared
with the OR sample mean. Empirically, we demonstrate that the AND/OR sample mean is
far closer to the true mean than the OR sample mean.

Keywords: Probabilistic inference, approximate inference, graphical models, importance
sampling, Bayesian networks, constraint networks, Markov networks, model counting,
variance reduction

1. Introduction

Importance sampling (Marshall, 1956; Rubinstein, 1981) is a general scheme that can be
used to approximate various weighted counting tasks defined over graphical models such as
computing the probability of evidence in a Bayesian network, computing the partition function
of a Markov network and counting the number of solutions of a constraint network. The main
idea is to transform the counting or the summation task into an expectation using a special
distribution called the proposal distribution. Then, the algorithm generates samples from the
proposal distribution and approximates the expectation by a weighted average over the samples.
The weighted average is often called the sample mean. It is well known that the accuracy of the
estimate is inversely proportional to the variance of the sample mean and therefore significant
research has focused on reducing its variance (Rubinstein, 1981; Liu, 2001). To this effect,
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in this paper, we propose a family of variance reduction schemes in the context of graphical
models called AND/OR importance sampling.

The central idea in AND/OR importance sampling is to exploit problem decomposition
introduced by the conditional independencies in the graphical model. Recently, graph based
problem decompositions were introduced for systematic search in graphical models (Darwiche,
2001; Bacchus, Dalmao, and Pitassi, 2003) and captured using the notion of AND/OR search
spaces (Dechter and Mateescu, 2007). The usual way of performing search is to systematically
go over all possible instantiations of the variables, which can be organized in an OR search
tree. In AND/OR search, additional AND nodes are interleaved with OR nodes to capture
decomposition into conditionally independent sub-problems.

We propose to organize the generated samples as a partial cover of a full AND/OR search
tree yielding an AND/OR sample tree. Likewise, the OR sample tree is the portion of a full
OR search tree that is covered by the samples. The main intuition in moving from the OR
space to the AND/OR space is that at the AND nodes, we can combine samples in independent
components to yield a virtual increase in the sample size. For example, if X is conditionally
independent of Y given Z, we can consider N samples of X independently from those of Y
given the same value of Z, thereby yielding an effective or virtual sample size of N2 instead of
the input N . Since the variance reduces as the number of samples increases (c.f. Rubinstein
(1981); Liu (2001)), the sample mean computed over the AND/OR sample tree has smaller
variance than the one computed over the OR sample tree.

We can take this idea a step further and look at the AND/OR search graph (Dechter and
Mateescu, 2007) as the target for compiling the given set of samples. Since the AND/OR
search graph captures more conditional independencies than the AND/OR search tree, its
partial cover corresponding to the generated samples, yields an even larger virtual sample size.
As a result, the sample mean computed over the AND/OR sample graph has smaller variance
than the one computed over the AND/OR sample tree. However, computing the AND/OR
sample graph mean is more expensive, by a factor of O(w∗) time-wise and a factor of O(N)
space wise, w∗ being the treewidth and N being the number of samples. Thus, the AND/OR
sample tree and graph means allow trading time and space with accuracy.

We provide a thorough empirical evaluation comparing the impact of exploiting varying lev-
els of problem decompositions via AND/OR tree and AND/OR graph on a variety of probabilis-
tic and deterministic benchmark networks. Our experiments demonstrate that the AND/OR
sample tree mean is slightly better than the (conventional) OR sample tree mean in terms
of accuracy and that the AND/OR sample graph mean is clearly superior to the AND/OR
sample tree mean.

The rest of the paper is organized as follows. In the next section, we present preliminaries
and background. In Section 3 we define the AND/OR sample tree mean and in Section 4 we
prove that it has smaller variance than the OR sample tree mean. The AND/OR sample graph
mean is defined in Section 5. Section 6 presents empirical results and we conclude in Section
7. The research presented in this paper is based in part on (Gogate and Dechter, 2008a,b).

2. Preliminaries and Background

We denote variables by upper case letters (e.g., X, Y , . . .) and values of variables by lower
case letters (e.g., x, y, . . .). Sets of variables are denoted by bold upper case letters (e.g.,
X = {X1, . . . ,Xn}). We denote by D(Xi) the set of possible values of Xi. D(Xi) is also called
the domain of Xi. Xi = xi or simply xi when the variable is clear from the context, denotes the
assignment of xi ∈ D(Xi) to Xi while X = x (or simply x) denotes a sequence of assignments
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to all variables in X, namely x = (X1 = x1, X2 = x2, . . . Xn = xn). D(X) denotes the
Cartesian product of the domains of all variables in X, namely D(X) = D(X1)× . . .×D(Xn).
We denote the projection of an assignment x to a set S ⊆ X by xS. Given an assignment y
and z to the partition Y and Z of X, x = (y, z) denotes the composition of assignments to
the two subsets.∑

x∈D(X) denotes the sum over all possible configurations of variables in X, namely,∑
x∈D(X) =

∑
x1∈D(X1)

∑
x2∈D(X2)

. . .
∑

xn∈D(Xn)
. For brevity, we will abuse notation and

write
∑

xi∈D(Xi)
as

∑
xi∈Xi

and
∑

x∈D(X) as
∑

x∈X. The expected value ExQ[X] of a random
variable X with respect to a distribution Q is defined as: ExQ[X] =

∑
x∈X xQ(x). The variance

VarQ[X] of X is defined as: VarQ[X] =
∑

x∈X(x − ExQ[X])2Q(x). To simplify, we will write
ExQ[X] as Ex[X] and VarQ[X] as Var[X], when the identity of Q is clear from the context.

We denote (discrete) functions by upper case letters (e.g. F , H, C, I etc.), and the scope
(set of arguments) of a function F by scope(F ). Given an assignment y to a superset Y of
scope(F ), we will abuse notation and write F (yscope(F )) as F (y).

Definition 1 (Graphical Models or Markov networks). A discrete graphical model or a
Markov network denoted by G is a 3-tuple 〈X,D,F〉 where X = {X1, . . . ,Xn} is a finite set of
variables, D = {D(X1), . . . ,D(Xn)} is a finite set of domains where D(Xi) is the domain of
variable Xi and F = {F1, . . . , Fm} is a finite set of discrete-valued non-negative functions (also
called potentials). The graphical model represents a joint distribution PG over X defined as:

PG(x) =
1

Z

m∏

i=1

Fi(x) (1)

where Z is a normalization constant, often called the partition function. It is given by:

Z =
∑

x∈X

m∏

i=1

Fi(x) (2)

We will often refer to Z as weighted counts.

The primary queries over Markov networks are computing the partition function (or the
weighted counts) and computing the marginal probability PG(Xi = xi).

The marginal probability PG(Xi = xi) is a ratio of two weighted counts. Formally, let Ixi

be a dirac-delta function with scope Xi, defined as follows:

Ixi
(x) =

{
1 if x = xi
0 otherwise

Then, by definition, PG(xi) is given by:

PG(xi) =
∑

x∈X

Ixi
(x)PG(x) =

∑
x∈X Ixi

(x)
∏m

j=1 Fj(x)

Z
(3)

Notice that the numerator of Equation (3) is the weighted counts of a graphical model obtained
by augmenting G with Ixi

. Thus algorithms for computing the weighted counts can be used
for computing PG(xi).

Each graphical model is associated with a primal graph which captures the dependencies
present in the model.

Definition 2 (Primal graph). The primal graph of a graphical model G = 〈X,D,F〉 is an
undirected graph G(X,E) which has variables of G as its vertices and an edge between two
variables that appear in the scope of a function.
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2.1. Bayesian and Constraint networks

Definition 3 (Bayesian or Belief Networks). A Bayesian network is a graphical model
B = 〈X,D,G,P〉 where G = (X,E) is a directed acyclic graph over the set of variables
X. Each function Pi ∈ P is a conditional probability table defined as Pi(Xi|pai), where
pai = scope(Pi) \ {Xi} is the set of parents of Xi in G.

The primal graph of a Bayesian network is also called the moral graph. When the entries
of a CPT are 0 and 1 only, it is called a deterministic or a functional CPT. An evidence
E = e is an instantiated subset of variables. A Bayesian network represents the following joint
probability distribution:

PB(x) =

n∏

i=1

Pi(x{Xi}|xpai
) (4)

By definition, given a Bayesian network B the probability of evidence PB(e) is given by:

PB(e) =
∑

y∈X\E

n∏

i=1

Pi((y, e){Xi}|(y, e)pai
) (5)

It is easy to see from Equations (2) and (5) that PB(e) is equivalent to the weighted
counts Z over an evidence instantiated Bayesian network. Another important query over
a Bayesian network is computing the conditional marginal probability PB(xi|e) for a query
variable Xi ∈ X \E.

Definition 4 (Constraint Networks). A constraint network is a graphical model R =
〈X,D,C〉 where C = {C1, . . . , Cm} is a set of constraints. Each constraint Ci is a 0/1 function
defined over its scope. Given an assignment x, a constraint is said to be satisfied if Ci(x) = 1.
A constraint can also be expressed by a pair 〈Ri,Si〉 where Ri is a relation defined over the
scope of Ci that contains all tuples for which Ci(si) = 1. The primal graph of a constraint
network is called the constraint graph.

A solution of a constraint network is an assignment of values to all variables that satisfies
all the constraints. The primary query over a constraint network is to determine whether it
has a solution and if it does to find one. Another important query is that of counting the
number of solutions K of the constraint network, defined by:

K =
∑

x∈X

m∏

i=1

Ci(x) (6)

K is clearly identical to the weighted counts over a constraint network.
The Boolean satisfiability problem defines a special type of constraint network in which

all variables Xi ∈ X are binary with domain {0, 1} (or {False,True}) and all constraints are
specified using clauses. A clause is a disjunction of literals, where a literal is a variable or its
negation. For example, (X1∨X2∨¬X3) is a clause defined over three literals X1, X2 and ¬X3,
where ¬ denotes negation. Given an assignment, a clause is satisfied when at least one of its
literals is set to True. For example, the clause (X1∨X2∨¬X3) is satisfied given the assignment
(X1 = 0,X2 = 0,X3 = 0), but is not satisfied given the assignment (X1 = 0,X2 = 0,X3 = 1).
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2.2. AND/OR search spaces for graphical models

Given a graphical model G = 〈X,D,F〉, we can compute the weighted counts by accu-
mulating the probabilities (or the weights) while traversing the search space of instantiated
variables. In the simplest case, the algorithm traverses an OR search tree, whose nodes repre-
sent states in the space of partial assignments. This traditional search space does not capture
any of the structural properties of the underlying graphical model, however. Introducing AND
nodes into the search space can capture the conditional independencies in the graphical model.

The AND/OR search space is a well known problem solving approach developed in the
area of heuristic search (Nilsson, 1982) that exploits the problem structure to decompose the
search space. The AND/OR search space for graphical models was introduced in (Dechter and
Mateescu, 2007). It is guided by a pseudo tree that spans the original graphical model.

Definition 5 (Pseudo Tree). Given an undirected graph G = (V,E′), a directed rooted tree
T = (V,E) defined on all its nodes is called a pseudo tree if every edge in E′ \E is a back-arc,
namely it connects a node to an ancestor in T .

Definition 6 (AND/OR search tree). Given a graphical model G = 〈X,D,F〉, its primal
graph G and a pseudo tree T of G, the associated AND/OR search tree, denoted by ψT , has
alternating levels of AND and OR nodes. The OR nodes are labeled with Xi and correspond
to the variables. The AND nodes are labeled with xi and correspond to the value assignments.
The structure of ψT is based on T . Its root is an OR node labeled by the root of T . The
children of an OR node Xi are AND nodes labeled with assignments xi. The children of an
AND node xi are OR nodes labeled with the children of Xi in T .

Semantically, the OR nodes represent alternative assignments, whereas the AND nodes
represent problem decomposition into independent subproblems, all of which need to be solved.
When the pseudo tree is a chain, the AND/OR search tree coincides with the regular OR search
tree.

Definition 7 (Solution Subtree). A solution subtree of an AND/OR search tree (or graph)
contains the root node. For every OR node it contains one of its child nodes and for each of
its AND nodes it contains all its child nodes.

Example 1. Figure 1(a) shows a constraint network for a 3-coloring problem over 4 variables.
A possible pseudo tree for the constraint network is given in Figure 1(b). Figure 1(c) shows an
OR search tree. Figure 1(d) shows an AND/OR search tree guided by the pseudo tree given
in Figure 1(b).

To compute the weighted counts using an AND/OR search tree, all we need is to annotate
the OR-to-AND arcs with weights derived from the functions F, such that the product of
weights on the arcs of any solution subtree, i.e. a full assignment x, is equal to

∏m
i=1 Fi(x).

We can formalize this using the notion of a weighted AND/OR tree (Dechter and Mateescu,
2007).

Definition 8 (Weighted AND/OR tree). Given a graphical model G = 〈X,D,F〉 and its
AND/OR search tree along a pseudo tree T , the weight w(a, b) of an arc from an OR node a
to an AND node b such that a is labeled with Xi and b is labeled with xi, is the product of all
functions F ∈ F which become fully instantiated by the last assignment from the root to Xi.
A weighted AND/OR tree is the AND/OR tree annotated with weights.
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Figure 1: AND/OR search spaces for graphical models

Example 2. Figure 2(a) shows a Bayesian network, Figure 2(b) shows a pseudo tree, and
Figure 2(c) shows the conditional probability tables. Figure 2(d) shows the weighted AND/OR
search tree based on the pseudo tree and the Bayesian network. Note that all AND children
of OR nodes having an edge label of zero are not drawn (and are not extended). Functions
having zeros in their range express the notion of inconsistent assignments.

The weighted counts can be computed by traversing the weighted AND/OR tree in a DFS
manner and computing the value of all nodes from leaves to the root (Dechter and Mateescu,
2007), as defined next. The value of a node is the weighted counts of the sub-tree that it roots.

Definition 9 (Value of a node for computing the weighted counts). The value of a
node is defined recursively as follows. The value of a leaf AND node is “1”. Let chi(n) denote
the set of child nodes of a node n and let v(n) denote its value. If n is an OR node then:

v(n) =
∑

n′∈chi(n)

v(n′)w(n, n′)

where w(n, n′) is the weight of the arc from the OR node n to its child node n′. If n is an
AND node then:

v(n) =
∏

n′∈chi(n)

v(n′)

Proposition 1. The value of the root node of a weighted AND/OR tree is equal to the weighted
counts.

Proof. See (Dechter and Mateescu, 2007) for a proof.
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(d) Weighted AND/OR search tree

Figure 2: Assigning weights to OR-to-AND arcs of an AND/OR search tree

A node n in an AND/OR search tree represents a subproblem of the graphical model
restricted to the assignment of values along the path from the root to n. The AND/OR
search tree may contain nodes that root identical sub-problems. These nodes are unifiable
and can be merged yielding a search graph whose size is smaller than the AND/OR search
tree. Traversing the AND/OR search graph requires additional memory, however. A depth
first search algorithm can cache previously computed results and retrieve them when the same
sub-problem is encountered. Some unifiable nodes can be identified based on their context
which express the set of ancestor variables in the pseudo tree that completely determine a
conditioned sub-problem (Dechter and Mateescu, 2007).

Definition 10 (context). Given a pseudo tree T (X,E) of a primal graph G(X,E′), the
context of a node Xi in T denoted by contextT (Xi) is the set of ancestors of Xi in T , ordered
descendingly, that are connected in G to Xi or to descendants of Xi.

Example 3. Figure 1 (b) shows a pseudo tree in which each node is annotated with its context.
The context of the nodes C, B, D, A is ∅, {C}, {C} and {B} respectively.

Definition 11 (context minimal AND/OR graph). Given an AND/OR search tree, two
OR nodes n1 and n2 are context unifiable if they have the same variable labelXi and the assign-
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ments of their contexts are identical. In other words, if y and z denote the partial assignment
of variables along the path from the root to n1 and n2 respectively, and if their restriction
to the context of Xi satisfies ycontextT (Xi) = zcontextT (Xi), then n1 and n2 are unifiable. The
context minimal AND/OR graph is obtained from the AND/OR search tree by merging all
the context unifiable OR nodes.

Example 4. Figure 1(e) shows a context minimal AND/OR graph constructed from the
AND/OR tree of Figure 1(d) by merging all context unifiable nodes.

2.3. Importance Sampling for approximating the weighted counts

Importance sampling (Marshall, 1956; Geweke, 1989) is a Monte Carlo simulation technique
which can be used for estimating the sum of a function F over a domain. The main idea is to
express the sum as an expectation using an easy-to-sample distribution Q, which is called the
proposal (or trial or importance) distribution. Then, we generate samples from Q and estimate
the expectation (which equals the sum) by a weighted average over the samples, where the
weight of a sample x is F (x)/Q(x). The weighted average is often called the sample mean.

Following prior work (c.f. Cheng and Druzdzel (2000)), we assume that the proposal distri-
bution is specified in a product form along an ordering o = (X1, . . . ,Xn) of variables. Namely,
Q(x) =

∏n
i=1Qi(xi|x1, . . . , xi−1). Q is thus a Bayesian network with CPTs {Q1, . . . , Qn}. Q

is often expressed as a Bayesian network because it is easy to generate samples from it using
the following logic sampling scheme (Pearl, 1988):

Algorithm 1: Logic Sampling

Input: A distribution Q(x) =
∏n

i=1Qi(xi|x1, . . . , xi−1).
Output: An assignment x sampled from Q.
begin

x = ∅
For i = 1 to n do:

Sample xi from Qi(Xi|x)
x = (x, xi)

Return x
end

Moreover, we assume that each CPTQi ofQ can be specified in polynomial space. Formally,

Q(x) =

n∏

i=1

Qi(xi|x1, . . . , xi−1) =

n∏

i=1

Qi(xi|yi) (7)

where Yi ⊆ {X1, . . . ,Xi−1} and for all i, |Yi| is assumed to be bounded by a constant.1

Definition 12 (Unbiased and Asymptotically Unbiased Estimate). Given a probability
distribution Q and a quantity θ defined over Q, an estimate θN which is function of N random
samples drawn from Q, is an unbiased estimate of θ if ExQ[θN ] = θ. θN is an asymptotically
unbiased estimate of θ if limN→∞ ExQ[θN ] = θ.

1Let p = maxi |Yi|. Then, the time complexity of generating a sample from Q is O(np) where n is the number
of variables.
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By definition, an unbiased estimate of θ is also asymptotically unbiased. However, the
converse is not true. We will denote estimates of θ by either drawing a hat or a line over it
(e.g., θ, θ̂). The notion of unbiasedness characterizes the performance of an estimator in terms
of its mean squared error (MSE).

MSEQ[θ] = ExQ[(θ − θ)2] (8)

=
[
ExQ[θ

2
]− ExQ[θ]

2
]
+

[
ExQ[θ]

2 − 2ExQ[θ]θ + θ2
]

(9)

The bias of θ is defined as:
BiasQ[θ] = ExQ[θ]− θ

The variance of θ is defined as:

VarQ[θ] = ExQ[θ
2
]− ExQ[θ]

2

From the definitions of bias, variance and mean-squared error, we have:

MSEQ[θ] = VarQ[θ] + BiasQ[θ]
2 (10)

In other words, the mean squared error of an estimator is equal to the bias squared plus the
variance. An unbiased estimator has zero bias. Therefore one can reduce its MSE (or any
estimator that has a constant bias) by reducing its variance.

Next, we show how the weighted counts Z can be estimated via importance sampling.
Consider the expression for Z (see Equation (2)):

Z =
∑

x∈X

m∏

i=1

Fi(x) (11)

Given a proposal distribution Q such that
∏m

i=1 Fi(x) > 0 ⇒ Q(x) > 0, we can rewrite
Equation (11) as follows:

Z =
∑

x∈X

∏m
i=1 Fi(x)

Q(x)
Q(x) = ExQ

[∏m
i=1 Fi(x)

Q(x)

]
(12)

Given independent and identically distributed (i.i.d.) samples (x1, . . . ,xN ) generated from Q,
we can estimate Z by:

ẐN =
1

N

N∑

k=1

∏m
i=1 Fi(x

k)

Q(xk)
=

1

N

N∑

k=1

w(xk) (13)

where

w(x) =

∏m
i=1 Fi(x)

Q(x)

is the weight of sample x. It is easy to show that ẐN is unbiased, namely ExQ[ẐN ] = Z. Thus,
its mean squared error can be reduced by reducing its variance, which is given by:

VarQ[ẐN ] =
VarQ[w(x)]

N
(14)

Therefore, VarQ[ẐN ] can be reduced by either increasing the number of samples N or by
reducing the variance of the weights (or both). It is easy to see that if Q(x) ∝

∏m
i=1 Fi(x),
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then for any sample x drawn from Q, we have w(x) = Z, yielding an optimal (zero variance)
estimator. However, making Q(x) ∝

∏m
i=1 Fi(x) is NP-hard and therefore in order to have

a small MSE in practice, it is recommended that Q must be as “close” as possible to the
distribution that it tries to approximate which in our case is proportional to

∏m
i=1 Fi(x).

Next, we present an importance sampling algorithm for estimating the marginal probability
PG(xi). Recall that PG(xi) is defined as:

PG(xi) =

∑
x∈X Ixi

(x)
∏m

j=1 Fj(x)∑
x∈X

∏m
j=1 Fj(x)

(15)

Given a proposal distribution Q(x), we can rewrite Equation (15) as follows:

PG(xi) =

∑
x∈X Ixi

(x)
∏m

j=1 Fj(x)
Q(x)
Q(x)

∑
x∈X

∏m
j=1 Fj(x)

Q(x)
Q(x)

=
Ex

[
Ixi(x)

∏m
j=1 Fj(x)

Q(x)

]

Ex
[∏m

j=1 Fj(x)

Q(x)

] =
Ex [Ixi

(x)w(x)]

Ex [w(x)]
(16)

Given independent and identically distributed (i.i.d.) samples (x1, . . . ,xN ) generated from Q,
we can estimate PG(xi) by:

P̂G,N (xi) =
1
N

∑N
k=1 Ixi

(xk)w(xk)
1
N

∑N
k=1w(x

k)
=

∑N
k=1 Ixi

(xk)w(xk)
∑N

k=1w(x
k)

(17)

P̂G,N (xi) is a ratio between two sample means. The numerator equals the sample mean of
the samples containing Xi = xi and the denominator is a sample mean of all the samples (which
is an estimate of Z). Thus, the samples used for estimating Z can be used in a straightforward
manner for estimating PG(xi).

However, P̂G,N (xi) is not an unbiased estimate of PG(xi), namely Ex[P̂G,N (xi)] 6= PG(xi).

Yet, it is asymptotically unbiased, namely limN→∞ Ex[P̂G,N (xi)] = PG(xi), and thus its bias

goes down as we increase the sample size. Unfortunately, the variance of P̂G,N (xi) is harder to
analyze because it is a ratio (Liu, 2001).

Liu (2001) suggests a measure called effective sample size (ESS) to analyze the accuracy of
an asymptotically unbiased estimate. It is defined as:

ESS =
N

1 + VarQ[w(x)]
(18)

The interpretation of ESS is that N samples from the proposal distribution are worth ESS
samples from the ideal proposal distribution (the ideal proposal distribution is proportional to∏m

i=1 Fi(x)). The higher the ESS the higher the accuracy. ESS can be increased by increasing
the sample size N or by decreasing the variance VarQ[w(x)] (or both).

In summary, the accuracy of the estimates of Z and PG(xi) obtained via importance sam-
pling can be improved by increasing the sample size N or by reducing the variance of the
weights. In the next three sections, we describe two new schemes, AND/OR tree and AND/OR
graph importance sampling which improve accuracy by virtually increasing the sample size N .
We will focus our theoretical analysis and empirical evaluation on estimating the weighted
counts Z, noting that our analysis and results can be extended in a straight forward manner
to estimating the marginal probabilities PG(xi).

10



P(X|Z)
Z X=0 X=1 X=2
0 .3 .4 .3
1 .2 .7 .1

P(A|X)
X A=0 A=1
0 .1 .9
1 .2 .8
2 .6 .4

Z

X Y

A B

Evidence: A = 0, B = 0

P(Z)
Z=0 Z=1
.8 .2

P(Y|Z)
Z Y=0 Y=1 Y=2
0 .5 .1 .4
1 .2 .6 .2

P(B|Y)
Y B=0 B=1
0 .2 .8
1 .7 .3
2 .1 .9

Figure 3: A Bayesian network and its CPTs

3. AND/OR Tree Importance Sampling

We start by discussing computing expectation by parts which forms the backbone of
AND/OR importance sampling. We then present our first version based on AND/OR tree
search. (Note that proofs that do not appear in the body of the paper are deferred to the
appendix.)

3.1. Estimating Expectation by Parts

In Equation (12), the expectation of a function defined over a set of variables is computed
by summing over the Cartesian product of the domains of all variables. This method is clearly
inefficient because it does not take into account the conditional independencies in the graphical
model as we illustrate below.

Consider the tree Bayesian network given in Figure 3. Let A = a and B = b be the
evidence. By definition, the probability of evidence P (a, b) is given by:

P (a, b) =
∑

xyz∈XY Z

P (z)P (x|z)P (a|x)P (y|z)P (b|y) (19)

Let Q(x, y, z) = Q(z)Q(x|z)Q(y|z) be a proposal distribution. We can express P (a, b) in terms
of Q as:

P (a, b) =
∑

xyz∈XY Z

P (z)P (x|z)P (a|x)P (y|z)P (b|y)

Q(z)Q(x|z)Q(y|z)
Q(z)Q(x|z)Q(y|z) (20)

We can now apply some simple symbolic manipulations, and rewrite Equation (20) as:

P (a, b) =
∑

z∈Z

P (z)Q(z)

Q(z)

∑

x∈X

P (x|z)P (a|x)Q(x|z)

Q(x|z)

∑

y∈Y

P (y|z)P (b|y)Q(y|z)

Q(y|z)
(21)

By definition of conditional expectation:2

Ex

[
P (x|z)P (a|x)

Q(x|z)
| z

]
=

∑

x∈X

P (x|z)P (a|x)Q(x|z)

Q(x|z)
(22)

2Because, the expectation is always taken with respect to the component of the proposal distribution in the
denominator, we write ExQ[X] as Ex[X] for clarity.

11



and

Ex

[
P (y|z)P (b|y)

Q(y|z)
| z

]
=

∑

y∈Y

P (y|z)P (b|y)Q(y|z)

Q(y|z)
(23)

Substituting Equations (22) and (23) in Equation (21), we get:

P (a, b) =
∑

z∈Z

P (z)

Q(z)
Ex

[
P (x|z)P (a|x)

Q(x|z)
| z

]
Ex

[
P (y|z)P (b|y)

Q(y|z)
| z

]
Q(z) (24)

By definition (of expectation), we can rewrite Equation (24) as:

P (a, b) = Ex

[
P (z)

Q(z)
Ex

[
P (x|z)P (a|x)

Q(x|z)
| z

]
Ex

[
P (y|z)P (b|y)

Q(y|z)
| z

]]
(25)

We will refer to Equations of the form (25) as expectation by parts. If the domain size of
all variables is d = 10, for example, computing P (a, b) using Equation (20) would require
summing over d3 = 103 = 1000 terms while computing P (a, b) using Equation (25) would
require summing over d+ d2 + d2 = 10 + 102 + 102 = 210 terms.

We will now describe how to estimate P (a, b) using Equation (25). Assume that we are
given N samples (z1, x1, y1), . . . , (zN , xN , yN ) generated from Q. Let {0, 1} be the domain of
Z and let Z = 0 and Z = 1 be sampled N0 and N1 times respectively. We define two sets
S(j) = {k|k ∈ {1, . . . , N} and zk = j} for j ∈ {0, 1} which store the indices of the samples in
which the value j is assigned to Z.

We can estimate Ex
[
P (x|z)P (a|x)

Q(x|z) | z
]
and Ex

[
P (y|z)P (b|y)

Q(y|z) | z
]
by replacing the expectation

by the sample average. These unbiased estimates denoted by ĝX(Z = j) and ĝY (Z = j);
j ∈ {0, 1} are given by:

ĝX(Z = j) =
1

Nj

∑

i∈S(j)

P (xi|Z = j)P (a|xi)

Q(xi|Z = j)
, (26)

ĝY (Z = j) =
1

Nj

∑

i∈S(j)

P (yi|Z = j)P (b|yi)

Q(yi|Z = j)
(27)

Substituting the unbiased estimates for Ex
[
P (x|z)P (a|x)

Q(x|z) | z
]
and Ex

[
P (y|z)P (b|y)

Q(y|z) | z
]
in Equation

(25), we get the following unbiased estimate of P (a, b):

P̂ (a, b) = Ex

[
P (z)

Q(z)
ĝX(Z = j)ĝY (Z = j)

]
(28)

Given samples (z1, . . . , zN ) generated from Q(Z), we can estimate P̂ (a, b) by replacing the
expectation in Equation (28) by the following sample average:

P̂ao−is(a, b) =
1

N

N∑

i=1

P (zi)

Q(zi)
ĝX(zi)ĝY (z

i) (29)

where P̂ao−is(a, b) stands for an AND/OR estimate of P (a, b). Since, Z = 0 and Z = 1 are
sampled N0 and N1 times respectively, we can collect together all samples that have Z = j,
j ∈ {0, 1} and rewrite Equation (28) as:

P̂ao−is(a, b) =
1

N

1∑

j=0

NjP (Z = j)

Q(Z = j)
ĝX(Z = j)ĝY (Z = j) (30)

12



It is easy to show that Ex[P̂ao−is(a, b)] = P (a, b), namely P̂ao−is is unbiased. Conventional
importance sampling, on the other hand would estimate P (a, b) as follows:

P̂is(a, b) =
1

N

N∑

i=1

P (zi)P (xi|zi)P (yi|zi)P (a|xi)P (b|yi)

Q(zi)Q(xi|zi)Q(yi|zi)
(31)

As before, we can collect together all samples that have Z = j, j ∈ {0, 1} and rewrite Equation
(31) as:

P̂is(a, b) =
1

N

1∑

j=0

NjP (Z = j)

Q(Z = j)


 1

Nj

∑

i∈S(j)

P (xi|Z = j)P (yi|Z = j)P (a|xi)P (b|yi)

Q(xi|Z = j)Q(yi|Z = j)


 (32)

For simplicity denote:

ĝX,Y (Z = j) =
1

Nj

∑

i∈S(j)

P (xi|Z = j)P (yi|Z = j)P (a|xi)P (b|yi)

Q(xi|Z = j)Q(yi|Z = j)

and rewrite Equation (32) as:

P̂is(a, b) =
1

N

1∑

j=0

NjP (Z = j)

Q(Z = j)
ĝX,Y (Z = j) (33)

It is easy to show that ĝX,Y (Z = j) is an unbiased estimate of

Ex
[
P (x|z)P (y|z)P (a|x)P (b|y)

Q(x|z)Q(y|z) |z
]
, namely,

Ex [ĝX,Y (Z = j)] = Ex

[
P (x|z)P (y|z)P (a|x)P (b|y)

Q(x|z)Q(y|z)
|z

]
(34)

Let us now compare P̂ao−is given by Equation (30) with P̂is given by Equation (33). The
only difference is that in P̂ao−is, we compute a product of ĝX(Z = j) and ĝY (Z = j) instead
of ĝXY (Z = j). The product of ĝX(Z = j) and ĝY (Z = j) combines an estimate over two
separate quantities defined over the random variables X|Z = z and Y |Z = z respectively
from the generated samples. While in conventional importance sampling, we estimate only
one quantity defined over the joint random variable XY |Z = z using the generated samples.
Because the samples for X|Z = z and Y |Z = z are considered independently in Equation (30),
Nj samples drawn over the joint random variable XY |Z = z in Equation (33) correspond to
Nj×Nj = N2

j virtual samples in Equation (30). Since the variance goes down as the sample size
increases, our new estimation technique will be more accurate than the conventional approach.

3.2. Estimating weighted counts using an AND/OR sample tree

We next generalize the above example using an AND/OR search tree (Dechter and Ma-
teescu, 2007). We will define an AND/OR sample tree which is a restriction of the full AND/OR
search tree to the generated samples. On this AND/OR sample tree, we define a new sample
mean and show that it yields an unbiased estimate of the weighted counts. We start with some
required definitions.

Definition 13 (Bucket function). Given a graphical model G = 〈X,D,F〉 and a rooted
pseudo tree T (X,E), the bucket function of Xi relative to T , denoted by BT,Xi

is the product
of all functions in G that mention Xi but do not mention any variables that are descendants
of Xi in T .
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Z

P (Z)

X
P (X |Z)× P (a|X)

Y
P (Y |Z)× P (b|Y )

Figure 4: A pseudo tree of the Bayesian network given in Figure 3(a) in which each variable is annotated with
its bucket function.

Example 5. Figure 4 shows a possible pseudo tree over the non-evidence variables of the
Bayesian network given in Figure 3. Each variable in the pseudo tree is annotated with its
bucket function.3 The bucket function of Z is P (Z) because P (Z) is the only function that
mentions Z but does not mention the descendants X and Y of Z. The bucket function of X
is P (a|X) × P (X|Z), while that of Y is P (b|Y )× P (Y |Z).

Definition 14 (AND/OR Sample Tree). Given a graphical model G = 〈X,D,F〉, a pseudo
tree T (X,E), a proposal distribution Q defined relative to the pseudo tree, namely Q(x) =∏n

i=1 Qi(xi| yi) such that Yi ⊆ contextT (Xi),
4 a sequence of samples S and a complete

AND/OR search tree ψT , an AND/OR sample tree ψT,S is obtained from ψT by removing all
nodes and the corresponding edges which do not appear in S.

Let πn denote the path from the root of ψT,S to a node n and let A(πn) denote the assign-
ment sequence along the path πn. We define the arc-label of an arc (n,m) from an OR node
n to an AND node m in ψT,S, where Xi labels n and xi labels m, as a pair 〈w(n,m),#(n,m)〉
where:

• w(n,m) =
BT,Xi

(xi,A(πn))

Qi(xi|A(πn))
is the weight of the arc (n,m), where BT,Xi

be the bucket

function of Xi (see Definition 13).

• #(n,m) is the frequency of the arc. Namely, it is equal to the number of times the partial
assignment A(πm) occurs in S.

An OR sample tree is an AND/OR sample tree defined relative to a chain pseudo tree.

Example 6. Consider again the Bayesian network given in Figure 3. Assume that the proposal
distribution Q(X,Y,Z) = Q(X)×Q(Y )×Q(Z) is a uniform distribution. Figure 5(b) shows a
full AND/OR search tree over the Bayesian network and Figure 5(a) shows four hypothetical
random samples drawn from Q. The AND/OR sample tree is obtained by removing the
dotted edges and nodes which are not sampled from the full AND/OR search tree. Each arc
from an OR node to an AND node in the AND/OR sample tree is labeled with appropriate
frequencies and weights according to Definition 14. For instance, consider the arc corresponding

3Note that the pseudo tree is defined over the non-evidence variables and the probability of evidence equals
the weighted counts over an evidence instantiated Bayesian network. After instantiating A to a, the CPT
P (A|X) yields a function P (a|X) having scope X. Similarly, after instantiating B to b, the CPT P (B|Y )
yields a function P (b|Y ) having scope Y . Thus, the actual functions used for computing the weighted counts
(probability of evidence) are P (Z), P (X|Z), P (a|X), P (Y |Z) and P (b|Y ).

4For simplicity, we assume that Yi is a subset of context of Xi. When the proposal distribution is specified
externally, it may not obey this constraint. In that case, we construct a pseudo tree from a graph G obtained
by combining the primal graphs of the proposal distribution and the graphical model.
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Sample # Z X Y

1 0 1 0

2 0 2 1

3 1 1 1

4 1 2 0
(a)

Z

0

〈1.6, 2〉

X

0 1

〈.24, 1〉

2

〈.54, 1〉

Y

0

〈.3, 1〉

1

〈.21, 1〉

2

1

〈.4, 2〉 → P (Z=1)
Q(Z=1) = .2

.5 = .4

X

0 1

〈.42, 1〉

2

〈.18, 1〉

Y

0

〈.12, 1〉

1

〈1.26, 1〉

2
(b)

Figure 5: (a) Four samples drawn from a uniform proposal distribution Q(X,Y, Z) = Q(X)Q(Y )Q(Z) where
Q(Z = 0) = Q(Z = 1) = 1/2, Q(X = 0) = Q(X = 1) = Q(X = 2) = 1/3 and Q(Y = 0) = Q(Y = 1)
= Q(Y = 2) = 1/3, (b) The samples in (a) arranged on a full AND/OR search tree. Dotted edges and nodes are
not sampled. Each arc from an OR node to an AND node is labeled by its weight and frequency (see Definition
14).
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Z

(.09945×1.6×2)+(.207×.4×2)
2+2 = .12096

0
.09945

〈1.6, 2〉

X

.39

1

〈.24, 1〉

2

〈.54, 1〉

Y

.255

0

〈.3, 1〉

1

〈.21, 1〉

1
.207

〈.4, 2〉

X

.3

1

〈.42, 1〉

2

〈.18, 1〉

Y

.69

0

〈.12, 1〉

1

〈1.26, 1〉

Figure 6: Value computation on an AND/OR sample tree (see Definition 15). Each OR and AND node is
annotated with its value. By definition, the value of a leaf AND node is 1 and is not shown to avoid clutter.
The AND/OR sample tree mean (which equals the value of the root OR node Z) is 0.12096.

to (Z = 0,X = 1) (leftmost sampled arc). The assignment (Z = 0,X = 1) appears only once
in the samples given in Figure 5(a). Therefore, the frequency of the arc is 1. Given evidence
A = 0, the bucket function associated with X is P (x|z) × P (A = 0|x) (see Figure 4). Since
the proposal distribution is uniform, namely Q(x|z) = 1/3 (since X has three values in its
domain), the weight of the arc is:

BT (X = 1, Z = 0)

Q(X = 1|Z = 0)
=
P (X = 1|Z = 0)× P (A = 0|X = 1)

Q(X = 1|Z = 0)
=
.4× .2

1/3
= 0.24

Figure 5(b) shows the derivation of the weight of the arc (Z, 1).

We can now compute an approximation of node values by mimicking the value computation
on the AND/OR sample tree.

Definition 15 (Value of a node). Given an AND/OR sample tree (or graph) ψT,S, the value
of a node n, denoted by v(n) is defined recursively as follows. The value of a leaf AND node
is 1. If n is an AND node then:

v(n) =
∏

n′∈chi(n)

v(n′)

and if n is an OR node then

v(n) =

∑
n′∈chi(n)#(n, n′)× w(n, n′)× v(n′)

∑
n′∈chi(n)#(n, n′)

We will show that the value of an OR node n is equal to an unbiased estimate of the
conditional expectation of the sub-problem conditioned on the assignment from the root to n
(see Theorem 1).

Definition 16 (AND/OR Sample Tree Mean). The AND/OR sample tree mean is the
value of the root node of an AND/OR sample tree.
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Example 7. Figure 6 shows the values of nodes computed using Definition 15 for our running
example. For instance, the value of the AND node (which equals the product of values of its
child OR nodes) corresponding to Z = 0 is .39 × .255 = .09945. The derivation of the value
of the root OR node labeled by Z is shown in Figure 6. The value of the OR nodes X and Y
given Z = j ∈ {0, 1} is ĝX(Z = j) and ĝY (Z = j) respectively, as defined in Equations (26)
and (27). The value of the root node labeled by Z is the AND/OR sample tree mean which is
equal to the sample mean computed by parts in Equation (30).

Theorem 1. The AND/OR sample tree mean is an unbiased estimate of the weighted counts.

Next, we show that the OR sample tree mean is equal to the conventional importance
sampling sample mean given by Equation (13). Recall that an OR sample tree is defined
relative to a chain pseudo tree. We can convert any pseudo tree T to a chain pseudo tree T ′ by
forming a chain along a topological (or DFS) ordering of T . We will refer to T ′ as a topological
linearization of T . Formally,

Definition 17 (Topological linearization of a pseudo tree). A topological linearization
of a pseudo tree T (X,E) is a chain pseudo tree T ′(X,E′) such that for any two nodes X and
Y in X, if X is an ancestor of Y in T then X is also an ancestor of Y in T ′.

Theorem 2. Given a graphical model G = 〈X,D,F〉, a pseudo tree T , a proposal distribu-
tion Q(X) =

∏n
i=1Qi(Xi|contextT (Xi)), N i.i.d. samples drawn from Q and a topological

linearization T ′ of T , the AND/OR sample tree mean computed on an OR sample tree based
on T ′ equals the conventional importance sampling estimate ẐN defined in Equation (13).

Algorithm 2: AND/OR Tree Importance Sampling

Input: A graphical mode G = 〈X,D,F〉 a pseudo tree T (X,E) and a proposal distribution
defined relative to T : Q(X) =

∏n

i=1Q(Xi|contextT (Xi))
Output: AND/OR sample tree mean
Generate samples S = (x1, . . . ,xN ) from Q1

Build an AND/OR sample tree ψT,S relative to S and T2

Initialize all labeling functions 〈w(n,m),#(n,m)〉 on each arc from an OR node n to an AND3

node m using Definition 14
// Start: Value computation phase

Initialize the value of all leaf AND nodes to 14

for every node n from leaves to the root of ψT,S do5

Let chi(n) denote the child nodes of node n6

// denote value of a node by v(n)
if n is an AND node then7

v(n) =
∏

n′∈chi(n) v(n
′)8

else9

v(n) =
∑

n′∈chi(n) #(n,n′)×w(n,n′)×v(n′)
∑

n′∈chi(n) #(n,n′)10

// End: Value computation phase

return v(root node of ψT,S)11

Algorithm AND/OR tree importance sampling is presented as Algorithm 2. In steps 1-
3, the algorithm generates samples from Q and stores them on an AND/OR sample tree.
The algorithm then computes the AND/OR sample tree mean over the AND/OR sample tree
recursively from leaves to the root in steps 4− 10 (value computation phase).

We summarize the complexity of Algorithm 2 in the following theorem.
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Theorem 3 (Complexity of AND/OR tree importance sampling). Given N i.i.d.
samples drawn from the proposal distribution Q, a graphical model with n variables and a
pseudo tree having depth h, the time complexity of computing the AND/OR sample tree mean
is O(nN) and the space complexity is O(h).

Note that in Algorithm 2 we have separated the sampling and estimation (value computa-
tion) phases for pedagogical reasons. It is possible to interleave the two phases by generating
the AND/OR sample tree on the fly via depth-first sampling. This variant is described in the
appendix (see Algorithm 3).

3.3. Estimating Conditional Probabilities using an AND/OR sample tree

To compute an estimate of the conditional probability PG(xi) via AND/OR importance
sampling, all we have to do is compute two AND/OR sample tree means in the value compu-
tation phase and output their ratio. The denominator equals the AND/OR sample tree mean
computed by Algorithm 2. To compute the numerator, we set the values of all child AND
nodes of Xi that are not labeled by xi to zero and compute the AND/OR sample tree mean as
before. Both the numerator and the denominator can be computed in one pass by maintaining
two values at each node, one corresponding to the numerator and the other corresponding
to the denominator. Clearly, the estimate of PG(xi) obtained in this way is asymptotically
unbiased and its computational complexity is the same as that of Algorithm 2.

It is also possible to compute the marginal probabilities of all variables in the network by
performing two value computation passes, upward and downward, over the AND/OR sample
tree. The passes mimic the computation for updating beliefs over a full AND/OR search tree
(Dechter and Mateescu, 2007; Darwiche, 2003). Each node stores two values, one summarizing
the information in its ancestors and their descendants (excluding its own descendants) and the
other summarizing the information in its descendants. The value of a node in the upward pass,
which summarizes the information from its descendants is computed as before. The downward
value of the node is recursively computed as follows.

Definition 18 (Downward value of a node). The downward value of the root OR node is
1. The downward value u(n) of an internal OR node n having an AND parent n′ is given by

u(n) = u(n′)
∏

n′′∈chi(n′):n′′ 6=n

v(n′′)

where chi(n′) is the set of child nodes of n′ and v(n′′) is the (upward) value of n′′ (see Definition
15). The downward value of an AND-node n having parent n′ is given by

u(n) =
u(n′)#(n′, n)w(n′, n)∑

m∈chi(n′)#(n′,m)

Given the upward and downward values of all nodes of an AND/OR sample tree, we can
compute an estimate of the marginal probability values for all variables in the graphical model
using the following equation.

P̂G(xi) =

∑
n∈n(xi)

v(n)u(n)

v(root)
(35)

where n(xi) is the set of all AND nodes corresponding to the value xi and v(root) is the
(upward) value of the root node. The estimate P̂G(xi) is asymptotically unbiased because it
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is a ratio of two unbiased estimates (Geweke, 1989; Liu, 2001). The numerator is an unbiased
estimate of the weighted counts of the graphical model augmented with the indicator function

Ixi
(x′i) =

{
1 if xi = x′i
0 otherwise

The denominator is an unbiased estimate of the weighted counts.
Since the size of the AND/OR sample tree is bounded by O(nN), it is straight-forward to

show that

Theorem 4. Given N i.i.d. samples drawn from the proposal distribution Q and a graphical
model with n variables, the time and space complexity of computing an estimate of all marginal
probabilities using an AND/OR sample tree is O(nN).

Comparing the space complexities for estimating the weighted counts and all marginal
probabilities (Theorem 3 and Theorem 4 respectively), we see that estimating all marginal
probabilities is more space intensive, by a factor of O(nN/h). Conventional OR importance
sampling, on the other hand, incurs the same space complexity for estimating both. This yields
another space versus variance trade-off.

In summary, in this section, we defined AND/OR sample tree mean and showed that
it yields an unbiased estimate of the weighted counts Z. We proved that the conventional
importance sampling sample mean equals the OR sample tree mean. We provided an algorithm
for computing the AND/OR sample tree mean and proved that it has the same time complexity
as the conventional importance sampling sample mean.

4. Variance Reduction

In this section, we will prove that the AND/OR sample tree mean has smaller variance than
the OR sample tree mean. In other words, we will prove that the variance of the AND/OR
sample tree mean is smaller than that of the conventional importance sampling sample mean
defined by Equation (12).

In fact, we will prove a more general result. Specifically, we will define an iterative process
for constructing a topological linearization and show that the AND/OR sample tree mean
defined relative to the partial linearization at iteration i − 1 has smaller (or equal) variance
than the one defined relative to the partial linearization at iteration i. We begin by formally
defining these partial linearizations.

Definition 19 (Topological linearization of a pseudo tree w.r.t. a node). Given a
pseudo tree T (X,E), a topological linearization of T w.r.t. a node X ∈ X is a pseudo tree TX
obtained as follows:

• If X has at most one child node then TX equals T .

• Otherwise, let TX = T and let C be an arbitrary child node of X. Let {O1, . . . , Ok} be
the set of child nodes of X not including C. Replace each edge (X,Oi) in TX with an
edge (C,Oi).

It is easy to show that:

Proposition 2. A topological linearization of a pseudo tree can be obtained by successively
applying topological linearization to its nodes until convergence, namely until all nodes have at
most one child node.

19



X1

X2

X4 X5

X3

X6 X7

(a)

X1

X2

X4 X5 X3

X6 X7

(b)

X1

X2

X4

X5 X3

X6 X7

(c)

X1

X2

X4

X5

X3

X6 X7

(d)

X1

X2

X4

X5

X3

X6

X7

(e)

Figure 7: (a) A pseudo tree. (b) Pseudo tree obtained by applying topological linearization to the node X1 of
the pseudo tree given in (a). (c) The pseudo tree obtained by applying topological linearization to the node X2

of the pseudo tree given in (b). (d) The pseudo tree obtained by applying topological linearization to the node
X4 of the pseudo tree given in (c). (e) The chain pseudo tree obtained by applying topological linearization to
the node X3 of the pseudo tree given in (d).

Example 8. Figure 7(a) shows a pseudo tree. Each pseudo tree shown in Figures 7(b)-7(e) is
obtained by applying topological linearization to a node of the pseudo tree on its left. Figure
7(e) shows a chain pseudo tree, whose structure cannot be changed by applying topological
linearization to any of its nodes.

We will now show that the variance of an AND/OR sample tree mean defined relative to
S and T is smaller than or equal to the AND/OR sample tree mean defined relative to S and
TX , where TX is a topological linearization of T with respect to X. Since the chain pseudo tree
is obtained by successively applying topological linearization to its nodes, our main theorem
follows immediately from this general result.

Lemma 1. Given a pseudo tree T (X,E) of a graphical model G = 〈X,D,F〉, a topological
linearization TX of T w.r.t. to a node X ∈ X, and a sequence of samples S = (x1, . . . ,xN )
drawn from a proposal distribution Q defined relative to T , the variance of the AND/OR sample
tree mean defined relative to S and T is smaller than or equal to the variance of the AND/OR
sample tree mean defined relative to S and TX .

Proof. Without loss of generality, let us assume the following: (a) X is the root of T and has
two child nodes U and W , (b) {x1, . . . , xd}, {u1, . . . , ud} and {w1, . . . , wd} are the domains of
X, U and W respectively and (c) Q(X,U,W ) = Q(X) × Q(U |X) × Q(W |X) is the proposal
distribution over {X,U,W}.

Let xj appear Nj times in S and let ((xj , u
1, w1), . . . , (xj , u

Nj , wNj )) be the samples having
X = xj . Let ψT,S and ψTX ,S denote the AND/OR sample trees defined relative to (T,S) and
(TX ,S) respectively. T , TX , ψT,S and ψTX ,S are shown in Figure 8. For notational convenience,
let U and W denote the random variables corresponding to the value of the child nodes U and
W respectively of xj in ψT,S (see Figure 8). Let U i

T and W i
T be defined as follows:

U i
T =

BT,U(xj , u
i)

Q(ui|xj)
× vT (u

i) (36)

where BT,U is the bucket function of U and vT (u
i) is the value of the AND node corresponding

to (xj , u
i).

W i
T =

BT,W (xj , w
i)

Q(wi|xj)
× vT (w

i) (37)
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Figure 8: (a) Pseudo tree T , (b) AND/OR sample tree ψT,S based on the pseudo tree given in (a), (c) Pseudo-
tree TX obtained by topological linearization of T w.r.t. X (d) AND/OR sample tree ψTX ,S based on the pseudo
tree given in (c).

where BT,W is the bucket function ofW and vT (w
i) is the value of the AND node corresponding

to (xj , w
i). Note that U i

T and W i
T are unbiased estimates of the value of the child OR nodes

U and W respectively of xj in a full AND/OR search tree based on T .
By definition (see Definition 15), the value of the AND node labeled by xj of ψT,S is given

by:

vT (xj) = vT (U)× vT (W ) (38)

=
1

Nj

Nj∑

i=1

BT,U (xj , u
i)

Q(ui|xj)
× vT (u

i)×
1

Nj

Nj∑

i=1

BT,W (xj , w
i)

Q(wi|xj)
× vT (w

i) (39)

=
1

Nj

Nj∑

i=1

U i
T ×

1

Nj

Nj∑

i=1

W i
T (From Equations (36) and (37)) (40)

By definition, the value of the AND node labeled by xj in ψTX ,S is:

vTX
(xj) = vTX

(U) (41)

=
1

Nj

Nj∑

i=1

BT,U(xj , u
i)

Q(xj , ui)
vTX

(ui) (42)

=
1

Nj

Nj∑

i=1

BT,U(xj , u
i)

Q(xj , ui)
vT (u

i)vTX
(W i) (43)

The last step follows from the fact that the value of the AND node corresponding to (xj , u
i)

of ψTX ,S is the product of the value of the AND node corresponding to (xj , u
i) of ψT,S and the
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value of its OR node labeled by W (see Figure 8). Namely, vTX
(ui) = vT (u

i)× vTX
(W i). For

notational convenience, we define:
W i

TX
= vTX

(W i) (44)

Note that W i
TX

is an unbiased estimate of the value of W in a full AND/OR search tree based
on T (as well as in a full AND/OR search tree based on TX). From Equations (36), (43) and
(44), we have:

vTX
(xj) =

1

Nj

Nj∑

i=1

U i
TW

i
TX

(45)

Since the AND/OR sample tree mean equals the value of the root node labeled by X, to
prove the lemma, we have to prove that Var[vT (X)] ≤ Var[vTX

(X)]. From the law of total
variance,5 we have:

Var[vT (X)] = Var[Ex[vT (xj)]] + Ex[Var[vT (xj)]] (46)

Var[vTX
(X)] = Var[Ex[vTX

(xj)]] + Ex[Var[vTX
(xj)]] (47)

From Equations (46) and (47), we can see that in order to prove that Var[vT (X)] ≤
Var[vTX

(X)], it suffices to prove that:

Ex[vT (xj)] = Ex[vTX
(xj)] and Var[vT (xj)] ≤ Var[vTX

(xj)]

We will prove each of the two parts in turn. By definition,

Ex[vT (xj)] = Ex


 1

Nj

Nj∑

i=1

U ×
1

Nj

Nj∑

i=1

W


 (48)

=
1

N2
j

Ex [UW]

Nj∑

i=1

(1)

Nj∑

i=1

(1) (49)

=
1

N2
j

Ex [UW]NjNj (50)

= Ex [UW] (51)

Ex[vTX
(xj)] = Ex


 1

Nj

Nj∑

i=1

UW


 (52)

=
1

Nj
Ex [UW]

Nj∑

i=1

(1) (53)

=
1

Nj

Ex [UW]Nj (54)

= Ex [UW] (55)

5The law states that the variance of a random variable A can be expressed in terms of its conditional variance
and expectation w.r.t. to another random variable B as follows: Var[A] = Var[Ex[A|B]] + Ex[Var[A|B]]
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From Equations (51) and (55), we have:

Ex[vT (xj)] = Ex[vTX
(xj)]

This proves the first part.
Next, we prove the second part. By definition,

Var[vTX
(xj)] = Var


 1

Nj

Nj∑

i=1

UW


 (56)

=
1

N2
j

Var[UW]

Nj∑

i=1

(1) (57)

=
1

N2
j

Var[UW]Nj (58)

=
Var[UW]

Nj
(59)

Notice that the random variables U and W are (conditionally) independent of each other
(given X = xj). Goodman (1960) provides an expression for the variance of product of such
independent random variables. Formally, if A and B are two independent random variables,
then Var[AB] is given by:

Var[AB] = Var[A]Ex[B]2 + Var[B]Ex[A]2 + Var[A]Var[B] (60)

Using this expression, we can derive the expression for Var[vT (xj)] as shown below:

Var[vT (xj)] = Var


 1

Nj

Nj∑

i=1

U ×
1

Nj

Nj∑

i=1

W


 (61)

= Var


 1

Nj

Nj∑

i=1

U


 Ex


 1

Nj

Nj∑

i=1

W



2

+ Var


 1

Nj

Nj∑

i=1

W


 Ex


 1

Nj

Nj∑

i=1

U



2

+Var


 1

Nj

Nj∑

i=1

U


 Var


 1

Nj

Nj∑

i=1

W


 (62)

It is easy to show that:

Var


 1

Nj

Nj∑

i=1

U


 =

Var[U ]

Nj
and Ex


 1

Nj

Nj∑

i=1

U


 = Ex[U ]

Similarly, it is easy to show that:

Var


 1

Nj

Nj∑

i=1

W


 =

Var[W]

Nj

and Ex


 1

Nj

Nj∑

i=1

W


 = Ex[W]

Substituting these values in Equation (62), we get,
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Var[vT (xj)] =
Var[U ]Ex[W]2

Nj

+
Var[W]Ex[U ]2

Nj

+
Var[U ]Var[W]

N2
j

(63)

Using the formula for variance of products of independent random variables given in Equa-
tion (60) in Equation (59), we get:

Var[vTX
(xj)] =

Var[U ]Ex[W]2

Nj
+

Var[W]Ex[U ]2

Nj
+

Var[U ]Var[W]

Nj
(64)

Notice that the right hand sides of Equations (63) and (64) differ only in the last term (the
denominator of the last term is N2

j in Equation (63) while it is Nj in Equation (64)). Thus,
if Nj > 1, then Var[vT (xj)] < Var[vTX

(xj)] (assuming that Q does not equal the posterior
distribution), else if Nj = 1, then Var[vT (xj)] = Var[vTX

(xj)]. This proves the second part
and the proof follows.

As mentioned earlier, since a chain pseudo tree is obtained by applying topological lin-
earizations to nodes of T , the following theorem follows immediately from Lemma 1.

Theorem 5. Given a pseudo tree T , a topological linearization T ′ of T and a set of samples
S, the variance of the AND/OR sample tree mean defined over the AND/OR sample tree ψT,S

is smaller than or equal to the variance of the AND/OR sample tree mean defined over the
AND/OR sample tree ψT ′,S. In other words, the variance of the AND/OR sample tree mean
is smaller than or equal to the variance of the OR sample tree mean.

4.1. Remarks on Variance Reduction

From the proof of Lemma 1, we can see that given a pseudo tree T and its topological
linearization TX w.r.t. X, if each value x ∈ D(X) is sampled only once then the value of the
AND node x in the AND/OR sample tree defined relative to T will be equal to its corresponding
value in the AND/OR sample tree defined relative to TX , and as a result their variance will be
the same too. We can tie variance reduction to the number of virtual AND/OR tree samples,
defined recursively below.

Definition 20 (Virtual samples of an AND/OR sample tree). Given an AND/OR
sample tree based on a set of samples S, the number of virtual samples associated with a leaf
AND node l is the number of times the path from the root to l is sampled in S. The number
of virtual samples rooted at an internal AND node equals the product of the number of virtual
samples rooted at its child OR nodes. The number of virtual samples rooted at an OR node n
equals the sum of the number of virtual samples rooted at its child AND nodes. The number
of virtual samples of an AND/OR sample tree equals the number of virtual samples rooted at
the root OR node.

Note that when each leaf node in the AND/OR sample tree is sampled only once, the
number of virtual samples equals the number of solution subtrees (see Definition 7).

Example 9. Figure 9(a) and Figure 9(b) show four samples arranged on an OR sample tree
and an AND/OR sample tree respectively. The 4 samples correspond to 8 virtual samples on
the AND/OR sample tree. The AND/OR sample tree includes for example the assignment
(C = 0, B = 2,D = 1, A = 1) which is not present in the OR sample tree (because the samples
rooted at B are conditionally independent of the samples rooted at D given C).
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Figure 9: (a) A chain pseudo tree corresponding to a topological linearization of the pseudo tree given in Figure
1(b). Figures (b) and (c) show 4 samples arranged on an OR sample tree and on an AND/OR sample tree
respectively. The OR sample tree given in (b) is defined relative to the pseudo tree given in (a). The AND/OR
sample tree given in (c) is defined relative to the pseudo tree given in Figure 1(b). Each node in the tree is
annotated with the number of virtual samples rooted at the node. We can see that the AND/OR sample tree
represents 8 virtual samples while the OR sample tree represents only 4 samples.

The following two propositions are immediate from the definition of virtual AND/OR tree
samples and the proof of Lemma 1.

Proposition 3. Given a pseudo tree T , a pseudo tree T ′ obtained by applying topological
linearization several times to different nodes of T and a set of samples S, the number of virtual
AND/OR tree samples of ψT,S is greater than or equal to the number of virtual AND/OR tree
samples of ψT ′,S.

Proposition 4. Given a pseudo tree T , a pseudo tree T ′ obtained by applying topological
linearization several times to different nodes of T and a set of samples S, if the number of virtual
AND/OR tree samples of ψT,S is strictly greater than the number of virtual AND/OR tree
samples of ψT ′,S then the variance of the AND/OR sample tree mean defined relative to ψT,S

is strictly smaller than the variance of the AND/OR sample tree mean defined relative to
ψT ′,S (assuming that the proposal distribution Q does not equal PG).

In summary, we proved that for a given set of samples, the variance of the AND/OR sample
tree mean is less than or equal to the variance of the AND/OR sample tree mean defined relative
to any topological linearization w.r.t. any node in the pseudo tree, and in particular to the
variance of the OR sample tree mean. We also demonstrated how the variance reduction can be
tied to the number of virtual samples. Specifically, we showed that variance reduction occurs
only at AND nodes which have at least two child nodes and which appear in the given set of
samples at least two times.
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5. AND/OR sample graph mean

Next, we describe an even more powerful strategy for estimating sample mean in the
AND/OR space by moving from AND/OR trees to AND/OR graphs (Dechter and Mateescu,
2007). The idea is similar to AND/OR graph search in that we merge nodes in the AND/OR
sample tree, which are unifiable based on context (see Definition 10), to form an AND/OR
sample graph. This results in an even larger number of virtual samples.

Definition 21 (AND/OR Sample Graph). Given a pseudo tree T and a set of samples
S, an AND/OR sample graph is obtained from an AND/OR sample tree ψT,S by merging
all OR nodes that have the same context. The frequency of an arc (n,m) from an OR
node n labeled with Xi to an AND node m is changed to account for the merging based
on context while the weight of (n,m) remains the same. In particular, the frequency of the
arc (n,m) in the AND/OR sample graph equals the number of times the partial assignment
A(πm){Xi}∪contextT (Xi) appears in S.6

Definition 22 (AND/OR Sample Graph mean). The AND/OR sample graph mean is
the value of the root node of an AND/OR sample graph.

Definition 23 (Number of Virtual samples of an AND/OR sample graph). The
number of virtual samples of an AND/OR sample graph is the number of virtual samples
rooted at its root node.

Example 10. Figure 10 shows an AND/OR sample graph obtained from the AND/OR sample
tree given in Figure 9(c) by merging all context unifiable nodes. Notice that the context of A
is {B}. Therefore, for each AND node B = i, i ∈ {0, 1, 2}, we can merge all its child OR nodes
labeled by A in the AND/OR sample tree yielding an AND/OR sample graph. The AND/OR
sample graph represents 12 virtual samples as compared with the AND/OR sample tree which
represents only 8 virtual samples. The AND/OR sample graph includes for example the sample
(C = 0, B = 2,D = 1, A = 0) which is not part of the virtual samples of the AND/OR sample
tree.

Clearly,

Proposition 5. The number of virtual AND/OR graph samples is greater than or equal to
the number of virtual AND/OR tree samples (if both are based on the same underlying pseudo
tree).

Since the AND/OR sample graph captures more virtual samples, the variance of the
AND/OR sample graph mean may be smaller than the variance of the AND/OR sample
tree mean. Formally,

Theorem 6. The variance of the AND/OR sample graph mean is less than or equal to that
of AND/OR sample tree mean.

The algorithm for computing the AND/OR sample graph mean is identical to that of
AND/OR sample tree mean (Steps 4-10 of Algorithm 2). The only difference is that we store
the samples and perform value computations over an AND/OR sample graph instead of an
AND/OR sample tree.

6Recall from Definition 14 that A(πm) denotes the assignment sequence along the path πm from the root
of ψT,S to m. Also, recall that the notation A(πm){Xi}∪contextT (Xi) denotes the projection of the assignment
A(πm) to the set {Xi} ∪ contextT (Xi).
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Figure 10: AND/OR sample graph obtained from the AND/OR sample tree given in Figure 9(c) by merging
all context unifiable nodes. (The AND/OR sample tree and graph are based on the pseudo tree given in Figure
1(b). The context of A, B, C and D is {B}, {C}, ∅ and {C} respectively). Each node is annotated with
the number of virtual samples rooted at the node. The AND/OR sample graph represents 12 virtual samples.
Compare this with the AND/OR sample tree given in Figure 9(c) which represents 8 samples.

Theorem 7 (Complexity of computing AND/OR sample graph mean). Given a
graphical model with n variables, a pseudo tree T with maximum context size (treewidth) w∗

and N samples, the time complexity of AND/OR graph sampling is O(nNw∗) while its space
complexity is O(nN).

6. Experiments

In this section, we demonstrate empirically that moving from OR space to AND/OR space
improves the accuracy of the estimates as a function of time. The section is organized as follows.
We first describe the implementation details and the experimental set up and then describe
our results for various probabilistic and deterministic (constraint) benchmark networks.

6.1. Experimental Setup

As mentioned earlier, the strength of AND/OR based estimates is that the samples on
which the estimates are based upon can be generated using any importance sampling scheme.
Therefore, in order to demonstrate the impact of AND/OR estimation in a non-trivial setting,
we generate samples using state-of-the-art importance sampling techniques such as IJGP-IS
(Gogate and Dechter, 2005; Gogate, 2009) and IJGP-SampleSearch (Gogate and Dechter,
2007a,b, 2011).

IJGP-IS uses the output of a generalized belief propagation scheme called Iterative Join
Graph Propagation (IJGP) to construct a proposal distribution. It was shown that belief
propagation schemes whether applied over the original graph or on clusters of nodes yield very
good approximation to the true posterior than other available choices (Dechter, Kask, and
Mateescu, 2002; Murphy, Weiss, and Jordan, 1999; Yedidia, Freeman, and Weiss, 2004) and
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Algorithms Benchmarks
or-tree-IJGP-IS-hmetis
ao-tree-IJGP-IS-hmetis Alarm
ao-graph-IJGP-IS-hmetis Grids
or-tree-IJGP-IS-minfill
ao-tree-IJGP-IS-minfill
ao-graph-IJGP-IS-minfill

(a) Algorithms evaluated on bench-

marks without Strong Deterministic

Relationships

Algorithms Benchmarks
or-tree-IJGP-SS-hmetis
ao-tree-IJGP-SS-hmetis Coding
ao-graph-IJGP-SS-hmetis Linkage
or-tree-IJGP-SS-minfill Graph Coloring
ao-tree-IJGP-SS-minfill
ao-graph-IJGP-SS-minfill

(b) Algorithms evaluated on benchmarks

with Strong Deterministic Relationships

Figure 11: Figure showing the scope of our experimental study. The algorithm names are abbreviated as follows.
IJGP-IS stands for IJGP based importance sampling while IJGP-SS stands for IJGP based SampleSearch. or-
tree, ao-tree and ao-graph stand for OR tree, AND/OR tree and AND/OR graph respectively. minfill and
hmetis are the orderings used for constructing the pseudo trees. For example: ao-graph-IJGP-SS-minfill stands
for IJGP-based SampleSearch which uses an AND/OR graph constructed along the minfill ordering for deriving
the estimates.

thus sampling from their output is an obvious choice (see (Yuan and Druzdzel, 2006; Gogate
and Dechter, 2005; Gogate, 2009) for more details).

IJGP (Dechter et al., 2002; Mateescu, Kask, Gogate, and Dechter, 2010) is a generalized
belief propagation scheme which is parametrized by a constant i, called the i-bound, yielding
a class of algorithms IJGP(i) whose complexity is exponential in i, that trade-off accuracy and
complexity. As i increases, accuracy generally increases. When i equals the treewidth of the
graphical model, IJGP(i) is exact. We use a i-bound of 10 and set the number of iterations to
10 in all our experiments to ensure that IJGP terminates in a reasonable amount of time (less
than 5 minutes) while requiring bounded space.

The variance and therefore the accuracy of AND/OR sample tree mean is highly dependent
upon the height of the pseudo tree while that of AND/OR sample graph mean is dependent
more upon the treewidth of the pseudo tree. We experimented with two alternatives for
constructing the pseudo tree: one based on the minfill ordering and the other based on hyper-
graph partitioning using the hmetis software7, henceforth called the hmetis ordering. In earlier
studies (Darwiche, 2001; Marinescu, 2008), it was shown that the minfill ordering generally
yields pseudo trees having smaller treewidth compared with other alternatives while the hmetis
ordering yields pseudo trees having smaller height.

Finally, on networks having substantial amount of determinism, we generate samples using
IJGP-based SampleSearch (IJGP-SS) (Gogate and Dechter, 2007a, 2011) instead of IJGP-IS.
It is known that on such networks pure importance sampling generates many useless zero
weight samples which are eventually rejected. SampleSearch overcomes this rejection problem
by explicitly searching for a non-zero weight sample, yielding a more efficient sampling scheme
in such heavily deterministic databases. It was shown that SampleSearch is an importance
sampling scheme which generates samples from a modification of the proposal distribution
which is backtrack-free w.r.t. the constraints. Thus, to derive AND/OR sample tree and graph
means from the samples generated by SampleSearch, all we need is to replace the proposal
distribution with the backtrack-free distribution while computing the sample weight.

We evaluated our algorithms on the weighted counting task defined over mixed probabilistic

7Available at: http://www-users.cs.umn.edu/karypis/metis/hmetis
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and deterministic networks (e.g., probability of evidence in a Bayesian network and counting
solutions of a constraint network). We experimented with five sets of benchmarks: (a) alarm
networks, (b) grid networks, (c) linkage networks, (d) coding networks, and (e) graph color-
ing networks modeled as satisfiability problems. The linkage, coding and the graph coloring
networks have strong deterministic relationships and therefore we generated samples using
IJGP-based SampleSearch (IJGP-SS). On the remaining networks (namely on the alarm and
the grids), we used IJGP-IS. Figure 11 shows the benchmarks and the various algorithms that
we experimented with.

We organize the results into two subsections. In the next subsection, we describe the results
for instances for which the exact weighted counts are known while in subsection 6.3 we describe
the results for instances for which the exact weighted counts are not known. The reason for
this separation is the difference in the evaluation criteria used.

6.2. Results for networks on which the exact value of the weighted counts is known

6.2.1. Evaluation Criteria

For networks for which the exact weighted counts are known, we measure performance by
comparing the log relative error between the exact weighted counts and the approximate ones.
If Z is the exact value and Z is the approximate value of the weighted counts, the log-relative
error is defined as:

∆ =

∣∣∣∣
log(Z)− log(Z)

log(Z)

∣∣∣∣ (65)

We compute the log relative error instead of the usual relative error because when the prob-
ability of evidence is extremely small (< 10−10) or when the solution counts are large (e.g.
> 1010) the relative error between the exact and the approximate answer will be arbitrarily
close to 1 and we would need a large number of digits to distinguish between the results.

Tables 1-6 contain the results. On each instance, we ran each algorithm 5 times. For each
algorithm, we report the average log-relative error ∆ and the average of the sample means Ẑ8

over the 5 runs. We also report the relative standard deviation (RSD) over the 5 runs, where
RSD is defined as follows. Let S[Ẑ] be the standard deviation and Ẑ be the average of the
sample means over k runs of a solver, then

RSD = 100 ×
S[Ẑ]

Ẑ
(66)

Relative Standard Deviation (RSD) is a measure of precision and not accuracy. It is a unitless
quantity and allows us to compare standard deviation of two quantities which have different
means Ẑ more meaningfully. It is especially relevant when two given schemes have roughly
the same accuracy. In this case, we would prefer the scheme having the smaller RSD. Also,
when RSD is very small (for e.g., < 2%), it indicates that the scheme has very small sample
variance and therefore it is likely that the proposal distribution is a very good approximation
of the true posterior (Rubinstein, 1981).

Notation in Tables (see for e.g. Table 1 for reference): The first column shows the instance
name and various statistical information about the instance such as the number of variables
(n), the average domain size (k), the number of functions (f), the number of evidence nodes
(e), and the number of deterministic functions or constraints (c). The second column gives

8The sample mean can be recovered from the log-relative error and the exact value of the weighted counts
(see Equation (65)). We report it in each table for the reader’s convenience.
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the exact value of the weighted counts (Z) if known, the treewidth (w∗) and the height (h) of
the pseudo tree used for the min-fill and the hmetis orderings respectively. Columns 3-8 show
the average sample mean (Ẑ), the relative standard deviation (RSD) and average log-relative
error ∆ over the 5 runs for each of the six solvers. The average log-relative error of the best
performing scheme for each problem instance is highlighted in bold.

6.2.2. Results for the Alarm networks

Our first benchmark domain is that of Alarm networks used in the UAI 2006 evaluation
(Bilmes and Dechter, 2006). To create these networks, a fixed number of copies of the burglar
alarm graph described in Pearl’s book (Pearl, 1988) are created. One by one, the graph copies
are connected to each of the previously considered copies with some probability. Each variable
is then randomly set to be hidden or observed.

Table 1 shows the results. We make the following observations. First, on most instances the
AND/OR sample tree and graph means are slightly better in terms of log-relative error than
the OR sample tree mean. Second, the log-relative error and RSD values for all schemes are
very small indicating that the proposal distribution is very close to the posterior distribution.
Third, in most cases the RSD of the AND/OR sample tree and graph means is smaller than
the OR sample tree mean. Finally, the performance of the schemes that use minfill and hmetis
ordering is incomparable, sometimes the minfill is better while at other times hmetis is better.

Figure 12 show log-relative error vs time plots of various schemes for four randomly chosen
Alarm networks. We can clearly see the superior anytime performance of AND/OR sample tree
and graph means compared with the OR sample tree and graph means. Note that importance
sampling is an anytime algorithm because it needs just one sample to estimate the weighted
counts. Moreover, the accuracy of its estimate improves as more samples are drawn.

6.2.3. Results for Grid networks

The grid networks are available from the authors of Cachet, a SAT model counter (Sang,
Beame, and Kautz, 2005). A grid Bayesian network is a s×s grid, where there are two directed
edges from a node to its neighbors right and down. The upper-left node is a source, and the
bottom-right node is a sink. The deterministic ratio p is a parameter specifying the fraction
of nodes that are deterministic or functional. The grid instances are designated as p − s. For
example, the instance 50 − 18 indicates a grid of size 18 × 18 in which 50% of the nodes are
deterministic. Evidence in these networks was set at random.

Table 2, 3 and 4 show the results. The results are quite similar to the alarm networks
in that on most instances the AND/OR graph schemes (both hmetis and minfill based) are
superior in terms of accuracy and RSD to the AND/OR tree schemes which in turn are only
slightly superior to the OR tree scheme. Again, the performance of the hmetis-based and
minfill-based schemes is incomparable in that one ordering scheme does not strictly dominate
the other.

The log-relative error vs time plots for six largest grid instances (two for each value of
the deterministic ratio) are shown in Figures 13, 14 and 15 respectively. We clearly see the
superior anytime performance of AND/OR graph schemes (both hmetis based and minfill
based) compared with the AND/OR tree and the OR tree schemes. The AND/OR tree scheme
is only slightly better than the OR tree scheme.

6.2.4. Results for Linkage networks

The linkage instances are Bayesian networks that model likelihood computation over a
pedigree (Fishelson and Geiger, 2003). These networks have between 777-2315 nodes with an
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Exact min-fill ordering hmetis ordering

or-tree ao-tree ao-graph or-tree ao-tree ao-graph

IJGP-IS- IJGP-IS- IJGP-IS- IJGP-IS- IJGP-IS- IJGP-IS-

minfill minfill minfill hmetis hmetis hmetis

Instance Z (w∗, h) Ẑ Ẑ Ẑ (w∗, h) Ẑ Ẑ Ẑ
(n, k, f) RSD RSD RSD RSD RSD RSD
(e, c) ∆ ∆ ∆ ∆ ∆ ∆

BN 10 6.24e-06 (14,20) 6.23e-06 6.24e-06 6.24e-06 (16,22) 6.23e-06 6.24e-06 6.24e-06
(85, 2, 85) 0.08 % 0.05 % 0.05 % 0.19 % 0.13 % 0.13 %
(17, 0) 1.20e-04 4.87e-05 4.74e-05 1.63e-04 8.89e-05 8.81e-05

BN 11 7.96e-18 (15,25) 7.97e-18 7.96e-18 7.96e-18 (18,23) 7.95e-18 7.95e-18 7.95e-18
(105, 2, 105) 0.15 % 0.26 % 0.33 % 0.99 % 0.36 % 0.36 %

(46, 0) 4.11e-05 4.99e-05 5.77e-05 2.01e-04 7.78e-05 5.72e-05

BN 12 2.46e-04 (15,24) 2.46e-04 2.46e-04 2.46e-04 (18,23) 2.46e-04 2.46e-04 2.46e-04
(90, 2, 90) 0.34 % 0.20 % 0.15 % 0.20 % 0.14 % 0.12 %
(11, 0) 2.57e-04 1.38e-04 1.03e-04 1.55e-04 1.34e-04 1.23e-04

BN 13 4.78e-03 (16,24) 4.79e-03 4.78e-03 4.78e-03 (15,23) 4.79e-03 4.78e-03 4.79e-03
(125, 2, 125) 0.29 % 0.10 % 0.08 % 0.28 % 0.10 % 0.12 %

(9, 0) 4.16e-04 2.30e-04 1.74e-04 5.29e-04 2.40e-04 2.76e-04

BN 14 9.66e-10 (19,27) 9.63e-10 9.66e-10 9.66e-10 (20,26) 9.69e-10 9.68e-10 9.68e-10
(115, 2, 115) 0.56 % 0.24 % 0.30 % 0.54 % 0.45 % 0.44 %

(30, 0) 1.81e-04 9.04e-05 1.20e-04 2.67e-04 2.10e-04 1.91e-04

BN 15 1.99e-06 (19,25) 1.99e-06 1.99e-06 1.99e-06 (19,26) 1.98e-06 1.99e-06 1.99e-06
(120, 2, 120) 0.43 % 0.23 % 0.19 % 0.42 % 0.30 % 0.27 %

(19, 0) 2.53e-04 1.40e-04 1.20e-04 2.90e-04 1.66e-04 1.37e-04

BN 4 3.59e-18 (12,17) 3.59e-18 3.59e-18 3.59e-18 (13,18) 3.59e-18 3.59e-18 3.59e-18
(100, 2, 100) 0.23 % 0.08 % 0.07 % 0.08 % 0.08 % 0.08 %

(51, 0) 4.48e-05 1.85e-05 2.30e-05 2.53e-05 2.37e-05 2.26e-05

BN 5 1.84e-19 (13,19) 1.84e-19 1.84e-19 1.84e-19 (15,20) 1.83e-19 1.83e-19 1.83e-19
(125, 2, 125) 0.09 % 0.09 % 0.10 % 0.11 % 0.09 % 0.07 %

(55, 0) 2.55e-05 3.04e-05 2.90e-05 6.40e-05 7.66e-05 6.34e-05

BN 6 4.29e-26 (13,22) 4.29e-26 4.29e-26 4.29e-26 (13,18) 4.29e-26 4.29e-26 4.29e-26
(125, 2, 125) 0.26 % 0.12 % 0.13 % 0.29 % 0.20 % 0.13 %

(71, 0) 3.18e-05 1.54e-05 2.12e-05 3.77e-05 2.53e-05 1.94e-05

BN 7 9.63e-08 (14,21) 9.60e-08 9.60e-08 9.61e-08 (15,20) 9.62e-08 9.63e-08 9.63e-08
(95, 2, 95) 0.25 % 0.21 % 0.19 % 0.37 % 0.15 % 0.20 %
(30, 0) 1.85e-04 1.69e-04 1.48e-04 1.35e-04 7.04e-05 1.08e-04

BN 8 4.08e-03 (14,21) 4.07e-03 4.08e-03 4.08e-03 (14,21) 4.08e-03 4.08e-03 4.08e-03
(100, 2, 100) 0.28 % 0.27 % 0.26 % 0.23 % 0.09 % 0.09 %

(9, 0) 4.33e-04 3.62e-04 3.90e-04 3.01e-04 1.35e-04 1.26e-04

BN 9 2.72e-04 (14,22) 2.72e-04 2.71e-04 2.72e-04 (15,21) 2.72e-04 2.72e-04 2.72e-04
(105, 2, 105) 0.20 % 0.18 % 0.16 % 0.21 % 0.07 % 0.06 %

(13, 0) 2.58e-04 2.55e-04 2.14e-04 2.76e-04 1.50e-04 1.42e-04

Table 1: Results for the Alarm networks . Table showing the average of sample means (Ẑ), the relative
standard deviation of the sample means (RSD) and the average log-relative error (∆) over five runs of or-
tree-IJGP-IS-minfill, ao-tree-IJGP-IS-minfill, ao-graph-IJGP-IS-minfill, or-tree-IJGP-IS-hmetis, ao-tree-IJGP-
IS-hmetis and ao-graph-IJGP-IS-hmetis after 1 hour of CPU time.
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Figure 12: Log-relative error versus time plots for four randomly chosen Alarm networks.
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Figure 13: Log-relative error versus time plots for the two largest Grid instances with Deterministic ratio =
50%.
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Exact min-fill ordering hmetis ordering

or-tree ao-tree ao-graph or-tree ao-tree ao-graph

IJGP-IS- IJGP-IS- IJGP-IS- IJGP-IS- IJGP-IS- IJGP-IS-

minfill minfill minfill hmetis hmetis hmetis

Instance Z (w∗, h) Ẑ Ẑ Ẑ (w∗, h) Ẑ Ẑ Ẑ
(n, k, f) RSD RSD RSD RSD RSD RSD
(e, c) ∆ ∆ ∆ ∆ ∆ ∆

50-12-5 7.53e-07 (8,31) 7.50e-07 7.52e-07 7.53e-07 (14,21) 7.53e-07 7.53e-07 7.53e-07
(144, 2, 144) 0.51 % 0.13 % 0.20 % 0.08 % 0.05 % 0.05 %
(10, 62) 3.12e-04 9.44e-05 8.19e-05 3.12e-05 4.36e-05 4.32e-05

50-14-5 7.21e-05 (8,37) 7.22e-05 7.20e-05 7.21e-05 (9,18) 7.21e-05 7.21e-05 7.21e-05
(196, 2, 196) 0.25 % 0.16 % 0.12 % 0.06 % 0.03 % 0.03 %
(10, 93) 2.08e-04 1.59e-04 9.62e-05 4.90e-05 2.15e-05 2.15e-05

50-15-5 1.83e-04 (13,38) 1.77e-04 1.82e-04 1.81e-04 (17,29) 1.82e-04 1.82e-04 1.83e-04
(225, 2, 225) 5.31 % 0.97 % 0.33 % 0.97 % 0.39 % 0.47 %
(10, 111) 6.24e-03 9.71e-04 7.65e-04 8.70e-04 3.82e-04 4.27e-04

50-16-5 4.68e-06 (11,49) 4.71e-06 4.68e-06 4.69e-06 (20,30) 4.67e-06 4.67e-06 4.67e-06
(256, 2, 256) 5.88 % 1.78 % 0.28 % 1.31 % 0.56 % 0.35 %
(10, 125) 3.78e-03 1.13e-03 2.50e-04 9.07e-04 3.03e-04 2.13e-04

50-17-5 8.93e-05 (19,55) 7.85e-05 8.04e-05 8.93e-05 (19,36) 9.29e-05 8.85e-05 8.93e-05
(289, 2, 289) 10.00 % 4.43 % 2.14 % 2.63 % 3.39 % 0.68 %
(10, 138) 1.51e-02 1.14e-02 1.80e-03 4.43e-03 3.13e-03 6.30e-04

50-18-5 8.88e-04 (25,62) 9.99e-04 9.87e-04 8.89e-04 (24,41) 8.33e-04 8.40e-04 8.89e-04
(324, 2, 324) 25.40 % 50.90 % 1.00 % 34.20 % 3.90 % 1.78 %
(10, 153) 3.46e-02 4.11e-02 1.23e-03 3.76e-02 7.89e-03 2.25e-03

50-19-5 2.08e-04 (14,46) 2.09e-04 2.07e-04 2.08e-04 (17,31) 2.04e-04 2.08e-04 2.08e-04
(361, 2, 361) 3.00 % 2.58 % 1.06 % 1.11 % 0.44 % 0.32 %
(10, 172) 3.06e-03 2.44e-03 1.01e-03 2.08e-03 4.06e-04 2.93e-04

50-20-5 1.21e-03 (28,77) 1.86e-03 3.18e-03 1.21e-03 (27,46) 9.31e-04 1.14e-03 1.20e-03
(400, 2, 400) 63.80 % 101.00 % 4.59 % 61.70 % 30.70 % 2.07 %
(10, 190) 9.69e-02 1.06e-01 4.77e-03 8.47e-02 3.57e-02 3.06e-03

Table 2: Results for Grid instances with Deterministic ratio = 50%. Table showing the average of sample
means (Ẑ), the relative standard deviation of the sample means (RSD) and the average log-relative error (∆) over
five runs of or-tree-IJGP-IS-minfill, ao-tree-IJGP-IS-minfill, ao-graph-IJGP-IS-minfill, or-tree-IJGP-IS-hmetis,
ao-tree-IJGP-IS-hmetis and ao-graph-IJGP-IS-hmetis after 1 hour of CPU time.
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Figure 14: Log-relative error versus time plots for the two largest Grid instances with Deterministic ratio =
75%.
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Exact min-fill ordering hmetis ordering

or-tree ao-tree ao-graph or-tree ao-tree ao-graph

IJGP-IS- IJGP-IS- IJGP-IS- IJGP-IS- IJGP-IS- IJGP-IS-

minfill minfill minfill hmetis hmetis hmetis

Instance Z (w∗, h) Ẑ Ẑ Ẑ (w∗, h) Ẑ Ẑ Ẑ
(n, k, f) RSD RSD RSD RSD RSD RSD
(e, c) ∆ ∆ ∆ ∆ ∆ ∆

75-16-5 4.15e-03 (11,41) 4.14e-03 4.18e-03 4.16e-03 (17,24) 4.12e-03 4.15e-03 4.15e-03
(256, 2, 256) 0.88 % 0.78 % 0.51 % 0.30 % 0.23 % 0.18 %
(10, 193) 1.34e-03 1.36e-03 6.79e-04 1.33e-03 4.28e-04 3.53e-04

75-17-5 7.20e-04 (9,39) 7.17e-04 7.21e-04 7.21e-04 (17,33) 7.14e-04 7.16e-04 7.16e-04
(289, 2, 289) 2.78 % 1.58 % 0.74 % 1.11 % 0.30 % 0.42 %
(10, 217) 2.92e-03 1.54e-03 7.82e-04 1.44e-03 6.25e-04 7.43e-04

75-18-5 4.38e-05 (10,47) 4.39e-05 4.39e-05 4.38e-05 (15,27) 4.39e-05 4.38e-05 4.37e-05
(324, 2, 324) 1.19 % 0.55 % 0.27 % 2.34 % 1.71 % 1.48 %
(10, 245) 8.07e-04 4.17e-04 1.85e-04 2.01e-03 1.27e-03 1.19e-03

75-19-5 3.70e-04 (10,78) 3.68e-04 3.72e-04 3.70e-04 (18,31) 3.33e-04 3.27e-04 3.27e-04
(361, 2, 361) 5.19 % 4.33 % 0.90 % 1.80 % 0.69 % 0.75 %
(10, 266) 4.85e-03 4.11e-03 9.13e-04 1.35e-02 1.55e-02 1.54e-02

75-20-5 3.52e-05 (10,39) 3.52e-05 3.51e-05 3.52e-05 (13,26) 3.52e-05 3.53e-05 3.53e-05
(400, 2, 400) 1.79 % 0.61 % 0.73 % 1.05 % 0.54 % 0.46 %
(10, 299) 1.30e-03 4.61e-04 4.77e-04 7.85e-04 4.01e-04 3.54e-04

75-21-5 5.00e-03 (11,44) 5.00e-03 5.01e-03 5.03e-03 (16,33) 5.07e-03 5.04e-03 5.04e-03
(441, 2, 441) 2.42 % 0.72 % 0.87 % 3.10 % 1.22 % 1.18 %
(10, 331) 3.64e-03 1.17e-03 1.75e-03 5.45e-03 2.40e-03 1.75e-03

75-22-5 1.32e-03 (14,65) 1.23e-03 1.31e-03 1.32e-03 (15,31) 1.31e-03 1.32e-03 1.32e-03
(484, 2, 484) 5.47 % 5.28 % 2.13 % 2.28 % 0.91 % 1.11 %
(10, 361) 1.14e-02 6.27e-03 2.77e-03 2.58e-03 1.06e-03 1.35e-03

75-23-5 2.15e-05 (17,67) 2.12e-05 2.30e-05 2.14e-05 (26,42) 2.14e-05 2.10e-05 2.13e-05
(529, 2, 529) 26.80 % 13.00 % 1.16 % 5.60 % 1.03 % 1.67 %
(10, 406) 1.81e-02 9.93e-03 9.00e-04 4.16e-03 2.15e-03 1.24e-03

75-24-5 7.43e-06 (19,52) 6.90e-06 6.98e-06 7.21e-06 (20,39) 7.53e-06 7.46e-06 7.61e-06
(576, 2, 576) 17.20 % 5.58 % 1.84 % 3.68 % 1.19 % 1.39 %
(10, 442) 1.24e-02 6.07e-03 2.50e-03 2.29e-03 6.84e-04 2.05e-03

75-25-5 3.10e-05 (22,84) 2.35e-05 2.76e-05 3.13e-05 (25,45) 3.43e-05 2.95e-05 3.11e-05
(625, 2, 625) 29.90 % 19.70 % 3.07 % 36.40 % 5.63 % 2.66 %
(10, 455) 3.17e-02 1.94e-02 1.84e-03 2.73e-02 4.84e-03 2.17e-03

75-26-5 6.75e-04 (29,79) 3.48e-04 5.55e-04 6.50e-04 (29,53) 4.65e-04 4.94e-04 6.80e-04
(676, 2, 676) 112.00 % 152.00 % 8.29 % 47.10 % 16.60 % 7.12 %
(10, 506) 1.69e-01 1.89e-01 9.74e-03 6.75e-02 4.45e-02 6.51e-03

Table 3: Results for Grid instances with Deterministic ratio = 75%. Table showing the average of sample
means (Ẑ), the relative standard deviation of the sample means (RSD) and the average log-relative error (∆) over
five runs of or-tree-IJGP-IS-minfill, ao-tree-IJGP-IS-minfill, ao-graph-IJGP-IS-minfill, or-tree-IJGP-IS-hmetis,
ao-tree-IJGP-IS-hmetis and ao-graph-IJGP-IS-hmetis after 1 hour of CPU time.
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Exact min-fill ordering hmetis ordering

or-tree ao-tree ao-graph or-tree ao-tree ao-graph

IJGP-IS- IJGP-IS- IJGP-IS- IJGP-IS- IJGP-IS- IJGP-IS-

minfill minfill minfill hmetis hmetis hmetis

Instance Z (w∗, h) Ẑ Ẑ Ẑ (w∗, h) Ẑ Ẑ Ẑ
(n, k, f) RSD RSD RSD RSD RSD RSD
(e, c) ∆ ∆ ∆ ∆ ∆ ∆

90-24-5 3.90e-05 (6,35) 3.87e-05 3.89e-05 3.90e-05 (11,18) 3.90e-05 3.90e-05 3.90e-05
(576, 2, 576) 0.78 % 0.24 % 0.23 % 0.19 % 0.15 % 0.15 %
(10, 528) 8.94e-04 3.40e-04 2.16e-04 1.66e-04 1.13e-04 1.12e-04

90-25-5 2.17e-02 (7,25) 2.17e-02 2.17e-02 2.17e-02 (23,50) 2.17e-02 2.16e-02 2.16e-02
(625, 2, 625) 0.41 % 0.33 % 0.32 % 0.38 % 0.39 % 0.34 %
(10, 553) 9.76e-04 8.01e-04 7.55e-04 9.46e-04 9.28e-04 8.14e-04

90-26-5 2.67e-07 (4,16) 2.67e-07 2.67e-07 2.67e-07 (14,23) 2.66e-07 2.66e-07 2.66e-07
(676, 2, 676) 0.35 % 0.28 % 0.29 % 0.14 % 0.18 % 0.17 %
(10, 597) 2.58e-04 1.59e-04 1.73e-04 8.80e-05 8.50e-05 8.75e-05

90-30-5 3.94e-03 (8,45) 3.92e-03 3.92e-03 3.94e-03 (12,23) 3.94e-03 3.95e-03 3.95e-03
(900, 2, 900) 2.90 % 0.94 % 0.62 % 0.76 % 0.41 % 0.35 %
(10, 792) 3.98e-03 1.45e-03 8.14e-04 1.25e-03 6.23e-04 5.43e-04

90-34-5 1.31e-02 (11,59) 1.11e-02 1.21e-02 1.30e-02 (16,26) 1.32e-02 1.28e-02 1.28e-02
(1156, 2, 1156) 12.00 % 7.02 % 1.84 % 15.80 % 4.21 % 2.93 %
(10, 1048) 3.82e-02 1.98e-02 3.30e-03 2.87e-02 7.24e-03 6.81e-03

90-38-5 7.08e-04 (11,60) 6.06e-04 7.34e-04 7.28e-04 (17,32) 5.49e-04 5.76e-04 5.74e-04
(1444, 2, 1444) 29.30 % 3.98 % 2.77 % 6.31 % 2.10 % 1.47 %
(10, 1300) 3.59e-02 6.19e-03 4.14e-03 3.53e-02 2.84e-02 2.90e-02

90-42-5 4.70e-03 (14,65) 4.83e-03 4.36e-03 4.46e-03 (16,49) 3.80e-03 4.52e-03 4.50e-03
(1764, 2, 1764) 65.50 % 14.30 % 5.24 % 43.20 % 13.90 % 6.81 %
(10, 1593) 1.11e-01 2.29e-02 9.65e-03 7.62e-02 2.15e-02 1.21e-02

90-46-5 2.13e-02 (19,87) 1.80e-02 1.63e-02 2.18e-02 (27,51) 1.44e-02 6.21e-02 2.84e-02
(2116, 2, 2116) 111.00 % 24.40 % 13.50 % 121.00 % 160.00 % 43.60 %
(10, 1904) 2.34e-01 7.70e-02 2.17e-02 2.88e-01 1.89e-01 1.05e-01

90-50-5 1.20e-02 (16,79) 7.95e-03 1.09e-02 1.18e-02 (23,60) 9.78e-03 9.86e-03 1.04e-02
(2500, 2, 2500) 33.40 % 13.40 % 6.10 % 25.20 % 24.70 % 8.62 %
(10, 2264) 1.03e-01 2.81e-02 1.17e-02 6.18e-02 5.34e-02 3.32e-02

Table 4: Results for Grid instances with Deterministic ratio = 90%. Table showing the average of sample
means (Ẑ), the relative standard deviation of the sample means (RSD) and the average log-relative error (∆) over
five runs of or-tree-IJGP-IS-minfill, ao-tree-IJGP-IS-minfill, ao-graph-IJGP-IS-minfill, or-tree-IJGP-IS-hmetis,
ao-tree-IJGP-IS-hmetis and ao-graph-IJGP-IS-hmetis after 1 hour of CPU time.
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Figure 15: Log-relative error versus time plots for the two largest Grid instances with Deterministic ratio =
90%.

average domain size of 9 or less. The linkage networks are generated by converting biological
linkage analysis data into a Bayesian or a Markov network. Linkage analysis is a statistical
method for mapping genes onto a chromosome (Ott, 1999). This is very useful in practice for
identifying disease genes. The input is an ordered list of loci L1, . . . , Lk+1 with allele frequencies
at each locus and a pedigree with some individuals typed at some loci. The goal of linkage
analysis is to evaluate the likelihood of a candidate vector [θ1, . . . , θk] of recombination fractions
for the input pedigree and locus order. The component θi is the candidate recombination
fraction between the loci Li and Li+1.

The pedigree data can be represented as a Bayesian network with three types of random
variables: genetic loci variables which represent the genotypes of the individuals in the pedigree
(two genetic loci variables per individual per locus, one for the paternal allele and one for the
maternal allele), phenotype variables, and selector variables which are auxiliary variables used
to represent the gene flow in the pedigree. Figure 16 represents a fragment of a network that
describes parents-child interactions in a simple 2-loci analysis. The genetic loci variables of
individual i at locus j are denoted by Li,jp and Li,jm. Variables Xi,j, Si,jp and Si,jm denote
the phenotype variable, the paternal selector variable and the maternal selector variable of
individual i at locus j, respectively. The conditional probability tables that correspond to the
selector variables are parameterized by the recombination ratio θ. The remaining tables contain
only deterministic information. It can be shown that given the pedigree data, computing the
likelihood of the recombination fractions is equivalent to computing the probability of evidence
on the Bayesian network that model the problem (for more details consult (Fishelson and
Geiger, 2003)).

Table 5 shows the results for linkage networks used in the UAI 2006 evaluation (Bilmes and
Dechter, 2006). The AND/OR graph estimates are closer to the exact value of P (e) than the
AND/OR tree and the OR tree estimates except on the BN 69 instance on which the AND/OR
tree scheme is the best. On instances such as BN 69 and BN 74 on which the accuracy of all
schemes is roughly the same, the AND/OR graph estimates have the smallest RSD. Again, we
can see that the AND/OR tree estimates are slightly better than the OR tree estimates on all
instances.

In Figures 17, we show log-relative error vs time plots for four randomly chosen linkage
instances. The AND/OR graph scheme exhibits superior anytime performance compared with
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Figure 16: A fragment of a Bayesian network used in genetic linkage analysis.
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Figure 17: Log-relative error versus time plots for four sample linkage instances from the UAI 2006 evaluation.
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Exact min-fill ordering hmetis ordering

or-tree ao-tree ao-graph or-tree ao-tree ao-graph

IJGP-SS- IJGP-SS- IJGP-SS- IJGP-SS- IJGP-SS- IJGP-SS-

minfill minfill minfill hmetis hmetis hmetis

Instance Z (w∗, h) Ẑ Ẑ Ẑ (w∗, h) Ẑ Ẑ Ẑ
(n, k, f) RSD RSD RSD RSD RSD RSD
(e, c) ∆ ∆ ∆ ∆ ∆ ∆

BN 69 5.28e-54 (36,52) 2.58e-55 2.95e-55 2.90e-55 (27,55) 2.39e-55 2.83e-55 2.89e-55
(777, 7, 777) 4.45 % 10.50 % 2.55 % 27.80 % 21.10 % 6.45 %
(78, 402) 2.46e-02 2.36e-02 2.37e-02 2.55e-02 2.40e-02 2.37e-02

BN 70 2.00e-71 (35,110) 7.81e-77 1.20e-75 3.44e-75 (44,90) 7.37e-74 1.47e-73 6.55e-74
(2315, 5, 2315) 82.90 % 185.00 % 25.30 % 83.10 % 84.10 % 23.20 %
(159, 1290) 7.81e-02 6.78e-02 5.34e-02 3.58e-02 3.32e-02 3.53e-02

BN 71 5.12e-111 (35,80) 1.52e-116 1.51e-116 1.85e-113 (39,101) 1.39e-115 1.11e-115 6.63e-112
(1740, 6, 1740) 200.00 % 190.00 % 58.70 % 136.00 % 122.00 % 211.00 %
(202, 920) 6.00e-02 5.83e-02 2.26e-02 4.86e-02 4.75e-02 1.66e-02

BN 72 4.21e-150 (33,107) 1.01e-156 6.97e-156 2.53e-150 (35,88) 2.71e-153 4.13e-153 1.31e-150
(2155, 6, 2155) 147.00 % 192.00 % 67.90 % 83.70 % 80.60 % 64.80 %
(252, 1130) 5.01e-02 4.70e-02 2.20e-03 2.26e-02 2.13e-02 3.75e-03

BN 73 2.26e-113 (42,97) 2.63e-122 5.51e-122 3.29e-118 (39,93) 1.09e-123 2.80e-123 1.33e-121
(2140, 5, 2140) 221.00 % 223.00 % 201.00 % 161.00 % 201.00 % 207.00 %
(216, 1115) 9.48e-02 9.48e-02 4.98e-02 9.59e-02 9.52e-02 8.15e-02

BN 74 3.75e-45 (32,70) 2.46e-46 3.51e-46 2.09e-46 (34,67) 7.27e-48 4.90e-48 9.28e-47
(749, 6, 749) 101.00 % 152.00 % 70.20 % 218.00 % 148.00 % 77.70 %
(66, 374) 3.44e-02 3.30e-02 2.98e-02 9.14e-02 7.79e-02 3.95e-02

BN 75 5.88e-91 (32,116) 6.09e-97 7.43e-97 1.07e-95 (37,76) 9.79e-98 7.03e-98 1.47e-94
(1820, 5, 1820) 86.80 % 121.00 % 99.50 % 174.00 % 145.00 % 31.60 %
(155, 1000) 6.82e-02 6.81e-02 5.47e-02 8.08e-02 8.01e-02 4.01e-02

BN 76 4.93e-110 (37,139) 3.08e-123 4.15e-123 1.41e-118 (38,108) 8.42e-121 1.77e-120 9.00e-120
(2155, 7, 2155) 92.70 % 86.20 % 101.00 % 213.00 % 216.00 % 168.00 %
(169, 1130) 1.27e-01 1.23e-01 7.99e-02 1.07e-01 1.07e-01 9.55e-02

BN 77 6.88e-79 (22,114) 2.56e-86 4.45e-86 1.52e-84 (57,125) 3.36e-83 1.69e-83 3.76e-81
(1020, 9, 1020) 92.70 % 82.30 % 81.60 % 106.00 % 84.10 % 64.60 %
(135, 507) 9.82e-02 9.54e-02 7.39e-02 6.12e-02 6.14e-02 3.01e-02

Table 5: Results for Linkage instances from the UAI 2006 evaluation. Table showing the average of
sample means (Ẑ), the relative standard deviation of the sample means (RSD) and the average log-relative
error (∆) over five runs of or-tree-IJGP-SS-minfill, ao-tree-IJGP-SS-minfill, ao-graph-IJGP-SS-minfill, or-tree-
IJGP-SS-hmetis, ao-tree-IJGP-SS-hmetis and ao-graph-IJGP-SS-hmetis after 1 hour of CPU time.
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Figure 18: Log-relative error versus time plots for four sample linkage instances from the UAI 2008 evaluation.

the AND/OR tree scheme which in turn is superior to the OR tree scheme.
Next, we present results on the (pedigree) linkage instances used in the UAI 2008 evaluation

(Darwiche, Dechter, Choi, Gogate, and Otten, 2008). These are linkage Bayesian networks in
which evidence is instantiated yielding an un-normalized Bayesian network (namely a Markov
network). In this subsection, we report on results for the 10 out of the 20 instances which
were solved exactly in the UAI 2008 evaluation. The results on the remaining 10 instances are
presented in the next subsection. Table 6 shows the results. Figure 18 shows log relative error
versus time plots for four randomly chosen instances. Again, we see a similar picture, namely
the AND/OR graph scheme is superior to the other schemes.

6.3. Results on networks for which the exact weighted counts are not known

When exact results are not available evaluating the capability of any approximation algo-
rithm is problematic because the quality of the approximation (namely how close the approxi-
mation is to the exact) cannot be assessed. To allow some comparison on such hard instances
we evaluate the power of the various sampling schemes for yielding good lower-bound approx-
imations whose quality can be compared (the higher the better) even when the exact solution
is not available. Specifically, when the exact weighted counts are not known, we compare the
lower bounds obtained by combining the sample means output by various schemes with the
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Exact min-fill ordering hmetis ordering

or-tree ao-tree ao-graph or-tree ao-tree ao-graph

IJGP-SS- IJGP-SS- IJGP-SS- IJGP-SS- IJGP-SS- IJGP-SS-

minfill minfill minfill hmetis hmetis hmetis

Instance Z (w∗, h) Ẑ Ẑ Ẑ (w∗, h) Ẑ Ẑ Ẑ
(n, k, f) RSD RSD RSD RSD RSD RSD
(e, c) ∆ ∆ ∆ ∆ ∆ ∆

pedigree1 7.81e-15 (20,51) 7.70e-15 7.92e-15 7.83e-15 (19,41) 7.45e-15 7.69e-15 7.75e-15
(334, 2, 334) 3.27 % 5.04 % 0.98 % 9.12 % 1.66 % 1.88 %
(0, 121) 9.13e-04 1.09e-03 2.73e-04 2.39e-03 5.70e-04 5.23e-04

pedigree18 7.18e-79 (24,93) 1.94e-82 1.33e-82 4.04e-79 (31,70) 1.17e-81 1.53e-81 7.01e-79
(1184, 2, 1184) 119.00 % 125.00 % 68.20 % 123.00 % 119.00 % 30.10 %

(0, 386) 4.86e-02 5.08e-02 4.51e-03 4.26e-02 3.88e-02 1.42e-03

pedigree20 2.34e-30 (25,58) 9.09e-34 1.21e-32 2.18e-30 (27,50) 4.07e-33 9.11e-32 1.43e-30
(437, 2, 437) 114.00 % 206.00 % 23.40 % 218.00 % 196.00 % 38.40 %
(0, 147) 1.33e-01 1.23e-01 2.93e-03 1.65e-01 8.46e-02 8.07e-03

pedigree23 2.78e-39 (29,56) 2.64e-39 2.52e-39 2.90e-39 (24,43) 2.37e-39 2.72e-39 2.72e-39
(402, 2, 402) 16.80 % 10.40 % 5.55 % 15.10 % 2.92 % 3.06 %
(0, 130) 1.69e-03 1.14e-03 4.68e-04 2.05e-03 3.55e-04 3.44e-04

pedigree25 1.69e-116 (26,82) 4.85e-125 4.05e-122 1.45e-116 (47,86) 2.88e-121 1.98e-118 4.71e-117
(1289, 2, 1289) 222.00 % 173.00 % 21.70 % 175.00 % 154.00 % 32.10 %

(0, 396) 9.05e-02 5.55e-02 8.51e-04 4.81e-02 2.31e-02 4.97e-03

pedigree30 1.84e-84 (27,89) 3.20e-87 1.47e-87 6.97e-85 (28,66) 2.50e-85 8.01e-85 1.63e-84
(1289, 2, 1289) 224.00 % 223.00 % 24.30 % 218.00 % 122.00 % 69.70 %

(0, 413) 7.01e-02 6.92e-02 5.16e-03 2.45e-02 1.20e-02 3.03e-03

pedigree37 2.63e-117 (29,56) 2.50e-119 1.25e-117 1.18e-117 (47,56) 1.47e-119 1.26e-117 1.17e-117
(1032, 2, 1032) 100.00 % 17.90 % 5.68 % 201.00 % 96.40 % 17.40 %

(0, 333) 1.88e-02 2.83e-03 3.01e-03 2.53e-02 4.59e-03 3.05e-03

pedigree38 5.64e-55 (17,69) 3.61e-56 5.27e-56 1.45e-55 (53,69) 2.83e-62 1.56e-55 1.13e-55
(724, 2, 724) 212.00 % 18.80 % 17.20 % 85.20 % 138.00 % 84.20 %
(0, 263) 4.01e-02 1.91e-02 1.10e-02 1.41e-01 1.72e-02 1.47e-02

pedigree39 6.32e-103 (26,87) 7.83e-109 1.34e-106 5.57e-103 (31,62) 3.71e-104 3.10e-103 5.39e-103
(1272, 2, 1272) 216.00 % 134.00 % 8.02 % 82.80 % 115.00 % 11.00 %

(0, 354) 7.02e-02 4.35e-02 5.45e-04 1.32e-02 5.32e-03 6.93e-04

pedigree42 1.73e-31 (27,52) 1.62e-31 1.56e-31 1.74e-31 (27,50) 1.73e-31 1.61e-31 1.72e-31
(448, 2, 448) 8.79 % 3.45 % 3.26 % 10.60 % 6.30 % 5.95 %
(0, 156) 1.38e-03 1.44e-03 3.45e-04 1.27e-03 1.05e-03 6.34e-04

Table 6: Results for Linkage instances from the UAI 2008 evaluation. Table showing the average of
sample means (Ẑ), the relative standard deviation of the sample means (RSD) and the average log-relative
error (∆) over five runs of or-tree-IJGP-SS-minfill, ao-tree-IJGP-SS-minfill, ao-graph-IJGP-SS-minfill, or-tree-
IJGP-SS-hmetis, ao-tree-IJGP-SS-hmetis and ao-graph-IJGP-SS-hmetis after 1 hour of CPU time.
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Markov inequality based lower bounding scheme presented in (Gogate, Bidyuk, and Dechter,
2007). Such lower bounding schemes, see also (Gomes, Hoffmann, Sabharwal, and Selman,
2007), take as input: (a) a set of unbiased sample means and (b) a real number 0 < α < 1,
and output a lower bound on the weighted counts Z that is correct with probability greater
than α.

Formally, given a set of unbiased sample means, we can use the following theorem to get a
probabilistic lower bound on the weighted counts Z.

Theorem 8 ((Gomes et al., 2007; Gogate et al., 2007)). Let Ẑ1, Ẑ2, . . . , Ẑr be the unbiased
sample means over “r” independent runs of a solver. Let 0 < α < 1 be a constant and let

β =
(

1
1−α

) 1
r
. Let Zlb be given by:

Zlb =
1

β
×minri=1Ẑi (67)

Then Zlb is a lower bound on Z with probability greater than α.

In our experiments, we set α = 0.99, r = 5 (namely, we run each algorithm five times and

our lower bounds are correct with probability greater than 0.99) and β =
(

1
1−α

) 1
r
= 2.512.

Note that when we evaluate the algorithms in terms of their lower bounds, the higher the lower
bound the better the corresponding scheme is.

6.3.1. Results for the Linkage instances

Table 7 shows the results for the 10 linkage instances used in the UAI 2008 evaluation for
which the exact weighted counts are not known. Note that in each cell, we report the lower
bound Zlb, the average sample mean Ẑ 9 and the RSD over the 5 runs. We can clearly see that
on all the instances the AND/OR graph scheme yields substantially higher lower bounds than
the AND/OR tree scheme which in turn yields higher lower bounds than the OR tree scheme.
The RSD of the AND/OR graph scheme is also smaller than other schemes.

6.3.2. Results for random coding networks

The random coding networks are a class of linear block codes (Kask and Dechter, 2001).
They can be represented as four-layer belief networks. The second and third layer correspond
to input information bits and parity check bits respectively. Each parity check bit represents a
XOR function of input bits. Input and parity check nodes are binary while the output nodes are
real-valued. Each layer has the same number of nodes because a code rate of R = K/N = 1/2
is used, where K is the number of input bits and N is the number of transmitted bits.

Given a number of input bits (K = 128), number of parents (P = 4) for each XOR bit
and channel noise variance (σ = 0.40), a coding network structure is generated by randomly
picking parents for each XOR node. Then, an input signal is simulated by a assuming a uniform
random distribution of information bits, the corresponding values of the parity check bits are
computed, and an assignment to the output nodes is generated by assuming adding a Gaussian
noise to each information and parity check bit.

9Note that the average sample mean is shown for the sake of convenience of the reader. It is not relevant
for making comparisons between the performance of various schemes when the exact weighted counts are not
known.
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Exact min-fill ordering hmetis ordering

or-tree ao-tree ao-graph or-tree ao-tree ao-graph

IJGP-SS- IJGP-SS- IJGP-SS- IJGP-SS- IJGP-SS- IJGP-SS-

minfill minfill minfill hmetis hmetis hmetis

Instance Z (w∗, h) Ẑ Ẑ Ẑ (w∗, h) Ẑ Ẑ Ẑ
(n, k, f) RSD RSD RSD RSD RSD RSD
(e, c) Zlb Zlb Zlb Zlb Zlb Zlb

pedigree13 - (36,115) 2.40e-44 6.77e-44 7.46e-33 (48,72) 1.85e-35 1.06e-35 9.60e-32
(1077, 2, 1077) 136.00 % 138.00 % 67.60 % 63.30 % 76.40 % 159.00 %

(0, 343) 2.43e-46 8.89e-47 4.70e-34 3.09e-37 3.97e-37 2.37e-33

pedigree19 - (23,121) 1.21e-66 6.82e-67 7.66e-62 (35,63) 8.13e-66 1.33e-65 5.28e-62
(793, 2, 793) 213.00 % 206.00 % 125.00 % 94.80 % 143.00 % 47.00 %
(0, 286) 9.15e-70 1.17e-69 8.14e-63 7.85e-68 7.17e-68 6.81e-63

pedigree31 - (38,124) 4.64e-81 2.89e-78 5.58e-73 (43,77) 5.02e-75 5.21e-75 2.68e-73
(1183, 2, 1183) 127.00 % 196.00 % 87.90 % 209.00 % 192.00 % 67.80 %

(0, 389) 4.66e-82 1.99e-80 4.67e-74 5.35e-77 4.04e-77 9.13e-75

pedigree34 - (37,109) 4.27e-76 7.76e-73 1.61e-67 (39,69) 3.81e-70 1.42e-68 8.30e-66
(1160, 2, 1160) 88.60 % 143.00 % 177.00 % 218.00 % 114.00 % 200.00 %

(0, 348) 1.91e-77 8.45e-74 2.22e-69 2.00e-73 3.51e-71 3.48e-68

pedigree40 - (29,122) 1.38e-97 1.40e-97 3.16e-92 (36,86) 2.18e-97 3.52e-97 3.52e-92
(1030, 2, 1030) 219.00 % 218.00 % 168.00 % 99.30 % 147.00 % 99.20 %

(0, 351) 7.71e-102 1.30e-101 2.08e-94 3.04e-98 1.43e-98 7.12e-95

pedigree41 - (34,92) 8.05e-85 4.35e-83 4.03e-78 (39,74) 6.76e-85 7.22e-84 8.35e-78
(1062, 2, 1062) 215.00 % 139.00 % 135.00 % 139.00 % 95.10 % 89.10 %

(0, 346) 8.51e-89 4.44e-86 6.49e-80 1.12e-86 2.60e-85 8.65e-79

pedigree44 - (30,97) 2.98e-65 1.48e-64 3.25e-64 (31,59) 1.50e-64 4.20e-64 1.30e-64
(811, 2, 811) 146.00 % 212.00 % 36.00 % 131.00 % 139.00 % 28.10 %
(0, 287) 1.54e-66 2.20e-66 5.93e-65 1.00e-65 1.70e-65 3.32e-65

pedigree51 - (42,92) 3.80e-78 4.19e-77 9.47e-75 (46,87) 4.24e-79 4.85e-77 6.62e-76
(1152, 2, 1152) 193.00 % 218.00 % 125.00 % 109.00 % 222.00 % 87.60 %

(0, 383) 1.14e-81 2.53e-80 3.10e-76 4.62e-81 3.72e-80 4.91e-77

pedigree7 - (36,96) 1.35e-72 1.30e-71 2.70e-66 (39,74) 2.81e-70 2.33e-67 3.32e-66
(1068, 2, 1068) 171.00 % 78.10 % 120.00 % 100.00 % 101.00 % 18.50 %

(0, 315) 5.02e-75 1.71e-72 7.92e-68 8.41e-72 4.08e-70 9.06e-67

pedigree9 - (28,108) 5.01e-83 2.20e-83 2.55e-80 (36,68) 5.14e-84 4.03e-83 2.05e-80
(1118, 2, 1118) 216.00 % 197.00 % 68.40 % 178.00 % 216.00 % 110.00 %

(0, 386) 5.74e-87 7.72e-87 3.04e-81 2.88e-86 4.48e-86 1.90e-81

Table 7: Results for Linkage instances from the UAI 2008 evaluation. Table showing the average of
sample means (Ẑ), the relative standard deviation of the sample means (RSD) and the lower bound (Ẑlb) on
the weighted counts (with 99% confidence) over five runs of or-tree-IJGP-SS-minfill, ao-tree-IJGP-SS-minfill,
ao-graph-IJGP-SS-minfill, or-tree-IJGP-SS-hmetis, ao-tree-IJGP-SS-hmetis and ao-graph-IJGP-SS-hmetis after
1 hour of CPU time.
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Exact min-fill ordering hmetis ordering

or-tree ao-tree ao-graph or-tree ao-tree ao-graph

IJGP-SS- IJGP-SS- IJGP-SS- IJGP-SS- IJGP-SS- IJGP-SS-

minfill minfill minfill hmetis hmetis hmetis

Instance Z (w∗, h) Ẑ Ẑ Ẑ (w∗, h) Ẑ Ẑ Ẑ
(n, k, f) RSD RSD RSD RSD RSD RSD
(e, c) Zlb Zlb Zlb Zlb Zlb Zlb

BN 126 - (55,65) 2.07e-56 2.05e-56 2.05e-56 (54,66) 2.05e-56 2.04e-56 2.04e-56
(512, 2, 512) 0.64 % 0.76 % 0.65 % 0.57 % 0.39 % 0.19 %
(256, 384) 8.15e-57 8.08e-57 8.09e-57 8.08e-57 8.10e-57 8.11e-57

BN 127 - (54,71) 3.04e-58 3.06e-58 3.07e-58 (57,66) 3.06e-58 3.07e-58 3.06e-58
(512, 2, 512) 7.65 % 0.88 % 0.57 % 4.06 % 1.76 % 1.23 %
(256, 384) 1.12e-58 1.20e-58 1.21e-58 1.16e-58 1.20e-58 1.20e-58

BN 128 - (49,68) 4.86e-48 4.87e-48 4.87e-48 (52,61) 4.87e-48 4.87e-48 4.87e-48
(512, 2, 512) 0.24 % 0.17 % 0.17 % 0.15 % 0.08 % 0.08 %
(256, 384) 1.93e-48 1.93e-48 1.93e-48 1.94e-48 1.94e-48 1.94e-48

BN 129 - (53,66) 4.18e-62 4.19e-62 4.19e-62 (52,66) 5.66e-62 4.19e-62 4.22e-62
(512, 2, 512) 1.16 % 0.73 % 0.79 % 31.10 % 9.08 % 4.33 %
(256, 384) 1.64e-62 1.65e-62 1.65e-62 1.52e-62 1.56e-62 1.57e-62

BN 130 - (53,63) 3.78e-58 3.79e-58 3.79e-58 (52,63) 3.79e-58 3.79e-58 3.80e-58
(512, 2, 512) 0.87 % 0.44 % 0.54 % 0.70 % 0.47 % 0.39 %
(256, 384) 1.49e-58 1.50e-58 1.50e-58 1.50e-58 1.50e-58 1.50e-58

BN 131 - (53,66) 2.30e-54 2.29e-54 2.29e-54 (51,63) 2.30e-54 2.30e-54 2.31e-54
(512, 2, 512) 0.54 % 0.57 % 0.32 % 0.98 % 0.93 % 0.82 %
(256, 384) 9.08e-55 9.05e-55 9.08e-55 9.01e-55 9.08e-55 9.11e-55

BN 132 - (51,64) 6.58e-65 6.90e-65 6.95e-65 (51,66) 1.00e-64 2.21e-64 7.20e-65
(512, 2, 512) 19.40 % 4.84 % 4.42 % 79.70 % 161.00 % 25.10 %
(256, 384) 2.00e-65 2.60e-65 2.60e-65 1.83e-65 2.04e-65 2.12e-65

BN 133 - (55,67) 2.35e-54 2.37e-54 2.37e-54 (55,65) 2.35e-54 2.36e-54 2.36e-54
(512, 2, 512) 0.95 % 2.44 % 2.32 % 1.06 % 0.88 % 1.17 %
(256, 384) 9.26e-55 9.28e-55 9.29e-55 9.24e-55 9.34e-55 9.31e-55

BN 134 - (55,64) 6.10e-57 6.12e-57 6.12e-57 (53,62) 6.11e-57 6.11e-57 6.11e-57
(512, 2, 512) 0.20 % 0.28 % 0.32 % 0.53 % 0.26 % 0.26 %
(256, 384) 2.43e-57 2.43e-57 2.43e-57 2.42e-57 2.42e-57 2.42e-57

Table 8: Results for random coding networks from the UAI 2006 evaluation . Table showing the average
of sample means (Ẑ), the relative standard deviation of the sample means (RSD) and the lower bound (Ẑlb) on
the weighted counts (with 99% confidence) over five runs of or-tree-IJGP-SS-minfill, ao-tree-IJGP-SS-minfill,
ao-graph-IJGP-SS-minfill, or-tree-IJGP-SS-hmetis, ao-tree-IJGP-SS-hmetis and ao-graph-IJGP-SS-hmetis after
1 hour of CPU time.
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Exact min-fill ordering hmetis ordering

or-tree ao-tree ao-graph or-tree ao-tree ao-graph

IJGP-SS- IJGP-SS- IJGP-SS- IJGP-SS- IJGP-SS- IJGP-SS-

minfill minfill minfill hmetis hmetis hmetis

Instance Z (w∗, h) Ẑ Ẑ Ẑ (w∗, h) Ẑ Ẑ Ẑ
(n, k, f) RSD RSD RSD RSD RSD RSD
(e, c) Zlb Zlb Zlb Zlb Zlb Zlb

4-coloring1 - (71,87) 1.16e+37 1.11e+37 2.05e+37 (67,90) 1.44e+37 1.83e+37 2.23e+37
(400, 2, 2026) 21.60 % 17.30 % 24.50 % 26.30 % 36.40 % 24.10 %
(0, 2026) 3.66e+36 3.72e+36 5.77e+36 3.85e+36 4.51e+36 6.51e+36

4-coloring2 - (95,113) 1.41e+30 1.17e+30 2.92e+30 (84,105) 1.29e+30 3.63e+30 1.55e+30
(400, 2, 2205) 58.40 % 35.80 % 57.70 % 57.50 % 153.00 % 18.00 %
(0, 2205) 3.95e+29 3.50e+29 4.93e+29 2.67e+29 1.78e+29 4.53e+29

4-coloring3 - (144,171) 3.13e+72 3.43e+72 1.96e+73 (129,160) 4.30e+72 4.91e+72 1.12e+73
(800, 2, 4065) 37.20 % 30.80 % 76.00 % 60.10 % 69.00 % 57.00 %
(0, 4065) 5.28e+71 9.00e+71 3.64e+72 2.52e+71 2.89e+71 2.64e+72

4-coloring4 - (196,225) 7.97e+63 8.22e+63 5.84e+64 (165,196) 2.08e+63 2.46e+63 2.86e+64
(800, 2, 4419) 106.00 % 127.00 % 31.80 % 56.50 % 50.60 % 76.30 %
(0, 4419) 6.45e+62 7.76e+62 1.77e+64 2.06e+62 4.45e+62 3.75e+63

4-coloring5 - (260,301) 4.42e+98 4.64e+99 1.60e+101 (232,272) 5.97e+97 5.10e+97 4.04e+99
(1200, 2, 6455) 79.60 % 203.00 % 196.00 % 120.00 % 57.80 % 100.00 %

(0, 6455) 6.60e+97 6.65e+97 1.85e+99 5.37e+96 4.26e+96 1.63e+98

4-coloring6 - (290,321) 1.66e+90 1.07e+90 8.56e+91 (264,307) 2.57e+89 2.59e+89 1.53e+91
(1200, 2, 6641) 126.00 % 108.00 % 127.00 % 109.00 % 80.60 % 139.00 %

(0, 6641) 1.11e+88 2.22e+88 6.52e+90 2.82e+88 3.60e+88 1.18e+90

Table 9: Results for 4-coloring instances generated using Joseph Culberson’s flat graph coloring

generator. Table showing the average of sample means (Ẑ), the relative standard deviation of the sample means

(RSD) and the lower bound (Ẑlb) on the weighted counts (with 99% confidence) over five runs of or-tree-IJGP-
SS-minfill, ao-tree-IJGP-SS-minfill, ao-graph-IJGP-SS-minfill, or-tree-IJGP-SS-hmetis, ao-tree-IJGP-SS-hmetis
and ao-graph-IJGP-SS-hmetis after 1 hour of CPU time.

Table 8 shows the results. Unlike other benchmarks, we can see that the AND/OR graph
scheme is only slightly better than the AND/OR tree and the OR tree schemes. The improve-
ment in accuracy is small because the IJGP-based proposal distribution is quite close to the
exact posterior distribution as indicated by a relatively smaller RSD (< 2% on most instances).
Consequently, the OR sample tree mean is already quite accurate. Our results are consistent
with previous studies (Yedidia et al., 2004; Murphy et al., 1999; Dechter et al., 2002) which
demonstrated that (generalized) belief propagation yields very good approximation to the true
posterior on random coding networks.

6.3.3. Results for graph coloring problems

Our final domain is that of 4-coloring problems generated using Joseph Culberson’s flat
graph coloring generator 10. Here, we are interested in counting the number of solutions of the
graph coloring instance. Table 9 shows the results. We observe that AND/OR tree and graph
sampling schemes yield higher lower bounds than the OR tree sampling schemes.

6.4. Summary of Experiments

In summary, our experiments show that the AND/OR sample graph mean is substantially
superior in terms of accuracy and precision to the AND/OR sample tree mean which in turn

10Available at http://www.cs.ualberta.ca/∼joe/Coloring/
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is only slightly superior to the OR sample tree mean. In particular, as the problem size gets
larger and instances get harder for exact inference, the AND/OR graph scheme is several orders
of magnitude superior. As expected, when the proposal distribution is close to the posterior
distribution (see, for example, the results on the Alarm networks), there is no difference in the
performance between the OR and AND/OR estimates as well as between AND/OR tree and
AND/OR graph estimates. We experimented with two orderings, one based on minfill and the
second based on hmetis, for constructing the pseudo trees. It is known and we also observe
here that minfill is superior in generating small treewidth pseudo trees while hmetis is superior
in generating small height pseudo trees. We found that the two orderings are not comparable
in terms of accuracy of estimation because they yield different proposal distributions whose
relative accuracy compared with the posterior distribution is not well understood at this point.
We leave this issue for future research.

7. Discussion and Related work

7.1. Relation to other graph-based variance reduction schemes

The work presented here is related to the work by (Hernandez and Moral, 1995; Kjærulff,
1995; Dawid, Kjaerulff, and Lauritzen, 1994) who perform sampling based inference on a
junction tree and organize samples in such a way that more virtual samples are generated.
The main idea in these papers is to perform message passing on a junction tree by substituting
messages which are too hard to compute exactly by their sampling-based approximations.
Kjærulff (1995) and Dawid et al. (1994) use Gibbs sampling while Hernandez and Moral
(1995) use importance sampling to approximate the messages. Another related work is that
of (Bouckaert, Castillo, and Gutiérrez, 1996) who use search trees to implement stratified
sampling efficiently. Similar to some recent works on Rao-Blackwellised sampling such as
(Bidyuk and Dechter, 2007; Paskin, 2003; Gogate and Dechter, 2005), variance reduction is
achieved in these junction tree based sampling schemes because of some exact computations;
as dictated by the Rao-Blackwell theorem. AND/OR estimation is based on a fundamentally
different principle; it achieves variance reduction by using conditional independence to derive
more virtual samples. In fact, as we show in (Gogate, 2009; Gogate and Dechter, 2010),
variance reduction due to Rao-Blackwellisation is orthogonal to the one achieved by AND/OR
based estimation and therefore the two can be combined to achieve further variance reduction.

7.2. Hoeffding’s U -statistics

AND/OR-estimates are also closely related to cross match estimates (Kong, Augustine,
Liu, Jun S., and Wong, Wing Hung, 1997) which are based on Hoeffding’s U -statistics. To
derive cross-match estimates, the original function over a set of variables is divided into several
marginal functions which are defined only on a subset of variables. Then, each marginal
function is sampled independently and the cross-match sample mean is derived by considering
all possible combinations of the samples. For example, if there are k marginal functions and
m samples are taken over each function, the cross match sample mean is computed over mk

combinations. It was shown in (Kong, Augustine et al., 1997) that the cross match sample
mean has lower variance than the conventional sample mean; similar to our work. The only
caveat in cross match estimates is that it requires exponentially more time O(mk) to compute
the estimates as compared to O(m) for conventional estimates; making their direct application
infeasible for large values of k. So the authors suggest resampling from the possible O(mk)
samples with the hope that the estimates based on the resampled samples would have smaller
variance than the conventional one. Unlike, cross match estimates, the most complex AND/OR
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estimates are only w∗ times more expensive time wise, where w∗ is the treewidth, as compared
to the conventional estimates, and therefore do not require the extra resampling step.

7.3. Problem with large sample sizes

Given that the space complexity of computing the AND/OR sample graph mean and
all marginal probabilities is O(nN), the reader may think that as more samples are drawn
our algorithms would run out of memory. One can, however, perform multi-stage (adaptive)
sampling to circumvent this problem. Here, at each stage we stop storing samples when a pre-
specified memory limit is reached. Then the AND/OR sample graph mean is computed from
the stored samples and the samples can be discarded, repeating the process until the stipulated
time bound expires or enough samples are drawn. The final sample mean is then simply the
average of sample means computed at each stage. It is obvious that the final sample mean will
have smaller variance than the OR sample tree mean but will be less accurate compared with
the AND/OR sample graph mean.

7.4. Impact of Determinism and Context specific independence

AND/OR sampling is based on a simple viewpoint: “make the most out of the generated
samples”. This is especially useful when the graphical model has structural features such as
determinism and context specific independence (CSI) (Boutilier, Friedman, Goldszmidt, and
Koller, 1996). It is easy to show that the problem of generating a sample that has non-zero
weight (namely a useful sample) from a graphical model that has deterministic dependencies is
equivalent to the problem of finding a model of a satisfiability formula (Cooper, 1990). Because
the latter problem is NP-complete, very few useful samples may be generated. Many schemes
have been proposed in literature for generating samples from such hard graphical models that
have both probabilistic and deterministic relationships (Yuan and Druzdzel, 2003, 2006; Moral
and Salmerón, 2005; Gogate and Dechter, 2007a; Yu and Engelen, 2010). Out of these, as
demonstrated in our prior work (Gogate and Dechter, 2011), SampleSearch is currently the
best performing alternative. In this paper, we showed that on many deterministic networks
from the linkage analysis domain, AND/OR sample graph mean (computed from the samples
generated by SampleSearch) is substantially more accurate than the OR sample tree mean.
This shows the power of using AND/OR estimation in hard, deterministic graphical models.
Another advantage of using AND/OR sample graph mean in such networks is that it can take
advantage of many implicit conditional independencies that are not elucidated by the primal
graph (Chavira and Darwiche, 2008; Gogate and Domingos, 2010). These implicit dependencies
can further increase the virtual sample size resulting in an improved accuracy.

8. Conclusion

The primary contribution of this paper is in viewing importance sampling based estimation
in the context of AND/OR search spaces for graphical models (Dechter and Mateescu, 2007).
Specifically, we viewed sampling as a partial exploration of the full AND/OR search space
(called AND/OR sample tree) and defined a process for computing an unbiased sample mean
over an AND/OR sample tree. We proved that the conventional sample mean (running average)
is equal to computing the AND/OR sample mean on an OR sample tree and is therefore
impervious to problem decomposition. Arranging the same samples over an AND/OR sample
tree which is sensitive to problem decomposition yields more virtual samples and therefore a
better sample mean that has smaller variance. Since the AND/OR sample tree mean has the
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same time complexity and only slightly more space overhead than the OR sample tree mean;
it should always be preferred.

We extended the AND/OR sample tree mean to AND/OR sample graph mean that further
utilizes problem decomposition by merging identical subtrees. The AND/OR sample graph
yields more virtual samples than the AND/OR sample tree and therefore reduces variance
even further. However, computing the AND/OR sample graph mean requires a factor of
O(w∗) more time and O(N) times more space which introduces various time and space versus
accuracy trade-offs.

We focused our empirical investigation on the task of computing the probability of evidence
in a Bayesian network and the partition function in a Markov network. The main aim of our
evaluation was to compare the impact of exploiting varying levels of graph decompositions via
(a) OR tree (b) AND/OR tree, and (c) AND/OR graph on the accuracy of sample mean.
Our results demonstrated conclusively that in many cases the scheme that exploits the most
decomposition, the AND/OR sample graph mean is consistently superior. Our results also
show that AND/OR sample tree mean is slightly better in terms of accuracy than the OR
sample tree mean.
Future work: The AND/OR sampling framework leaves plenty of avenues for future work.
For instance, because AND/OR sampling and Rao-Blackwellisation are orthogonal in nature,
a combination of the two needs to be explored further. Some initial results on this combi-
nation are presented in the first authors’ thesis (Gogate, 2009) and in a recent conference
paper (Gogate and Dechter, 2010). A second line of future work is based on the observa-
tion that the AND/OR sampling framework only utilizes conditional independencies partially,
namely, only those uncovered by the primal graph of the graphical model. It is known that the
primal graph captures only a subset of the conditional independencies. New unknown inde-
pendencies could be elucidated while sampling through the AND/OR space and via AND/OR
sampling theory we know that sampling error can only decrease if we utilize them. How to
guide sampling to uncover unknown independencies, however, is still an open problem. A third
line of future research is to develop AND/OR estimators for other sampling techniques such as
Gibbs sampling (Geman and Geman, 1984) and stratified sampling (Bouckaert et al., 1996). A
fourth line of future work is developing memory efficient algorithms for estimating all posterior
marginal probabilities. As discussed in Section 3.3, unlike the conventional OR tree estimator
which requires O(n) space, the AND/OR estimator proposed in this paper is memory intensive
(complexity O(nN)) and requires storing the full AND/OR sample tree in memory.
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Appendix A. Algorithm Interleaving Sampling and Estimation

In this section, we present a recursive algorithm that interleaves sampling with AND/OR-
based estimation (see Algorithm 3). The algorithm takes as input a graphical model G, a
pseudo tree T , a proposal distribution Q(X) =

∏n
i=1Qi(Xi|contextT (Xi)), a variable Xi to be

sampled, an integer N that denotes the number of times Xi should be sampled and the current
assignment x. The algorithm returns the value of the OR node corresponding to Xi in an
AND/OR sample tree defined relative to G, x, T and Q. First, given the current assignment
x, the algorithm generates N samples of Xi from Qi(Xi|xcontextT (Xi)). Then, in the for-loop, it
computes the numerator of the value of the OR node (see Definition 15) corresponding to Xi by
iterating over all sampled values xi,j of Xi and computing their values v(xi,j). The algorithm
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Algorithm 3: Interleaved AND/OR Tree Importance Sampling (IAOTS)

Input: A graphical mode G = 〈X,D,F〉 a pseudo tree T (X,E), a proposal distribution defined
relative to T : Q(X) =

∏n

i=1Qi(Xi|contextT (Xi)), an integer N > 0, a variable Xi, an
assignment x.

Output: The value of the OR node corresponding to Xi in an AND/OR sample tree defined
relative to G, x, T and Q.

v(Xi) = 01

Generate N samples of Xi from Qi(Xi|xcontextT (Xi))2

Let {xi,1, . . . , xi,d} be the set of the values of Xi that are sampled Nj > 0 times3

for j = 1 to d do4

if Xi is a leaf node of T then5

v(xi,j) = 16

else7

x′ = (x, xi,j)8

Let {C1, . . . , Cp} be the set of child nodes of Xi in T9

v(xi,j) =
∏p

k=1 IAOTS(G, T,Q,Nj, Ck,x
′)10

v(Xi) = v(Xi) +
BT,Xi

(xi,j ,x)

Qi(xi,j |xcontextT (Xi)
) ×Nj × v(xi,j)11

return v(Xi)/N12

computes v(xi,j) as follows. If Xi is the leaf node of T then by definition (see Definition 15),
v(xi,j) equals 1. If Xi is not a leaf node then by definition, v(xi,j) equals the product of the
values of its child OR nodes, where there is a child OR node corresponding to each child node
Ck of Xi in T . The value of each OR node corresponding to Ck is, in turn, computed by
calling the algorithm recursively. Finally, the algorithm returns the value of the OR node
corresponding to Xi. It is easy to show that:

Theorem 9. Given a graphical model G = 〈X,D,F〉, a pseudo tree T , a proposal distribution
Q(X) =

∏n
i=1Qi(Xi|contextT (Xi)) and an integer N , Algorithm IAOTS(G, T,Q,N,X1, ∅)

correctly computes the AND/OR sample tree mean where X1 is the root node of T .

Appendix B. Proofs

Proof of Theorem 1. We prove by induction that the value of any OR node n is an unbiased
estimate of the conditional expectation of the sub-problem rooted at n (conditioned on the
assignment from the root to n).

Consider the expression for weighted counts:

Z =
∑

x∈X

m∏

i=1

Fi(x) (B.1)

Let T (X,E) be a pseudo tree, pathT (Xi) be the set of variables along the path from root up
to node Xi (note that pathT (Xi) does not include Xi) in T and BT,Xi

be the bucket function
(see Definition 13) of Xi w.r.t. T . For any full assignment x, we have:

n∏

i=1

BT,Xi
(xi,xpathT (Xi)) =

m∏

i=1

Fi(x) (B.2)

Recall that xpathT (Xi) is the projection of the assignment x onto the subset pathT (Xi) of X.
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Substituting Equation (B.2) into Equation (B.1), we get:

Z =
∑

x∈X

n∏

i=1

BT,Xi
(xi,xpathT (Xi)) (B.3)

Let Q(x) =
∏n

i=1Qi(xi|yi) be the proposal distribution whereYi ⊆ contextT (Xi). Because
contextT (Xi) ⊆ pathT (Xi), we can express Q as:

Q(x) =

n∏

i=1

Qi(xi|xYi
) =

n∏

i=1

Qi(xi|xpathT (Xi)) (B.4)

We can express Z in Equation (B.3) in terms of Q as:

Z =
∑

x∈X

n∏

i=1

BT,Xi
(xpathT (Xi))

Qi(xi|xpathT (Xi))
Qi(xi|xpathT (Xi)) (B.5)

Using the notation xi = (x1, . . . , xi) and xi,pathT (Xj) as the projection of xi on pathT (Xj)
and migrating the functions to the left of summation variables which it does not reference, we
can rewrite Equation (B.5) as:

Z =
∑

x1∈X1

BT,X1(x1)

Q1(x1)
Q1(x1)× . . .×

∑

xi∈Xi

BT,Xi
(xi,xi−1,pathT (Xi))

Qi(xi|xi−1,pathT (Xi))
Qi(xi|xi−1,pathT (Xi))× . . .×

∑

xn∈Xn

BT,Xi
(xi,xn−1,pathT (Xn))

Qn(xn|xn−1,pathT (Xn))
Qn(xn|xn−1,pathT (Xn)) (B.6)

Using the definition of expectation and conditional expectation, we can rewrite Equation
(B.6) as:

Z = Ex

[
BT,X1(x1)

Q1(x1)
× . . .× Ex

[
BT,Xi

(xi,xi−1,pathT (Xi))

Qi(xi|xi−1,pathT (Xi))
× . . .×

Ex

[
BT,Xn

(xn,xn−1,pathT (Xn))

Qn(xn|xn−1,pathT (Xn))

∣∣∣∣xn−1,pathT (Xn)

]
. . .

∣∣∣∣xi−1,pathT (Xi)

]
. . .

]
(B.7)

Let chi(Xi) be the set of children of Xi in the pseudo tree T and let us denote the
component of conditional expectation at a node Xi, along an assignment xi−1,pathT (Xi) by
VXi

(Xi|xi−1,pathT (Xi)). VXi
(Xi|xi−1,pathT (Xi)) can be recursively defined as follows:

VXi
(Xi|xi−1,pathT (Xi)) = Ex

[
BT,Xi

(xi,xi−1,pathT (Xi))

Qi(xi|xi−1,pathT (Xi))
×

∏

Xj∈chi(Xi)

VXj
(Xj |xi,xi−1,pathT (Xi))

∣∣∣∣∣∣
xi−1,pathT (Xi)



 (B.8)

It is easy to see that Z equals VX1(X1), namely,

Z = Ex


BT,X1(X1)

Q1(X1)

∏

Xj∈chi(X1)

VXj
(Xj |x1)


 = VX1(X1) (B.9)
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We will now derive an unbiased estimate of VXi
(Xi| xi−1,pathT (Xi)). Assume that for all

Xj ∈ chi(Xi) in T , we have an unbiased estimate of VXj
(Xj |xi,xi−1,pathT (Xi)) denoted by

v̂Xj
(Xj | xi,xi−1,pathT (Xi)). Assume that given xi−1,pathT (Xi), we have generated N samples

(x1i , . . . , x
N
i ) from Qi(Xi|xi−1,pathT (Xi)). By replacing the (conditional) expectation by its

sample average, we get the following unbiased estimate of VXi
(Xi| xi−1,pathT (Xi)).

v̂Xi
(Xi|xi−1,pathT (Xi)) =

1

N

N∑

a=1

BT,Xi
(xai ,xi−1,pathT (Xi))

Qi(xai |xi−1,pathT (Xi))

∏

Xj∈chi(Xi)

v̂Xj
(Xj |x

a
i ,xi−1,pathT (Xi)) (B.10)

Assume that the domain of Xi is {xi,1, . . . , xi,k}. Also, assume that each value xi,j is
sampled Ni,j times. By collecting together all the samples in which the value xi,j is generated

and substituting N =
∑k

a=1Ni,a, we can rewrite Equation (B.10) as:

v̂Xi
(Xi|xi−1,pathT (Xi)) =

∑k

a=1Ni,a

BT,Xi
(xi,a,xi−1,pathT (Xi)

)

Qi(xi,a|xi−1,pathT (Xi)
)

∏
Xj∈chi(Xi)

v̂Xj
(Xj |xi,a,xi−1,pathT (Xi))

∑k

a=1Ni,a

(B.11)

Next, we show that given an AND/OR sample tree ψT,S and the same samples S from
which v̂Xi

(Xi|xi−1,pathT (Xi)) is derived, the value of an OR node n in ψT,S labeled by Xi such

that A(πn) = xi−1,pathT (Xi) is equal to v̂Xi
(Xi|xi−1,pathT (Xi)). Let us denote the k

th child AND
node by mk. By definition the frequencies and weights of the arcs from n to ma are given by:

#(n,ma) = Ni,a

w(n,ma) =
BT,Xi

(xi,a, A(πn))

Qi(xi,a|A(πn))
=
BT,Xi

(xi,a,xi−1,pathT (Xi))

Qi(xi,a|xi−1,pathT (Xi))

By definition, the value of each AND node ma is given by:

v(ma) =
∏

n′∈chi(ma)

v(n′)

Similarly by definition, the value of the OR node n is given by:

v(n) =

∑k
a=1 #(n,ma)×w(n,ma)× v(ma)∑k

a=1 #(n,ma)

=

∑k
a=1 #(n,ma)×w(n,ma)×

∏
n′∈chi(ma)

v(n′)
∑k

a=1 #(n,ma)
(B.12)

Substituting the expressions for #(n,ma) and w(n,ma) in Equation (B.12), we get:

v(n) =

∑k
a=1Ni,a

BT,Xi
(xi,a,xi−1,pathT (Xi)

)

Qi(xi,a,xi−1,pathT (Xi)
)

∏
n′∈chi(ma)

v(n′)
∑k

a=1Ni,a

(B.13)

Assuming v(n′) = v̂Xj
(Xj |xi,a,xi−1,pathT (Xi)), we can see that the right hand sides of

Equations (B.11) and (B.13) are equal yielding v(n) = v̂Xi
(Xi|xi−1,pathT (Xi)). Namely, we

have proved that if the value of a child OR node n′ of a child AND node of an OR node n is
equal to an unbiased estimate of the conditional expectation of the sub-problem rooted at n′,
then the value of the OR node n is also an unbiased estimate of the conditional expectation
of the sub-problem rooted at n.

Since this result is true for any OR node, the value of the root OR node is equal to an
unbiased estimate of Z = VX1(X1), which is what we wanted to prove.
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Proof of Theorem 2. We prove this theorem by induction over the nodes of the pseudo tree
T (X,E).

Base Case: Here we prove that the statement of the theorem is true for n = 1. Assume
that T has only one variable X1. In this case, the chain pseudo tree T ′ obtained by any
topological linearization of T coincides with T . Given samples S = (x11, . . . , x

N
1 ) generated

from a proposal distribution Q1(X1) and bucket function BT ′,X1(X1) (see Definition 13), the
conventional importance sampling estimate is:

Ẑ =
1

N

N∑

i=1

BT ′,X1(x
i
1)

Q1(xi1)
(B.14)

Let {x1,1, . . . , x1,k} be the domain of X1 and N1,j be the number of times the value x1,j appears
in S, j ∈ {1, . . . , k}. Then, by collecting together all the samples in which the value x1,j is

generated and substituting N =
∑k

a=1N1,a, we can rewrite Equation (B.14) as:

Ẑ =

∑k
a=1N1,a

BT ′ ,X1
(x1,a)

Q1(x1,a)∑k
a=1N1,a

(B.15)

Since T ′ has just one node, the OR sample tree based on T has just one OR node denoted
by n. Let m1, . . . ,mk be the child AND nodes of n. By definition, the value of all leaf AND
nodes is 1, while the weight and frequency of the arcs (n,ma) are given by:

#(n,ma) = N1,a

w(n,ma) =
BT ′,X1(x1,a)

Q1(x1,a)

Also, by definition, the value of the OR node n is given by:

v(n) =

∑k
a=1 #(n,ma)w(n,ma)∑k

a=1 #(n,ma)

=

∑k
a=1N1,a

BT ′,X1
(x1,a)

Q1(x1,a)∑k
a=1N1,a

(B.16)

From, Equations (B.15) and (B.16), we have Ẑ = v(n) which proves the base case. Next,
we prove the induction case.

Induction case: In this case, we assume that the statement of the theorem is true for n
variables {X1, . . . ,Xn} and then prove that it is also true for n+ 1 variables {X1, . . . ,Xn+1}.

Consider a pseudo tree T over n+ 1 variables with Xn+1 as the root. Let T ′ be the chain
pseudo tree corresponding to the topological linearization of T . By definition, both T and T ′

have the same root node Xn+1.
Given samples S = ((x1

n, x
1
n+1) , . . . , (x

N
n , x

N
n+1)) generated from the proposal distribution

Q(Xn,Xn+1), the conventional importance sampling estimate is given by:

Ẑ =
1

N

N∑

i=1

∏n+1
j=1 BT ′,Xj

(xi
n, x

i
n+1)∏n+1

j=1 Qj(xi
n, x

i
n+1)

(B.17)

Let Xn+1 have k values in its domain given by {xn+1,1, . . . , xn+1,k} and Nn+1,j be the number
of times the value xn+1,j appears in S. Let S(xn+1,j) ⊆ S be the subset of all samples which
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mention the value xn+1,j. Then, by collecting together all the samples in which the value

xn+1,j is generated and substituting N =
∑k

a=1Nn+1,a, we can rewrite Equation (B.17) as:

Ẑ =

∑k
a=1Nn+1,a

BT ′,Xn+1
(xn+1,a)

Qn+1(xn+1,a)

[
1

Nn+1,a

∑
xk∈S(xn+1,j)

∏n
j=1 BT ′,Xj

(xk
n,xn+1,a)

∏n
j=1 Qj(xk

n|xn+1,a)

]

∑k
a=1Nn+1,a

(B.18)

Without loss of generality, let X1 be the child of Xn+1 in T ′. From the induction case
assumption, the quantity in the brackets in Equation (B.18) is equal to the value of the OR
node labeled by X1 given xn+1,a. Let the OR node be denoted by ra. We can rewrite Equation
(B.18) as:

Ẑ =

∑k
a=1Nn+1,a

BT ′,Xn+1
(xn+1,a)

Qn+1(xn+1,a)
v(ra)

∑k
a=1Nn+1,a

(B.19)

Consider the root OR node denoted by r of the OR sample tree which is labeled by Xn+1. r
has k child AND nodes m1, . . . ,mk which in turn have one child OR node each. By definition,
the value of an AND node is the product of the values of all its child nodes. Since each AND
node ma a = 1, . . . , k has only one child OR node denoted by ra in an OR sample tree, the
value of ma is equal to the value of ra. Namely,

v(ma) = v(ra)

By definition, the weights of the arcs between r and ma for a = 1, . . . , k are given by:

#(r,ma) = Nn+1,a

w(r,ma) =
BT ′,Xn+1(xn+1,a)

Qn+1(xn+1,a)

By definition, the value of the root OR node r denoted by v(r) is given by:

v(r) =

∑k
a=1 #(r,ma)× w(r,ma)× v(ma)∑k

a=1 #(r,ma)
=

∑k
a=1Nn+1,a

BT ′ ,Xn+1
(xn+1,a)

Qn+1(xn+1,a)
v(ra)

∑k
a=1Nn+1,a

(B.20)

From Equations (B.19) and (B.20), we have Ẑ = v(r), which proves the induction case.
Therefore, from the principle of induction, the proof follows.

Proof of Theorem 3. Because only N full samples are generated, the number of nodes of the
AND/OR sample tree is bounded by O(nN). Because each node of the AND/OR sample tree
is processed only once during the value computation phase of Algorithm 2 (with each node
processed in constant time) the overall time complexity is O(nN). We could perform a depth
first search traversal of the AND/OR sample tree (i.e. build it on the fly). In this case, we
only have to store the current search path, whose maximum size is bounded by the depth h of
the pseudo tree. Therefore, the space complexity is O(h).

Proof of Theorem 6. Given a pseudo tree T and a set of samples S, in an AND/OR sample
graph the value of an OR node, denoted by nAOG and labeled by Xi is computed using a subset
of the samples that have the same assignment to the contextT (Xi) of Xi while in an AND/OR
sample tree, the value of the corresponding OR node nAOT is computed using a subset of the
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samples that have the same assignment to all variables along the path from root to Xi, denoted
by pathT (Xi). Because, contextT (Xi) ⊆ pathT (Xi), the value of nAOG is based on a larger
(or equal) number of samples compared with the value of nAOT . Because of its larger virtual
sample size, the variance of the value of nAOG is less than (or equal to) the variance of the
value of nAOT .

Proof of Theorem 7. Let Xj be the child node of Xi in T . Given N samples and maximum
context size w∗, the number of edges emanating from AND nodes corresponding to Xi to
OR nodes labeled by Xj in the AND/OR sample graph is bounded by O(Nw∗). Since each
such edge is visited just once in the value computation phase, the overall time complexity is
O(nNw∗). To store N samples it takes O(nN) space and therefore the space complexity is
O(nN).
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