
On Combining Graph-based Variance Reduction schemes

Vibhav Gogate Rina Dechter
Computer science & Engineering
University of Washington, Seattle

Seattle, WA 98195, USA.
vgogate@cs.washington.edu

School of Information and Computer Sciences
University of California, Irvine

Irvine, CA 92697, USA.
dechter@ics.uci.edu

Abstract

In this paper, we consider two variance reduction
schemes that exploit the structure of the primal
graph of the graphical model:Rao-Blackwellised
w-cutset samplingand AND/OR sampling. We
show that the two schemes are orthogonal and
can be combined to further reduce the variance.
Our combination yields a new family of estima-
tors which trade time and space with variance.
We demonstrate experimentally that the new es-
timators are superior, often yielding an order of
magnitude improvement over previous schemes
on several benchmarks.

1 Introduction

Importance sampling (Rubinstein, 1981) is a general
scheme which can be used to approximate various
weighted counting tasks defined over graphical mod-
els such as computing the probability of evidence in a
Bayesian network, computing the partition function of a
Markov network and counting the number of solutions of
a constraint network. The main idea is to transform the
weighted counts or summation into an expectation using
a special distribution called the proposal distribution, gen-
erate samples from the proposal and estimate the weighted
counts by a weighted average (also called the sample mean)
over the generated samples. It is well known that the qual-
ity of estimation is highly dependent on the variance of the
sample mean and therefore significant research has focused
on reducing its variance (Liu, 2001).

In this paper, we consider two graph-based variance re-
duction schemes in the context of graphical models: the
Rao-Blackwellised w-cutset sampling scheme(Bidyuk and
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Dechter, 2007) and theAND/OR sampling scheme(Gogate
and Dechter, 2008). Based on the Rao-Blackwell theo-
rem (Casella and Robert, 1996) and w-cutset condition-
ing (Dechter, 1990), the w-cutset sampling scheme com-
bines sampling with exact inference. The idea is to sample
only a subsetC of variables, called thew-cutset and exactly
marginalize out the remaining variables conditioned on
each sampled assignment. The AND/OR sampling scheme,
on the other hand, reduces variance by exploiting condi-
tional independencies uncovered by the AND/OR tree or
graph (Dechter and Mateescu, 2007) to derive a different
sample mean from the same set of input samples. Previ-
ously in (Gogate and Dechter, 2008), we considered two al-
ternative AND/OR sample means: one based on AND/OR
tree which has the same time and space complexity as the
conventional OR tree approach but has smaller variance
and the second based on AND/OR graph which is more
expensive to compute but has the smallest variance.

The main idea in this paper is to combine these two
schemes by performing AND/OR tree or graph sampling
over the w-cutset variables and exact inference over the
remaining variables conditioned on each sampled assign-
ment. We show that this yields new sample means, which
have smaller variance than the sample means of AND/OR
sampling and w-cutset sampling. However, they are more
expensive to compute both time and space wise and thus
there is a trade-off.

We conducted extensive experimental evaluation of all the
new schemes proposed on several benchmark probabilis-
tic and deterministic networks. Our results show that as
the networks get larger and harder, exploiting more de-
composition improves the accuracy of the estimates as a
function of time. In particular, the scheme that exploits
the most decomposition, the AND/OR w-cutset graph sam-
pling scheme is superior to all the other schemes.

The rest of the paper is organized as follows. In Section 2,
we present notation and background. Section 3 describes
AND/OR w-cutset tree sampling and Section 4 describes
AND/OR w-cutset graph sampling. Complexity versus
variance trade-offs are discussed in Section 5. Experiments
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are described in Section 6 and Section 7 concludes.

2 Background

We start by presenting notation and preliminaries on graph-
ical models. Then we present an overview of importance
sampling,w-cutset sampling and AND/OR sampling.

We denote variables by upper case letters (e.g.X,Y, . . .) and
values of variables by lower case letters (e.g.x,y, . . .). Sets
of variables are denoted by bold upper case letters, (e.g.
X = {X1, . . . ,Xn}) while sets of values are denoted by bold
lower case letters (e.g.x = {x1, . . . ,xn}). We denote byDi

the set of possible values ofXi (also called as the domain of
Xi). ∑x∈X denotes the sum over the possible values of vari-
ables inX, namely,∑x1∈X1 ∑x2∈X2

. . .∑xn∈Xn. The expected
valueEQ[X] of a random variableX with respect to a distri-
butionQ is defined as:EQ[X] = ∑x∈X xQ(x). The variance
VQ[X] of X is defined as:VQ[X] = ∑x∈X(x−EQ[X])2.

Definition 1 (Graphical models). (Pearl, 1988) A graph-
ical model is a three-tupleM = 〈X,D,F〉 where X =
{X1, . . . ,Xn} is a set of random variables,D= {D1, . . . ,Dn}
is a set of domains whereDi is the domain of Xi andF =
{F1, , . . . ,Fm} is a set of non-negative real valued functions
where each Fi is defined over a subset of variablesSi ⊂ X,
called its scope. A graphical model represents a joint dis-
tribution overX given by: PM (x) = 1

Z ∏m
i=1Fi(x) where Z

is a normalization constant given by: Z= ∑x∈X ∏m
i=1Fi(x).

We will often refer to Z as weighted counts. Theprimal
graph of a graphical model is an undirected graph which
has variables as its vertices and an edge between any two
variables which are included in the scope of a function.

We will focus on the query of computing the weighted
countsZ. It is easy to show that the weighted counts spe-
cialize to the probability of evidence of a Bayesian net-
work, the partition function of a Markov network and the
number of solutions of a constraint network.

2.1 Importance Sampling

Importance sampling (Rubinstein, 1981; Liu, 2001) is
a general Monte Carlo simulation technique which can
be used for estimating various statistics of a given tar-
get distribution such asPM . Since it is often hard to
sample fromPM , the main idea is to generate samples
from another easy-to-simulate distributionQ called the
proposal (or importance) distribution and then estimate
various statistics overPM by a weighted average over
the samples. Following (Cheng and Druzdzel, 2000),
we assume that the proposal distribution is specified in
a factored product form (namely a Bayesian network):
Q(X) = ∏n

i=1Qi(Xi |X1, . . . ,Xi−1) = ∏n
i=1Qi(Xi |Y i) along

an orderingo = (X1, . . . ,Xn) of variables, whereY i ⊆
{X1, . . . ,Xi−1}. The cardinality of the setY i is assumed
to be bounded by a constant.

Next, we show how the weighted counts can be estimated
using importance sampling. Given a (importance) proposal
distributionQ(X) satisfying∏m

i=1Fi(x) > 0 ⇒ Q(x) > 0,
we can rewriteZ as follows:

Z = ∑
x∈X

∏m
i=1Fi(x)
Q(x)

Q(x) = EQ

[
∏m

i=1Fi(x)
Q(x)

]
(1)

Given independent and identically distributed (i.i.d.) sam-
ples(x1, . . . ,xN) generated fromQ, we can estimateZ by:

Ẑ =
1
N

N

∑
k=1

∏m
i=1Fi(xk)

Q(xk)
=

1
N

N

∑
k=1

w(xk) (2)

wherew(xk) =
∏m

i=1Fi(xk)

Q(xk)
is the weight of samplexk. It

is easy to see thatEQ[Ẑ] = Z, namely it is unbiased. The
variance of the weights is given by:

VQ[w(x)] = ∑
x∈X

(w(x)−Z)2Q(x) (3)

Note thatẐ is itself a random variable and its variance is
given by:

VQ[Ẑ] =
1
N ∑

x∈X
(w(x)−Z)2Q(x) =

VQ[w(x)]
N

(4)

Because the mean-squared error of an unbiased estimate
such aŝZ is equal to its variance, we would like the vari-
ance ofẐ to be as small as possible. Based on Equation
4, we can reduce the variance by decreasing the variance
of the weights or by increasing the number of samples or
both. Next, we present two schemes that use graph decom-
positions to either reduceVQ[w(x)] or increaseN.

2.2 Rao-Blackwellised w-cutset Importance Sampling

The w-cutset sampling framework is based on a graph
concept called w-cutset and the Rao-Blackwell theo-
rem (Casella and Robert, 1996).

Theorem 1 (Rao-Blackwell Theorem). Let F(Y,Z) be
a function and Q(Y,Z) be a proposal distribution then,

VQ

[
F(y,z)
Q(y,z)

]
≥ VQ

[
F(y)
Q(y)

]
where Q(y) = ∑z Q(y,z) and

F(y) = ∑z F(y,z).

Definition 2 (w-cutset). Given a graph G(X,E) and a con-
stant w, a w-cutset is a sub-set of variablesC ⊆ X such
that after removingC, the treewidth (see for e.g., (Dechter,
1999) for a definition of treewidth) of the remaining graph
is bounded by w. A cycle cutset is a1-cutset of G.X is a
0-cutset.

In w-cutset sampling, we sample only the variables in the
w-cutsetC and perform exact computations (e.g. using
bucket elimination (Dechter, 1999)) on the remaining vari-
ablesR = X \C given a sampleC = c. Because the time
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Figure 1:(a) A 3-coloring problem, (b) Pseudo-tree (c) OR tree (d) AND/OR tree (e) AND/OR graph

and space complexity of bucket elimination is exponential
in the treewidth of the graph (Dechter, 1999), it is obvious
that given aw-cutset, bucket elimination can be carried out
efficiently in polynomial time (exponential in the constant
w). Formally, given a proposal distributionQ(C) defined
over thew-cutset, and a set of samples(c1, . . . ,cN) gener-
ated fromQ, thew-cutset estimate ofZ is given by:

Ẑwc =
1
N

N

∑
i=1

∑r∈R ∏m
j=1Fj(r ,C = ci)

Q(ci)
(5)

From the Rao-Blackwell theorem, it follows that the vari-
ance ofẐwc is less than̂Z. w-cutset sampling generalizes
importance sampling in the following sense. Whenw= 0,
Ẑwc equals the conventional sample meanẐ.

2.3 AND/OR Importance Sampling

AND/OR importance sampling (for more information, see
(Gogate and Dechter, 2008)) is a generalization of impor-
tance sampling to AND/OR search spaces (Dechter and
Mateescu, 2007). The main idea is to arrange the generated
samples over an AND/OR tree or graph and then utilize
conditional independencies to derive a larger set of virtual
samples. The structure of the AND/OR tree is guided by a
backbone pseudo-tree ofQ defined below.

Definition 3 (pseudo-tree). Given an undirected graph
G = (V,E′), a directed rooted tree T= (V,E) defined on
all its nodes is called pseudo tree if any arc of G which is
not included inE is a back-arc, namely it connects a node
to an ancestor in T .

AND/OR search Tree Given a graphical modelM =
〈X,D,F〉, its primal graphG and a backbone pseudo tree
T of G, the associated AND/OR search treeST , has alter-
nating levels of AND and OR nodes. The OR nodes are la-
beledXi and correspond to the variables. The AND nodes
are labeled byxi and correspond to the value assignments in
the domains of the variables. The structure of the AND/OR
search tree is based onT. The root of the AND/OR search
tree is an OR node labeled by the root ofT. The children
of an OR nodeXi are AND nodes labeled with assignment
xi , which is consistent along the path from the root. The
children of an AND nodexi are OR nodes labeled with the
children of variableXi in T. When the pseudo tree is a
chain, the AND/OR search tree coincides with the regular
OR search tree.

AND/OR search Tree Given a set of samplesS =
{x1, . . . ,xN}, the AND/OR sample tree (similarly, the OR
sample tree) is a subset of the full AND/OR search tree (OR
search tree) from which all nodes not inS are removed.
The set of unique samples of an AND/OR sample tree is
equal to the set of its solution sub-trees, which is defined
recursively as follows. Asolution sub-treecontains the root
node. For each OR node, it contains one of its children and
for each AND node, it contains all of its children.

Example 1. Figure 1(a) shows a primal graph of a 3-
coloring problem over4 variables. A possible pseudo
tree is given in Figure 1(b). The full OR and AND/OR
search trees are shown in Figures 1(c) and 1(d) respec-
tively. Let us assume that we have generated the four sam-
ples: (1) (C=0,B=1,D=1,A=0), (2) (C=0,B=2,D=2,A=1),
(3) (C=1,B=0,D=0,A=2 ) and (4) (C=1, B=2, D=2,A=0)
from a proposal distribution that is defined along the topo-
logical order of the pseudo tree. The bold edges and nodes
in Figures 1 (c) and (d) show these four samples arranged
on an OR tree and an AND/OR tree respectively. One
can verify that the4 samples (solution sub-trees) over the
OR sample tree correspond to8 virtual samples over the
AND/OR sample tree. The AND/OR sample tree includes
for example the assignment (C=0,B=2,D=1,A=0) which
does not appear in the OR sample tree.

Because of this larger virtual sample size, we can prove
that the variance of the sample mean computed over the
AND/OR sample tree is smaller than or equal to the vari-
ance of the sample mean over the conventional OR sam-
ple tree (Gogate and Dechter, 2008). Note that the sample
mean computed over an OR sample tree equalsẐ and thus
AND/OR sampling generalizes importance sampling.

3 AND/OR w-cutset Tree sampling

We now describe one of our main contributions in which
we combinew-cutset sampling with AND/OR sampling.
We illustrate the main idea in the following example.

Example 2. Consider the primal graph in Figure 2
(a). The minimal cycle cutset contains the three nodes
{A,B,C}. Given a proposal distribution Q(A,B,C) = Q(A)
Q(B|A) Q(C|A), in cycle cutset sampling, the variables A,
B and C are sampled, as if they form a chain pseudo-tree
shown in Figure 2(c) before executing bucket elimination
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Figure 2: (a) an example primal graph (b) Pseudo tree (c) Start
pseudo-tree of OR w-cutset tree sampling and (d) Start pseudo-
tree of AND/OR w-cutset tree sampling.

on the remaining network defined by{D,E,F,G} given
(A= a,B= b,C= c) to compute the sample weight.

However, after A is sampled, we see that the remaining
sub-problem is split into two components and therefore we
can organize the cycle cutset into two portions as in the
(start) pseudo-tree of Figure 2(d) (Mateescu and Dechter,
2005). We can now arrange the generated samples on an
AND/OR sample tree restricted over the cutset variables
{A,B,C} and separately compute the weighted counts (us-
ing bucket elimination) over the networks defined by the
two components{D,E} given (A = a,B = b) and {F,G}
given(A= a,C= c) respectively.

We now formalize the intuition in Example 2, defining a
new sample mean called AND/ORw-cutset sample tree
mean. We start with some required definitions.

Definition 4 (AND/OR w-cutset, start and full pseudo
trees). (Mateescu and Dechter, 2005) Given a pseudo tree
T(V,E), a directed rooted tree T′(V’,E’) whereV’ ⊆ V
and E′ ⊆ E is a start pseudo tree of T if it has the same
root as T and is a connected sub-graph of T . T is called the
full pseudo treeof its start pseudo tree T′. An AND/OR w-
cutset is a pair〈T ′,K〉 whereK is a w-cutset and T′(K,E′)
is a start pseudo tree defined overK.

Example 3. The pseudo tree given in Figure 2(d) is a start
pseudo tree of the (full) pseudo tree given in Figure 2(b).
The AND/OR w-cutset is the set of variables{A,B,C} to-
gether with the start pseudo tree of Figure 2(d).

Definition 5 ((Arc-labeled) AND/OR w-cutset sample
tree). Given a graphical modelM = 〈 X, D, F 〉, an
AND/OR w-cutset〈T ′,K〉, a full pseudo tree T of T′, a pro-
posal distribution along the pseudo tree Q(X), and a se-
quence of samplesS over T′, an AND/OR w-cutset sample
tree SAOWT is a subset of full AND/OR search tree overK
w.r.t. T′ from which all assignments not inS are removed.

A path from the root of SAOWT to a node n is denoted by
πn. If n is an OR node labeled with Xi or an AND node
labeled with xi , the path will be denoted byπn(Xi) or πn(xi)
respectively. The assignment sequence along the pathπn,
denoted by A(πn) is the set of assignments associated with
the sequence of AND nodes alongπn. Namely, A(πn(Xi)) =
{x1, . . . ,xi−1} and A(πn(xi)) = {x1, . . . ,xi}.
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Figure 3: Figure demonstrating computation of arc-labels and
node values over an AND/OR w-cutset sample tree.

Each arc from an OR node n labeled by Xi to an AND node
m labeled by xi is labeled with a pair〈w(n,m),#(n,m)〉.
w(n,m) is called the weight of the arc and is given by

w(n,m) =
BT,Xi (xi ,A(πn))

Qi(xi |A(πn))
where BT,Xi (xi ,A(πn)) is the prod-

uct of all functions inF that mention Xi but do not mention
any variables that are descendants of Xi in T . #(n,m) is
the frequency of the arc. It equals the number of times the
partial assignment A(πm) occurs inS.

Note that an OR w-cutset sample tree is an AND/OR w-
cutset sample tree based on a chain start pseudo tree.

Definition 6 (AND/OR w-cutset sample tree mean).
Given an AND/OR w-cutset sample tree SAOWT, the value
of a node n, denoted by v(n) is defined recursively as fol-
lows. The value of leaf AND node l is given by:

v(l) = ∑
u∈l pathT (Xi)

∏
Xj∈l pathT (Xi)

BT,Xj (u,A(πl )) (6)

where lpathT(Xi) is the set of variables along the path from
Xi to the leaf l in the full pseudo tree T . If n is an internal
AND node then: v(n) = ∏n′∈chi(n) v(n′) and if n is an inter-
nal OR node then,

v(n) =
∑n′∈chi(n)#(n,n′)×w(n,n′)× v(n′)

∑n′∈chi(n)#(n,n′)

where chi(n) is the set of child nodes of node n in SAOWT.
The AND/OR w-cutset sample tree mean is the value of the
root node of SAOWT.

Example 4. Figure 3 shows an AND/OR w-cutset sample
tree corresponding to the four samples shown in Figure 3
w.r.t. the start pseudo tree shown in Figure 2(d). We assume
that all the functions in our graphical model are pairwise.
Namely, we have functions corresponding to each edge:
H(A,B), H(A,E),. . . , H(F,G). The arc-labels and values of
a few arcs and nodes are shown in Figure 3. The AND/OR
w-cutset sample mean is the value of the node A.

The AND/OR w-cutset sample tree mean generalizes the
sample means of importance sampling, w-cutset impor-
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tance sampling and AND/OR tree importance sampling in
the following sense.

Proposition 1. The sample mean obtained via conven-
tional importance sampling is equal to the OR 0-cutset
sample tree mean. The w-cutset sample mean is equal to
the OR w-cutset sample tree mean. The AND/OR sample
tree mean defined in (Gogate and Dechter, 2008) is equal
to the AND/OR 0-cutset sample tree mean.

Using simple algebraic manipulations, we can prove that:

Theorem 2. The AND/OR w-cutset sample tree mean is an
unbiased estimate of the weighted counts Z.

Using the Rao-Blackwell theorem and AND/OR theory, we
can prove the following two theorems showing the superi-
ority of our hybrid scheme over its individual components.

Theorem 3. Given w≥ 0, the variance of AND/OR w-
cutset sample tree mean is less than or equal to the vari-
ance of OR w-cutset sample tree mean.

Theorem 4. Given w> 0, the variance of AND/OR w-
cutset sample tree mean is less than or equal to the vari-
ance of AND/OR 0-cutset sample tree mean.

4 AND/OR graph w-cutset sampling

Next, we define a more powerful sample mean by mov-
ing from AND/OR trees to AND/OR graphs (Dechter and
Mateescu, 2007). An AND/OR-tree may contain nodes
that root identical sub-trees. When such unifiable nodes
are merged, the tree becomes a graph and its size becomes
smaller. Some unifiable nodes can be identified using con-
texts defined below.

Definition 7 (Context). Given a pseudo-tree T(V,E), the
context of a node Xi ∈ V is the set of ancestors of Xi, that
are connected to Xi and descendants of Xi .

Example 5. For illustration, the bold nodes in Figure 1(e)
show8 virtual samples (solution sub-trees) of the AND/OR
sample tree of Figure 1(d) arranged on an AND/OR sam-
ple graph by merging context unifiable nodes (based on the
conditional independence assertion that A is independent
of C given B). One can verify that the8 virtual samples on
the AND/OR sample tree correspond to12 virtual samples
(solution sub-trees) on the AND/OR sample graph. The
AND/OR sample graph includes for example the sample
(C = 0,B = 2,D = 1,A = 0) which is not present in the
AND/OR sample tree. Due to an increase in the virtual
sample size, the variance of AND/OR sample graph mean
is smaller than (or equal to ) that of AND/OR sample tree
mean (Gogate and Dechter, 2008).

The main idea in AND/ORw-cutset graph estimation is to
store all the generated samples on an AND/ORw-cutset
graph instead of an AND/ORw-cutset tree and then com-
pute a new sample mean over the AND/ORw-cutset sample
graph, which will have smaller variance. Formally,

OR-tree-IS

OR-w-cutset-

tree-IS

AND/OR-

tree-IS

AND/OR-w-

cutset-tree-IS

AND/OR-

graph-IS

AND/OR-w-

cutset-graph-IS

Figure 4: Variance Hierarchy

Definition 8 (AND/OR w-cutset sample graph and mean).
Given an AND/OR w-cutset sample tree SAOWT, the
AND/OR w-cutset sample graph SAOWG is obtained from
SAOWT by merging all nodes based on context. The
AND/OR w-cutset sample graph mean is the AND/OR sam-
ple mean computed over SAOWG.

Theorem 5. Given w≥ 0, the variance of the AND/OR
w-cutset sample graph mean is less than or equal to the
variance of AND/OR w-cutset sample tree mean. Given
w> 0, the variance of the AND/OR w-cutset sample graph
mean is less than or equal to the variance of AND/OR0-
cutset sample graph mean.

5 Complexity and Variance Hierarchy

Theorems 3, 4 and 5 along with the Rao-Blackwell theo-
rem help us establish the variance hierarchy shown in Fig-
ure 4. The main assumption is that all sample means are
based on the same set of samples and the same full and
start pseudo trees. Semantically, given aw-cutset where
0< w< t∗ (t∗ is the treewidth), the directed arcs in Figure
4 indicate that the variance of the child node is less than (or
equal to) the variance of the parent. We see that the vari-
ance of AND/OR sample tree mean is incomparable with
w-cutset sample mean. We also see that AND/OR w-cutset
sample graph mean has the lowest variance.

We summarize the complexity of computing various sam-
ple means in the following theorem:

Theorem 6. Given a graphical modelM having n vari-
ables, an AND/OR w-cutset〈T ′

,X〉 of M , a full pseudo
tree T of T′ and a proposal distribution Q defined along
the pseudo-tree T, let h be the height and t∗ be the maxi-
mum context size (treewidth) of T and let c be the size of
the w-cutset. Given N samples generated i.i.d. from Q, the
complexity of computing AND/OR w-cutset tree and graph
sample means is given in the following table:

Sample mean Time Complexity Space Complexity
OR 0-cutset tree O(nN) O(1)

AND/OR 0-cutset tree O(nN) O(h)
AND/OR 0-cutset O(nNt∗) O(nN)
OR w-cutset tree O(cN+(n−c)Nexp(w)) O((n−c)exp(w))

AND/OR w-cutset tree O(cN+(n−c)Nexp(w)) O(h+(n−c)exp(w))
AND/OR w-cutset graphO(cNt∗+(n−c)Nexp(w)) O(cN+(n−c)exp(w))

From Theorem 6, we see that variance reduction comes



On Combining Graph-based Variance Reduction schemes

at an extra computational cost. In particular, as we move
down the variance hierarchy, the time and space complex-
ity of the schemes typically increases.

6 Experimental Results

In this section, we demonstrate empirically that the
AND/OR w-cutset tree and graph sampling schemes are
superior in terms of accuracy to OR w-cutset sampling and
AND/OR (0-cutset) tree and graph sampling.

6.1 Experimental Setup

The strength of AND/OR w-cutset estimates is that the
samples on which the estimates are based upon can be gen-
erated using any importance sampling scheme. Therefore,
in order to demonstrate the impact of our new schemes in a
non-trivial setting, we generate samples using state-of-the-
art techniques such as IJGP-IS (Gogate and Dechter, 2005)
and IJGP-SampleSearch (Gogate and Dechter, 2007).

IJGP-IS uses the output of Iterative Join graph propaga-
tion (IJGP) (Dechter et al., 2002; Mateescu et al., 2010)
to compute a proposal distribution because it was shown
to yield good approximation to the posterior distribution
PM (Yedidia et al., 2004; Dechter et al., 2002; Yuan and
Druzdzel, 2006). IJGP is a generalized belief propagation
scheme parameterized by a constanti, called thei-bound,
yielding a class of algorithms(IJGP(i)) whose complex-
ity is exponential ini, that allow a trade-off between accu-
racy and complexity. Asi increases, accuracy generally
increases. Wheni equals the treewidth of the graphical
model, IJGP(i) is exact. We use ai-bound of 5 and set
the number of iterations to 10 in all our experiments to en-
sure that IJGP terminates in a reasonable amount of time.
On benchmarks which have strong deterministic relation-
ships (specifically the linkage and coloring instances), we
use IJGP-based SampleSearch specialized to handle the re-
jection problem (Gogate and Dechter, 2007).

We experimented with the following schemes: (a) OR tree
importance sampling (or-tree-IS) (b) AND/OR tree impor-
tance sampling (ao-tree-IS), (c) AND/OR graph impor-
tance sampling (ao-graph-IS) (d) OR tree w-cutset impor-
tance sampling (or-wc-tree-IS) (e) AND/OR w-cutset tree
importance sampling (ao-wc-tree-IS) and (f) AND/OR w-
cutset graph importance sampling (ao-wc-graph-IS). The
last two are the new schemes.

We used the min-fill ordering to generate the pseudo-trees.
We set thew of w-cutset to 5, again to ensure that the bucket
elimination component of w-cutset sampling does not run
out of memory and terminates in a reasonable amount of
time. We generated the w-cutset using a greedy scheme
outlined in (Bidyuk and Dechter, 2004). This scheme re-
quires a tree-decomposition as input, which was gener-
ated using the min-fill ordering. Note that the underlying

scheme for generating the samples, namely the proposal
distribution is identical in all the schemes.

All of our experiments were run on linux servers, each with
dual 2.4Ghz processors and 2GB of memory. We exper-
imented with three sets of benchmarks: (a) the grid net-
works, (b) the Linkage networks and (c) 4-coloring prob-
lems. We organize the results in two subsections. In the
next subsection, we present results on instances for which
the exact weighted counts are known and in subsection 6.3
we present results on instances for which the exact counts
are not known. The reason for this separation is the differ-
ence in the evaluation criteria used.

6.2 Results on instances for which the exact weighted
counts are known

Table 1 shows the results. For each instance, in column
2, we report the number of variables (n), average domain
size (k), the number of evidence nodes (c) (or constraints
for the graph coloring problem) and treewidth (t∗). The
third column reports the exact value of the weighted counts.
Columns 4-9 report the sample mean output by various
schemes after 1hr of CPU time.

Grid networks Our first problem domain is that of par-
tially deterministics× s grid networks, available from the
authors of Cachet (Sang et al., 2005). The last node in the
grid network is called the sink node whose marginal prob-
ability is to be determined. Given a parameter called the
deterministic ratio, a fraction of the functions in a grid are
made deterministic by randomly filling them with 0 or 1. In
Table 1, the instances are designated asp−swherep is the
deterministic ratio expressed as a percentage ands is the
size of the grid. We observe that AND/OR w-cutset graph
and tree schemes (ao-wc-graph-IS and ao-wc-tree-IS) are
better than the other schemes, with the AND/ORw-cutset
graph scheme being the best performing scheme.w-cutset
importance sampling (or-wc-tree-IS) is slightly worse than
AND/OR tree and graph schemes which do not use a w-
cutset (ao-graph-IS and ao-tree-IS). Pure importance sam-
pling (or-tree-IS) is the worst performing scheme.

Linkage Networks The linkage instances are generated by
converting a pedigree to a Bayesian network (Fishelson and
Geiger, 2003).

TheBN 69 toBN 77 instances were used in the UAI 2006
evaluation (Bilmes and Dechter, 2006). We observe that on
6 out of the 9 instances, AND/ORw-cutset graph scheme
(ao-wc-graph-IS) is more accurate than the AND/ORw-
cutset tree scheme (ao-wc-tree-IS) which in turn is substan-
tially more accurate than the OR-w-cutset tree scheme (or-
wc-tree-IS). Pure importance sampling (or-tree-IS) is the
worst performing scheme. On an average, we observe that
the AND/OR w-cutset graph scheme (ao-wc-graph-IS) is
the most accurate scheme.



Gogate & Dechter

Problem-name 〈n,k,c, t∗〉 Exact or-tree-IS or-wc-tree-IS ao-tree-IS ao-graph-IS ao-wc-tree-IS ao-wc-graph-IS
Grids

50-18-5 〈324,2,1,18〉 0.4137 0.31 0.64 0.27 0.422 0.401 0.422
50-19-5 〈361,2,1,19〉 0.2209 0.243 0.2301 0.244 0.23 0.2244 0.2217
50-20-5 〈400,2,1,20〉 0.5692 0.34 0.333 0.542 0.567 0.571 0.569
75-22-5 〈484,2,1,22〉 0.437 0.695 0.452 0.572 0.493 0.446 0.435
75-23-5 〈529,2,1,23〉 0.348 0.25 0.380 0.19 0.299 0.331 0.350
75-26-5 〈676,2,1,26〉 0.264 0.079 0.1432 0.124 0.19 0.184 0.24
90-34-5 〈1156,2,1,34〉 0.0859 0.044 0.0452 0.0449 0.0516 0.0557 0.082
90-38-5 〈1444,2,1,38〉 0.141 0.08 0.123 0.19 0.183 0.143 0.143
90-42-5 〈1764,2,1,42〉 0.654 0.42 0.81 0.576 0.511 0.74 0.67
Linkage
BN 69 〈777,7,78,36〉 5.28E-054 3.31E-55 3.01E-55 2.58E-55 2.66E-55 3.00E-55 3.15E-54
BN 70 〈2315,5,159,35〉 2.00E-71 6.77E-76 1.10E-75 9.50E-76 4.81E-75 3.22E-75 2.81E-73
BN 71 〈1740,6,202,35〉 5.12E-111 1.89E-118 9.78E-114 4.27E-117 1.32E-113 4.63E-112 2.36E-112
BN 72 〈2155,6,252,33〉 4.21E-150 7.35E-155 3.28E-153 5.49E-154 1.81E-150 2.59E-150 1.71E-150
BN 73 〈2140,5,216,42〉 2.26E-113 1.17E-126 6.39E-122 5.33E-126 1.70E-118 2.33E-117 8.08E-118
BN 74 〈749,6,66,32〉 3.75E-45 1.58E-47 2.13E-46 4.57E-47 2.00E-46 2.08E-46 2.22E-46
BN 75 〈1820,5,155,32〉 5.88E-91 5.39E-97 1.09E-95 2.58E-98 3.19E-95 9.59E-95 1.21E-91
BN 76 〈2155,7,169,37〉 4.93E-110 1.02E-121 6.93E-117 3.03E-119 1.23E-117 1.56E-115 1.69E-112
BN 77 〈1020,9,135,22〉 6.88E-79 3.57E-87 3.46E-82 3.20E-86 2.42E-85 3.63E-84 1.92E-81

pedigree13 〈1077,3,0,31〉 5.44E-32 1.83E-44 5.57E-35 1.83E-44 6.75E-34 3.99E-32 4.03E-32
pedigree34 〈1160,3,0,28〉 5.89E-65 5.80E-78 1.24E-69 7.20E-74 8.19E-70 1.65E-64 1.77E-64
pedigree44 〈811,3,0,25〉 3.36E-64 3.15E-66 2.00E-65 3.58E-66 2.30E-64 3.21E-64 3.21E-64
pedigree50 〈514,3,0,17〉 1.32E-23 3.32E-24 3.44E-25 1.65E-24 1.14E-23 1.38E-23 1.38E-23
pedigree51 〈1152,3,0,35〉 1.33E-74 9.95E-82 4.38E-78 1.24E-79 1.44E-76 6.75E-75 6.86E-75
pedigree7 〈1068,4,0,30〉 1.5E-65 5.91E-71 7.73E-69 2.49E-72 2.42E-67 7.28E-66 7.77E-66
pedigree9 〈1118,3,0,25〉 3.43E-79 2.12E-81 2.81E-85 2.56E-81 7.86E-79 1.36E-79 1.27E-79

Table 1:Table showing the sample means output by various schemes on 3sets of benchmark graphical models. Each algorithm was
run for 1 hr. The best results are highlighted by bold in each row.

On the pedigree linkage instances, we observe that the ao-
wc-graph-IS, ao-wc-tree-IS and ao-graph-IS schemes are
more accurate than the other schemes, often outperforming
them by an order of magnitude. ao-tree-IS is better than
or-tree-IS on most instances while or-wc-tree-IS is usually
better than ao-tree-IS and or-tree-IS. ao-wc-graph-IS is the
best performing scheme.
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Figure 5:P(e) as a function of time for BN75 instance.

Finally, Figure 5 shows how the probability of evidence
P(e) changes with time for one of Linkage instances. Here,
we can clearly see the superior any-time performance of
AND/OR-basedw-cutset schemes over the other schemes.
We observed similar behavior on other instances.

6.3 Results on instances for which the exact weighted
counts are not known

When exact results are not available, evaluating the per-
formance of approximate schemes is problematic because

the quality of the approximation, namely how close the ap-
proximation is to the exact, cannot be measured. To allow
a comparison on such hard instances we evaluate the power
of the various sampling schemes for yielding good lower-
bound approximations whose quality can be compared (the
higher the better) even when the exact solution is not avail-
able. Specifically, when the exact weighted counts are not
known, we compare the lower bounds obtained by combin-
ing the sample means output by various schemes with the
Markov inequality based lower bounding scheme presented
in (Gogate et al., 2007). Such lower bounding schemes, see
also (Gomes et al., 2007), take as input: (a) a set of unbi-
ased sample means and (b) a real number 0< α < 1, and
output a lower bound on the weighted counts that is correct
with probability greater thanα. Formally,

Theorem 7. (Gomes et al., 2007; Gogate et al., 2007) Let
Ẑ1, Ẑ2, . . . , Ẑr be the unbiased sample means over “r” in-
dependent runs of a sampling scheme. Let0< α < 1 be a

constant and letβ =
( 1

1−α
) 1

r . Then, Zlb = 1
β ×minr

i=1Ẑr is
a lower bound on Z with probability greater thanα.

In our experiments, we setα = 0.99 andr = 5, namely,
we run each algorithm five times and each lower bound is
correct with probability greater than 0.99.

4-Coloring Problems Our final domain is that of
4-coloring problems generated using Joseph Cul-
berson’s flat graph coloring generator (available at
http://www.cs.ualberta.ca/∼joe/Coloring/). Here, the
weighted counting task is equivalent to counting the
number of solutions. From Table 2, we observe that in
most cases, the AND/OR schemes are better than pure
importance sampling (or-tree-IS) andw-cutset sampling
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Problem-name 〈n,k,c, t∗〉 Exact or-tree-IS or-wc-tree-IS ao-tree-IS ao-graph-IS ao-wc-tree-IS ao-wc-graph-IS
4-Coloring
4-coloring1 〈100,4,200,71〉 1.57E+37 1.98E+37 1.54E+37 2.18E+37 2.30E+37 1.78E+38
4-coloring2 〈100,4,250,95〉 4.35E+27 9.86E+28 5.26E+29 6.00E+29 8.29E+28 1.02E+30
4-coloring3 〈200,4,400,144〉 1.61E+70 4.63E+70 1.21E+72 1.76E+72 4.89E+70 2.59E+72
4-coloring4 〈200,4,500,191〉 2.230E+62 4.82E+62 5.75E+63 1.21E+64 8.65E+64 6.07E+65
4-coloring5 〈300,4,600,304〉 1.12E+97 1.21E+99 1.65E+100 1.61E+100 1.72E+102 1.28E+104
4-coloring6 〈300,4,750,338〉 1.30E+88 9.01E+90 5.82E+88 1.01E+91 1.13E+91 1.75E+91

Table 2: Table showing thelower bounds on the weighted counts with 99% confidenceobtained by various schemes for
graph coloring benchmarks. The exact weighted counts for these instances are not known. Each algorithm was run 5 times, each
run was 1 hr yielding 5 sample means. We useα = 0.99, and combined these sample means using Theorem 7 to yield alower bound onZ.

(or-wc-tree-IS). AND/ORw-cutset graph sampling yields
the highest lower bound for all the instances.

7 Summary and Future work

The paper presentsAND/OR w-cutset sampling, a gen-
eral and unifying framework for developing and analyzing
graph-based variance reduction schemes. Our generaliza-
tion yields two new schemes called AND/OR w-cutset tree
sampling and AND/OR w-cutset graph sampling, which
have smaller variance than other schemes proposed in lit-
erature. Our experimental evaluation shows that our new
schemes are often more accurate than other schemes, when
all are given an identical time-bound and therefore they
should be always preferred.

Several avenues remain for future work, such as: (a) de-
signing good proposal distributions over the w-cutset vari-
ables, (b) developing variance reduction schemes that take
advantage of local structure such as context specific inde-
pendence (Boutilier et al., 1996) and combining them with
AND/OR w-cutset sampling and (c) developing sequential
versions of AND/OR w-cutset sampling.
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