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Abstract

Several domains in Al need to represent the re-
lational structure as well as model uncertainty.
Markov Logic is a powerful formalism which
achieves this by attaching weights to formulas
in finite first-order logic. Though Markov Logic
Networks (MLNSs) have been used for a wide va-
riety of applications, a significant challenge re-
mains that weights do not generalize well when
training domain sizes are different from those
seen during testing. In particular, it has been
observed that marginal probabilities tend to ex-
tremes in the limit of increasing domain sizes.
As the first contribution of our work, we fur-
ther characterize the distribution and show that
marginal probabilities tend to a constant indepen-
dent of weights and not always to extremes as
was previously observed. As our second contri-
bution, we present a principled solution to this
problem by defining Domain-size Aware Markov
Logic Networks (DA-MLNs) which can be seen
as re-parameterizing the MLNs after taking do-
main size into consideration. For some simple
but representative MLN formulas, we formally
prove that probabilities defined by DA-MLNSs are
well behaved. On a practical side, DA-MLNs
allow us to generalize the weights learned over
small-sized training data to much larger domains.
Experiments on three different benchmark MLNs
show that our approach results in significant per-
formance gains compared to existing methods.

1 Introduction

A number of application domains in Al need to reason
about the relational structure of the domain as well as han-
dle uncertainty. The field of Statistical Relational AI [3}/12]]
achieves this merger by combining the power of logical and

Proceedings of the 22" International Conference on Artificial In-
telligence and Statistics (AISTATS) 2019, Naha, Okinawa, Japan.
PMLR: Volume 89. Copyright 2019 by the author(s).

Vibhav Gogate
Univ. of Texas Dallas

Parag Singla
IIT Delhi

statistical representations. Markov Logic [2] is one such
popular model which represents the underlying domain as
a set of weighted first-order formulas and can be used as a
template for constructing features for ground Markov net-
works. Markov logic has been successfully applied to a va-
riety of Al applications including those in computer vision,
NLP, biology and robotics [2].

Despite the applicability of Markov Logic, one significant
challenge remains: MLNs suffer from serious generaliza-
tion issues when training domain sizes are different from
those seen during testing. Consider a problem of epidemic
prediction in a town. Given the population in a town,
and some information about whether each person is sick
or not, we would like to predict whether there is an epi-
demic. The domain is modeled by a single MLN formula
w : sick(x) = epidemic, where w could be learned from
some training data. Figure |I{ shows that the probability of
epidemic quickly tends to 1 as the domain size increases
for w = 1. In fact, this holds true for any fixed positive w.

Hence, even if the probability of epidemic is strictly less
than 1, the model will predict an epidemic with certainty
if the test population is significantly larger than the train-
ing population. For illustration and comparison, we also
plot (Figure the marginal probability with increasing
domain size for standard MLNs as well our proposed so-
lution for a formula weight w = 1. Training a different
network for each domain size is clearly not a viable option.

In this paper, our contribution is twofold. First, we math-
ematically characterize the problem with the MLN repre-
sentation as the domain size is increased for a given set of
weights. Poole et al. [[11]] have previously shown that prob-
abilities tend to extremes in the limit of increasing domain
size. We show that their characterization in incomplete [ﬂ
We show that in certain scenarios, the probabilities may not
tend to the extreme but rather converge to a constant which
is independent of the formula weights. We clearly separate
out the two cases from each other in our work.

As our second contribution, we present a principled
solution to the above problem by proposing a re-
parameterization of MLNs which also takes into con-
sideration the domain size. We refer to our re-

!we present counterexamples to the propositions in their paper
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Figure 1: Figure showing effect of increasing domain size of z (denoted by |A,|) on P(epidemic) in MLN formula
w : sick(x) = epidemic. Let w = 1. Figures[Ta)and [Tb| show the Ground Network and P(epidemic) for |A,| = 3 and
|A;| = 15 respectively. Figure[lc|shows the plot of |A,| vs P(epidemic) in MLNs and DA-MLNs (our approach). For
readability, sick and epidemic are abbreviated as .S and F respectively.

parameterized MLNs as Domain-Size Aware Markov Logic
Networks (DA-MLNs). DA-MLNs are precisely a re-
parameterization: there is a one to one correspondence
between the parameters of the two models for any given
domain size. Further, DA-MLNSs allow us to successfully
generalize weights across different domain sizes. This is
demonstrated by our theoretical analysis on some simple
but representative MLN formulas, where we show that the
probabilities are well behaved in the limit. Our experiments
on three benchmark networks with differing train and test
domain sizes show impressive performance gains for DA-
MLNs both in terms of AUC (area under the precision-
recall curve) as well as data log-likelihood.

Our paper is organized as follows. We present some re-
lated work for our problem. Then we present the back-
ground on MLNs. This is followed by our characterization
of the issue of generalization across varying domain sizes
in MLNs. As a solution, we present DA-MLNSs and prove
their properties. Finally, we present our experiments and
then conclude with directions for future work.

2 Related Work

Poole et al. [11]] characterized the behavior for some sim-
ple classes of MLNs as the variable domain size goes to
infinity. They show that in the limit, marginal probability
of the query atom goes to extreme (i.e., either O or 1) if cer-
tain conditions are satisfied. However, in our analysis, we
show that their characterization is incomplete. There are
scenarios where probabilities do not go to the extreme in
the limit but converge to a constant independent of the for-
mula weights. Moreover, their paper only presents a char-
acterization of the problem and does not provide a solution.

Jain et al. [5] propose Adaptive Markov Logic Networks
(AMLNSs) in which weights are learned over multiple
databases of different sizes. The learned weights are ap-
proximated using a weighted combination of pre-defined

basis functions which in turn are defined over underlying
variable domain sizes. The coefficients of these basis func-
tions become the parameters of the model. At test time, the
formula weights are obtained by a linear combination of
the coefficients and the basis functions (for the test domain
sizes). Unfortunately, their approach seems to be limited by
a choice of fixed set of basis functions. Further, in our ex-
periments, their model performs poorly, fairing even worse
than standard MLNGs (see section [7.2).

In a recent piece work, Jaeger and Schulte [4] examine the
dependence of marginal probabilities on the domain sizes
of the variables for different Statistical Relational Learn-
ing (SRL) models. They show that if certain conditions
are satisfied, several SRL models define a projective fam-
ily of distributions in which inference does not depend on
the variable domain sizes. Often, the set of required condi-
tions for this to hold can be very restrictive. For instance,
for Markov logic, they require that every predicate in a for-
mula should have the same arity. This severely limits the
applicability of the model. No solutions are proposed for a
general scenario.

Finally, in another recent work, Kuzelka et al. [[7] extend
the duality between the maximum likelihood and max-
entropy models to a relational setting, which they use to
map the weights learned on a given training data set size to
a different test data size. Their approach looks promising
but lack of any experimental evidence questions the effi-
cacy of the proposed model to real-world settings.

As opposed to existing approaches, we propose a very sim-
ple solution where we re-parameterize the MLN distribu-
tion by making the dependence on the domain size explicit
via each ground atom’s number of connections. Our ap-
proach has a very intuitive justification (see Section [3),
comes with provable well behaved probabilities for a sim-
ple but representative class of MLN formulas, and most
importantly, works surprisingly well in real-world settings,
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offering a serious alternative to the standard MLNs.

3 Background

A First order logic (FOL) theory [13]] consists of constant,
variable, function and predicate symbols. We will use a
strict subset of FOL which is function free with Herbrand
interpretations [[13]]. A term is a constant or a logical vari-
able. We will denote the logical variable by small English
letters. The domain of a logical variable x is denoted by
A,. Afirst-order predicate takes terms as its arguments and
defines a Boolean relation between the terms. A proposi-
tional predicate is a predicate which does not take any ar-
gument. An atom is a predicate symbol applied to a tuple
of terms. A literal is an atom or its negation. A formula is
defined recursively as follows : (a) A literal is a formula,
(b) Negation of a formula f, denoted by —f is also a for-
mula, (c) If f1 and f2 are two formulas, then f1 A f2 and
f1v f2are also formulas. A constant is also referred to as a
ground term. A ground atom is an atom all of whose terms
are ground. A ground formula is a formula all of whose
atoms have been grounded. In the rest of the paper, we will
refer to a logical variable simply as variable for the conve-
nience of notation. Also, we will work with typed theories,
where a subset of variables may belong to the same type in
which case their domains will be shared. We will use X to
denote the set of all the variables appearing in the formulas
of an MLN. We will use A » to denote the set of domains
of the variables in X'.

Definition 1. Markov Logic Network [2: A Markov
Logic Network (MLN) M is a set weighted formulas given
as {(F;, w;)}™,, where Fj is a first order formula, and w;
is a real number, the weight of F;. Given A y i.e. domains
of all the variables in all the formulas, M induces a Markov
Network in which

(a) Each ground atom of M appears as a node, and two
nodes have an edge iff they appear in same ground formula
in M.

(b) Each grounding (ground formula) of F; defines a
Boolean feature f;;, which is 1 if the ground formula is
satisfied, otherwise 0. Weight of feature f;; is w;, where
w; 1s weight of Fj.

Intuitively, weight of a formula indicates how likely it is
that the formula is true in the world. Higher the weight,
higher is the probability of formula being true. In the ex-
treme case, a weight can be infinite, which means a for-
mula is true for every object i.e. the formula becomes pure
first order logic formula. Now given an assignment to a set
of ground atoms X (evidence), the probability distribution
over the remaining ground atoms Y (query) is given by:

1 m
Py (Y =ylX =z;w) = 7 OXP (Z wi”i(%?/)) (1

i=1

Here, m is the number of first-order formulas, w; is the

weight of first order formula F;, n;(x,y) is the num-
ber of satisfied groundings of F; under the assignment
(z,y), and Z, is the normalization constant given by
2., €Xp (3, wini(x,y')). For notational convenience,
wherever clear from the context, we will denote 2, sim-
ply by Z. Let V be a ground atom in M, then marginal
probability of V' being true can be calculated as :

Zy=1 1

where Zy _, denotes normalization constant with V' re-
stricted to value v in all assignments. Several algorithms
have been proposed for inference and learning of parame-
ters in MLNs [2]]. Exact inference is often intractable so
approximate algorithms such as those based on sampling
are used in practice. Parameters are typically learned by
maximizing the log-likelihood of the training data (denoted
by LLjs(w)), whose gradient with respect to a particular
weight w; can be calculated from equation (1)) and given as

0
awi

LLy(w) = ni(z,y) — E[ni(z,9)]pyvix) 3)

where (z,y) is the assignment of all ground atoms in the
data. In the following exposition, we will be interested
in understanding how the marginal distribution of a query
(ground) atom changes as we vary the domain size of one or
more variables in the theory. We will safely assume that all
the formula weights are positive; a formula with negative
weight can be equivalently replaced by a negated formula
with a positive weight of the same magnitude, and a for-
mula with weight zero can be ignored without changing the
distribution. Though our description is in terms of MLNSs,
we believe our ideas can be easily extended to other similar
SRL representations such as weighted parfactors [[1]].

4 Characterizing Issues in MLLNs

4.1 Motivation

Let us revisit epidemic example in the Figure[I] The prob-
lem is modeled by a single MLN formula w : sick(z) =
epidemic, where w could be learned from some training
data. Let A, denote the domain of z and let |A,| = n.
epidemic is the query predicate and we are interested in
figuring out what happens to P(epidemic) as n — oo.

In the ground network induced by the above
MLN, the predicate epidemic has n neighbors
sick(1), sick(2),...,sick(n). Figures and de-
pict the ground networks for n = 3 and n = 15,
respectively. With increasing n, the number of neighbors
of the query predicate increases, resulting in extreme
probabilities as n — oo. This holds true independent
of the value of the formula weight w. We note that this
problem is not directly due to the increasing domain size,
but rather due to a large number of connections the query
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atom is involved in. For example, if our MLN was instead
w : sick(x) = unhappy(x), then increasing the domain
size would not affect the probability of unhappy(z).
In this section, we are interested in mathematically
characterizing this problem with increasing domain size.

In our exposition below, let () be the query predicate, and
let Q(1) denote a grounding of () whose marginal we are
interested in. As a shorthand, we will use P(Q(1)) to de-
note the marginal probability of ()(1) being true. For our
current exposition, we will assume that the underlying the-
ory is evidence-free. We will partly relax this assumption
in section [6} For all the proofs and propositions marked
with (*), detailed proofs can be found in the supplement.

4.2 Earlier work

Poole et al. [[L1] have earlier characterized the problem of
probabilities going to the extreme in the limit. But care-
ful analysis reveals that their exposition was only partially
correct i.e. there are cases where the marginal probabilities
become a constant independent of the underlying weight,
but do not converge to either O or 1. Here we restate the
proposition given by them, restricted to a single formula:

Proposition 0. Consider an MLN M with a single for-
mula of the form w : Q(z) v Ri(y1) v ... v Ri(yr) v
Piv...v P, Here, k > 1landm = 0. |[A;] = r
where r = 1 is a fixed constant. Also |Ay| = ... =
|Aykx| = n. Pi,..., P, are propositional predicates.
Then either Pyi(Q(1)) is a constant (independent of n),
orlim,, o Pp(Q(1)) is either 1 or 0. [[I1)]

Our epidemic MLN is an example which satisfies this
proposition, with |Az| = 1, k = 1, and m = 0. We now
show that this proposition doesn’t always hold. Below we
present a counterexample to this proposition.

Counterexample * : Consider an MLN M consisting of
one formula w : Q(x) v R(y) v P, where |A,| = 1 and
|Ay| = n. Then, using Eq[2] we have:

2n+1ewn
PM(Q(l)) = (2n€wn 4 (1 4 ew)n) 4 on+lewn )
This expression is not independent of n.  Further,

limy, oo P(Q(1)) = Z which shows that P(Q(1)) is nei-
ther O nor 1 in the limit. Hence, this is a counterexample to
Proposition |0} For a detailed derivation, see supplement.

4.3 A More Correct Analysis

The primary problem with Poole et al. [11]’s characteri-
zation is that they failed to capture the impact of additional
propositional predicates in the formula (e.g., P;’s in Propo-
sition [0), which do not let the probabilities to go to the ex-
treme in the limit of increasing domain size. For instance,
in the epidemic example, there was no propositional pred-
icate (other than the query) and the probabilities went to
the extreme. On the other hand, in our counterexample, the

presence of the propositional predicate P forced the limit-
ing probability to be different from either O or 1. Addition-
ally, Poole et al. miss out on cases when the domain of the
query predicate argument (i.e., A, in Prop.[0) also goes to
infinity in the limit. Next, we present a more complete (and
correct) characterization of this problem.

Proposition 1. Consider an MLN M with a single formula
of the form w : Q(x) v R1(y1) v ... v Ri(yx). Here
k=1 Also |Ay1| = ... = |Ayg| = n, and |Az| = 7,
where r = 1 is some constant. lim,,_,o, Prr(Q(1)) is 1.

Proof * : We have

2Q(1)=0
ZQ(1)=1

Substituting (@) in @), we get lim,, o, Prr(Q(1)) = 1.

Proposition 2. Consider an MLN M having a single for-
mula of the formw : Q(z)v R(y)v Py v Py...v Py, where
Azl =1, |[Ay| = n. Thenlim, o Pp(Q(1)) = 72m2ﬁ71

= lim
n—oo 21

k—1 (1+e‘“’
+

nr—li
5 ) 2 =0 (%

Proof * : We have

lim Zow=o —(1- 1 (6)
00 ZQ(l):l om

Substituting (&) in @), lim, o Par(Q(1)) = 52—
Proposition 3. Consider an MLN M with a single formula
of the form w : Q(z) v R(z), where |Az| = |Ay| = n.
Then lim,, o Py (Q) = %

Proof * : We have

n— ”sz
lim@: 1ij:1 7
n—w Zgy—1 n—w 320 len*v 3

Putting Eq (7) in Eq @), we get lim,, o Pp/(Q(1)) = 3.

In our next proposition, we move to a more general case,
where the formula also contains binary predicates.

Proposition 4. * Consider an MLN M with single formula
of the form w : Q(z) v P(x,y) v R(y). Here |Ax| =
r, where v = 1 is some constant, and |Ay| = n. Then
lim,, o0 Par(Q(1)) is 1.

Interestingly, all the MLNs considered in Propositions (1-
4) satisfy the Single Occurrence (SO) Property [9]. Exam-
ining whether there is a more general connection between
MLN formulas satisfying SO property and probabilities go-
ing to extreme (or tending to a constant) is a direction for
future work.

In this section, we have presented a detailed characteriza-
tion of the marginal distribution of the query atom in the
limit of increasing domain size. Our description better de-
scribes the issues involved compared to earlier work. We
note that our analysis is still limited to relatively simple
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MLNs having a single formula.E] Nevertheless, we expect
that these issues will only be aggravated as we move to
more complex MLNs. Hence, we need to fix the underly-
ing representation if MLNs were to generalize across vary-
ing domain sizes. Next, we present a principled solution to
this problem based on a re-parameterized distribution.

S Domain-size Aware Markov Logic
Networks (DA-MLNs)

5.1 Intuition

In the previous section, we characterized how the marginal
probability of query is affected as the domain size of the
variables in the network is increased. In several cases, the
probability goes to extreme (Proposition [T} ) and in others,
converges to a constant independent of the formula weight
(Propositions 2] 3)). Intuitively, as discussed in Section 4.1}
the key reason behind this problem is the large number
of connections that the query atom gets involved in. The
aggregate effect of these connections renders the formula
weight inconsequential in determining the marginal proba-
bility in the limit of large domain size. Arguably, the so-
lution should also stem from the same phenomenon: if we
could somehow make the distribution depend explicitly on
the number of connections each atom is involved in, we
may be able to counter the effect of increasing domain size
on the distribution. To formalize this notion, we start with
a few definitions.

5.2 Definitions

Notation: Given a formula F, we will use Preds(F) to
denote the set of predicate occurrences in F'. By predi-
cate occurrences, we also mean to count the repeated oc-
currences of the same predicate in a formula. For example,
if the formula F' is P(z) v P(y), Preds(F’) will contain
two occurrences of P, one for each position that P occurs
in F. We will use Vars(P) to denote the set of (logical)
variables appearing in P (in the context of formula F').

Definition 2. (NumConnections) Let F' be a first order
formula. Let P € Preds(F') be a predicate occurrence
in F. As defined earlier, let Vars(P) denote the set of
(logical) variables appearing in P. Further, let Vars(P)~
denote the set of logical variables in F' not appearing in P,
Then, the number of connections ¢ for P in F' is defined as

max (17 [Loevarsce)- |Ax\)~

Intuitively, the number of connections of a predicate P (in
a formula F') is the number of groundings of F' that each
(any) ground atom corresponding to P is involved in EI

Example: Given a formula F as w : P(z,y) = Q(x)
where A, = A, the number of connections for P and @

’Extending to a more general setting is a future direction.
3Each ground atom will be involved in the same number of
formula groundings due to the MLN structure.

in F are 1 and |A,|, respectively. Since each predicate in a
formula can have different number of connections, we de-
fine a connection-vector of a first order formula as follows.

Definition 3. (Connection-vector) Let F be a first-order
formula. Let the number of predicate occurrences in F' be
given by m = |Preds(F)|. Let (Py, Pa,- -+, Py,) be some
ordering over these predicate occurrences (for instance, it
can simply be the ordering in which each predicates ap-
pears in the formula). Then, the connection vector v for
F'is defined as (c1,¢2, - - - , ¢n) Where ¢; is the number of
connections of P; in F'.

For the example formula w : P(xz,y) = Q(z) considered
above, the connection vector is (1,|A,|). Intuitively, the
magnitude of the connection vector captures the number
of connections that predicates in the formula are involved
in. We somehow need to aggregate the elements of the con-
nection vector v to get a single number such that the overall
strength of the connection of the formula can be captured.

Definition 4. (Scaling-down Factor) Let F' be a first-
order logic formula. Let v be its connection vector. Let
¥ : R? — R denote an aggregation function over the ele-
ments of v where where d denotes the size of v. Given the
function v, we define s = ¥(v) as the scaling-down factor
for formula F'.

Several choices for ¥ are possible. In our exposition, we
choose U as the max function. This allows us to prove
some of the properties of our resulting formulation in a
seamless manner and this also works well in practice. Ex-
ploring other alternatives for ¥ function such as »’ is a di-
rection for future work. We are now ready to define our
re-parameterized MLNs.

Definition 5. Re-parameterized MLNs: Let M denote
an MLN with the set of weighted formulas given by
{F;,w;}I";. We define a new parameterization with the
set of weighted formulas given by {F;, w;}, where F;
is inherited from M and w; = w; * s; where s; is the
scaling-down factor for F; given the variable domains A y.
We refer to this re-parameterization as Domain-Size Aware
Markov Logic Network (DA-MLN). The distribution de-
fined by DA-MLN D is given as:

1 o W,
Pp(Y =y|X = z;0') = 7 exp (Z S”i(%@/))
z i=1 7"

where the symbols used are same as in Eq[I] Addition-
ally, s; denotes the scaling-down factor for F;. Also Z, =

2y €XDP (Zm w—;nz(zv7 Yy )) Intuitively, DA-MLNs make

=1 s;
the dependence on the number of connections explicit.

Corollary 1. For any given set of variable domains Ay,
the distribution defined by a DA-MLN D with weighted for-
mulas {(F;, w})}™ ,, is same as the distribution defined the

MLN with weighted formulas {(F;,w;)}™, with w; = w

Sq
where s; denotes the scaling down factor for formula F;.
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5.3 Inference and Learning

Since DA-MLNs are nothing but a re-parameterization of
MLNSs, inference problem in DA-MLNs reduces to one in
MLNs, and hence, the same set of algorithms can be em-
ployed (see Section [3). Learning in DA-MLNs can be
performed by maximizing the log-likelihood (denoted by
LLp(w")) of the data, whose gradient with respect to the
weight parameter w;, is given by:

A
8w’.LLD(w) = 5

K3

a nl(gj7y) —E [nz(xay)]
i Si Pp(Y|X)

This equation is identical to the eq [3} except for the pres-
ence of the scaling-down factor s;. Hence, the same set of
algorithms based on gradient descent can be employed.

5.4 Properties

Next, we characterize the behavior of DA-MLNSs in the
limit of variable domain sizes going to infinity. We will
show that at least in some simple but representative cases,
the probabilities are well behaved i.e., they are neither ex-
treme nor become independent of the formula weight in the
limit.

Proposition 5. Consider a DA-MLN D with a single for-
mula of the form w : Q(x) v R(y). Let |A,| = 1. Further,

let |Ay| = n. Then, lim,,_,o, Pp(Q(1)) = L
1+e 27

Proof: In order to compute Pp(Q(1)), we need to compute
Z9W=0 We have

ZQ)=1
Z0(1)= 1+en) —w
lim 29MW=0 _ 1 wzez
n—0o0 ZQ(1)=1 n—w eW x 2N
So lim,, .o Pp(Q(1)) = —

—w
2

1+e
In particular, note that our epidemic examples falls in the
category of Proposition |5| where (1) is epidemic and
—R(x) is sick(z). Hence, the P(epidemic) won’t go to
extreme as n goes to o0. Proposition [3]is the analogue of
Proposition 1| (for MLNs) albeit with a slightly restricted
form i.e., with |A,| = 1 and a single non query predicate
in the formula. Unlike Proposition[I] the limiting probabil-
ity does not go to extreme in this case. Next, we present a
proposition which handles the case of formulas with (non-
query) propositional predicates.

Proposition 6. Consider a DA-MLN D having a single for-
mula of the form w : Q(z) v R(y) v Py v Py... v Py,
where |A,| = 1 and |Ay| = n. Then lim,,_,o, Pp(Q(1))
is a (non-constant) function of w.

Proof * : We have

Zo(1)— 1 1
lim —90=0 _ (1 > ¥
=% ZQ()=1

Tim Pp(Q(1) = 1)

It clearly shows that the limiting marginal probability de-
pends on w. Proposition[6]is an analogue of Proposition
for MLNs. Unlike Proposition |2} there is a clear depen-
dence on weight in this case. Next, we present the proposi-
tion which deals with increasing domain size for the argu-
ment of the query predicate (in addition to the other vari-
ables).

Proposition 7. * Consider a DA-MLN D with a single for-
mula of the form w : Q(x) v R(y), where |Az| = |Ay| =
n. Thenlim, o, Pp(Q(1)) = f(w), where f(w) is a (non
constant) function of w .

We present the analogue of proposition 4] for DA-MLNs.

Proposition 8. * Consider a DA-MLN D with a single for-
mula of the form w : Q(z) v P(z,y) v R(y). Here
|Az| = r, where v = 1 is some constant, and |Ay| = n.
Then lim,,_,o, Pp(Q(1)) = f(w), where f(w) is a (non
constant) function of w.

All of the propositions above clearly demonstrate that
query marginals produced under DA-MLNs are well-
behaved unlike in MLNs where query marginals either
went to extreme or became independent of the formula
weight under very similar conditions. This clearly presents
DA-MLNSs as a strong alternative for MLNs for a variety
of reasoning tasks. Proving these nice properties for more
complex DA-MLN structures is a direction for future work.

6 Handling Evidence

In this section, we will relax the evidence-free assumption.
Our intuition (Section[dT)) is built around the fact that as the
domain size of variables appearing in non-query predicates
increases, number of neighbors also increases, and hence,
probabilities tend to extreme. DA-MLNs can counter this
phenomenon by re-parameterizing MLNSs by explicitly tak-
ing domain size in account. A natural question arises: what
happens in the presence of evidence predicates since their
groundings will not be part of the network. Interestingly,
we show that in MLNSs, under certain conditions, even in
the presence of evidence, marginals tend to extreme. On
the other hand, DA-MLNS still remain well behaved.

Proposition 9. * Consider an MLN M with single formula
of the form w : Q(x) v P(y). Here |Ay| = n. Let |Ax| =
1. Suppose P is evidence predicate, i.e., all its groundings
are given to be true or false. If the ratio of true and false
groundings of P remains constant with respect to n, then

limy o Prr(Q(1)) = 1.

Now we show that in DA-MLNs, these marginals do not go
to extreme.

Proposition 10. * Consider a DA-MLN D with single for-
mula of the form w : Q(xz) v P(y). Here |Ay| = n. Let
|Az| = 1. Suppose P is evidence predicate. If the ratio
of true and false groundings (denoted by r) of P remains
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constant with respect to n, then lim, o Pp(Q(1)) =

1
Tte(r—Dw*

Proving these results for a more general class of MLN for-
mulas is a direction for future work.

7 Experiments

The goal of our experiments was to examine whether DA-
MLNs can help us generalize better when training and test-
ing domains come from different sizes. In particular, we
were interested in a setting where the training domain is
much smaller compared to the testing domains - a scenario
typically expected in real life setting due to the high cost
of obtaining labeled data. To answer these questions, we
experimented on three benchmark MLN domains where
we kept the size of the training data fixed and varied the
size of the testing data. We then compared the perfor-
mance of three competing algorithms: (a) DA-MLN (cur-
rent work) (b) (Standard) MLN [2] (c) Adaptive MLN
(AMLN) [5]. We compare each algorithm on two different
metrics: (1) AUC: area under the precision-recall curve (2)
Average CLL (Conditional Log-likelihood): average over
log marginal probabilities of query atoms (given evidence).

For our experiments, we used our own implementation of
the Alchemy [6] software ﬂ For each of our models, we
learned the weights using the PSCG [8] algorithm and ran
the algorithm until convergence or up to a maximum of 100
iterations. For learning the coefficients of the basis func-
tions in AMLNs, we implemented a utility as described
by Jain et al. [5]. For each of the models, the inference
was performed using Gibbs sampling with 5000 samples
per (query) ground atom in each case. All our experiments
were run on servers with 40 cores and up to 256 GB of
RAM. We next describe the details of our datasets, method-
ology and the results of our experimental evaluation.

7.1 Datasets and Methodology

We used three benchmark domains used in the earlier lit-
erature : Friends & Smokers (FS) [14], IMDB [10], and
WebKB [6].

Friends & Smokers (FS): This dataset contains informa-
tion about the smoking habits of people, their friendship
relationships and whether they suffer from cancer or not.
The dataset contains MLN theory contains three predicates:
Smokes(person), Cancer(person), Friends(person,person).
We generated the actual data to model real-life commu-
nities. The entire population of size n was first divided
into y/n groups. Each group was labeled Smoking or Non-
Smoking randomly, with the probability of Smoking group
0.3. The probability of beings friends within the same
group was set to 0.8, and the probability of being friends
outside the group was set to 0.1. Each person was la-
beled Smoker and Non-Smoker depending on their group’s

*https://github.com/happy2332/alchemy-java

smoking habits. For the smoking groups, the probability of
smoking was set to 0.7. For a non-smoking group, this was
set to 0.1. A smoking person was set to have cancer with
probability 0.5, and a non-smoking person with probability
0.1. We learned on randomly generated datasets with do-
main sizes 20, 40, 60, 80, 100, and inferred on randomly
generated datasets of sizes varying from 50 to 500.

IMDB: We downloaded this dataset from an online kaggle
competition The dataset contains information about 1000
movies and their casts. This dataset is defined using four
predicates: Actor(person), Director(person), Movie(title,
person), and WorkedUnder(person, person). For creating
varying size data, we randomly chose a subset of direc-
tors, picked the movies done by them and the actors who
worked in those movies. We learned on 4 randomly gen-
erated subsets having 2, 4, 5 and 10 directors, and inferred
on randomly generated subsets with directors varying from
10 to 50. We made sure there was no overlap between the
training and testing set of directors.

WebKB: The dataset is publicly available for download
from the Alchemy website [P which contains information
about pages from various US universities. We worked with
a set of about 1300 pages from one of the universities. The
dataset is defined using three predicates: Has(page,word),
Links(page, page), and Class(page, category). Each web-
page consists of words and hyperlinks. Each webpage can
belong to a subset of categories: person, student, faculty,
professor, department, research project, and course. For
creating varying size data, we randomly chose a subset of
web pages and the associated entities. We learned on two
subsets corresponding to randomly chosen 50 and 100 web
pages|’| We tested on subsets of the data corresponding to
randomly chosen webpages (different from training) with
the number varying from 50 to 800. Figure [2| (lower half)
shows the details of the formulas for each domain. Addi-
tionally, we had a unary clause for every predicate. At the
bottom of each set of rules, we specify which predicates
were treated as query (evidence) during learning and infer-
ence, respectively, for each domain.

7.2 Results

Figures [2a] b and [2c| plot the AUCs on FS, IMDB, and
WebKB datasets, respectively, as we vary the test data
sizes. As expected, the three models result in very simi-
lar performance on smaller datasets (which are similar in
size to the respective training sets). DA-MLNs clearly out-
perform the other two algorithms for larger domains with
the gain successively increasing with domain size. For We-
bKB, the difference between MLLN and DA-MLN stabilizes
after a point. This is due to the fact that in WebKB, we

>https://www.kaggle.com/PromptCloudHQ/imdb-data/data

Shttp://alchemy.cs.washington.edu

"For AMLN, we supplemented with another subset having 75
randomly chosen webpages
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(Learning) Query: All

(Inference) Query: Cancer, Smokes(Random 50%)
WebKB [6]

Has(p,+w) = Class(p,+c)

—Has(p,+w) = Class(p,+c)

Class(pl,+cl) A Links(pl,p2) = Class(p2,+c2)
(Learning) Query: Class

(Inference) Query: Class

WrkdUndr(pl,p2) = Act(pl)

WrkdUndr(p1,p2) = Dir(p2)
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(Learning) Query: All
(Inference) Query: All (Random 50%)

Figure 2: Results and Rules for FS, IMDB, and WebKB datasets.

do not see a much change in the number of connections
with increasing domain size. For the largest values of do-
main sizes considered, DA-MLNs outperform MLNs by
0.17 AUC points (FS), 0.25 AUC points (IMDB) and 0.08
AUC points (WebKB). AMLN performs even worse than
MLN in each case.

Figures[2d| 2e] and [2f] plot the Negative CLLs (in log-scale)
on FS, IMDB, and WebKB datasets respectively (lower is
better). The general trend is the same as that for AUC,
with DA-MLN outperforming both MLN and AMLN, with
increasing gain with domain size.

Both these sets of results clearly demonstrate the efficacy
of our approach in generalizing the parameters learned over
small-sized training data to much larger domains. Though
we observe some drop in performance with increasing do-
main size, it is significantly less compared to other ap-
proaches which can perform abysmally, e.g., MLN for
IMDB has an AUC of 0.03 at domain size of 300. Whether
we can we modify DA-MLN such that there is no drop in
performance whatsoever with increasing domain size is a
direction for future work.

8 Conclusion and Future Work

In this paper, we have addressed the problem with the stan-
dard Markov Logic representation in the limit of increasing
domain size. We have shown that in the limit of domain
size approaching infinity, the marginal probabilities either
tend to the extreme or converge to a constant (independent
of formula weight) even for some simple MLN formulas.
As a solution, we have proposed a re-parameterization of
MLNs, referred to as Domain-size Aware Markov Logic
Networks (DA-MLNs). While defining the distribution,
they take into the account the number of connections each
ground atom has in the ground network. We show that
probabilities are well behaved in the limit i.e. they depend
on the learned weights in DA-MLNSs at least in some sim-
ple cases. Experiments on three benchmark domains show
the efficacy of DA-MLNs possibly establishing them as a
superior alternative to MLNs. Directions for future work
include developing the theory around DA-MLNs further,
running additional experiments on newer domains, and ex-
perimentally comparing with other approaches for which
we currently do not have any implementation e.g., [7].
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