
SCALABLE INFERENCE TECHNIQUES FOR MARKOV LOGIC

by

Deepak Venugopal

APPROVED BY SUPERVISORY COMMITTEE:

Vibhav Gogate, Chair

Gopal Gupta

Sanda M. Harabagiu

Raymond J. Mooney

Vincent Ng

Copyright c© 2015

Deepak Venugopal

All rights reserved

SCALABLE INFERENCE TECHNIQUES FOR MARKOV LOGIC

by

DEEPAK VENUGOPAL, BE, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

August 2015

ACKNOWLEDGMENTS

I wish to thank my advisor Vibhav Gogate without whom this dissertation would not have

been possible. Vibhav has been a great advisor who inspired me to work hard and maintain

high standards of research by setting a fine example. He has shown me how to think and write

with clarity, and always seemed to have an idea whenever I have been struck with seemingly

unsolvable problems. Best of all, he has always been patient, friendly and approachable. I

would certainly hope to emulate some of his traits as I embark on my own academic career.

Next, I wish to thank members of my dissertation committee, Dr. Gopal Gupta, Dr. Sanda

Harabagiu, Dr. Ray Mooney and Dr. Vincent Ng, for the time they have taken not only

for my dissertation but also in my job search process. Particularly, Dr. Mooney was kind

enough to serve on my committee from UT-Austin and I am grateful for this. I also wish to

thank Somdeb, Chen, Dr. Parag Singla and Dr. Vincent Ng for collaborating with me on

various projects due to which I gained a lot of insight into several different research areas.

Needless to say, my family has supported me enormously in completing this dissertation. It

is hard to thank Krithika enough for the love, patience and faith that she has shown in me

during numerous ups and downs associated with Ph.D. life. Were it not for her support, I

certainly would not have made it this far. Special thanks to Esha for all the laughs and joy

she has given me when writing this dissertation. My parents have given me every possible

opportunity and let me pursue my interests at all times. I am extremely thankful for their

wishes, love and encouragement at all stages of my life. I am also deeply indebted to my

extended family in India that has given me much needed support during my Ph.D.

I will also cherish the friendships that I made at UT-Dallas. Somdeb, David, Tahrima, Li,

Chen and several others have been great friends and I have enjoyed countless interesting

iv

conversations with them about work and life in general. I thank them and will certainly

miss their company as I finish my studies.

Last but not least, I thank various funding agencies: ARO, AFRL and DARPA for providing

me financial support through grant numbers W911NF-08-1-0242, FA8750-14-C-0021 and

FA8750-14-C-0005.

June 2015

v

SCALABLE INFERENCE TECHNIQUES FOR MARKOV LOGIC

Publication No.

Deepak Venugopal, PhD
The University of Texas at Dallas, 2015

Supervising Professor: Vibhav Gogate

In this dissertation, we focus on Markov logic networks (MLNs), an advanced modeling

language that combines first-order logic, the cornerstone of traditional Artificial Intelligence

(AI), with probabilistic graphical models, the cornerstone of modern AI. MLNs are routinely

used in a wide variety of application domains including natural language processing and com-

puter vision, and are preferred over propositional representations because unlike the latter

they yield compact, interpretable models that can be easily modified and tuned. Unfortu-

nately, even though the MLN representation is compact and efficient, inference in them is

notoriously difficult and despite great progress, several inference tasks in complex real-world

MLNs are beyond the reach of existing technology. In this dissertation, we greatly advance

the state-of-the-art in MLN inference, enabling it to solve much harder and larger problems

than existing approaches. We develop several domain-independent principles, techniques and

algorithms for fast, scalable and accurate inference that fully exploit both probabilistic and

logical structure.

This dissertation makes the following five contributions. First, we propose two approaches

that respectively address two fundamental problems with Gibbs sampling, a popular approx-

vi

imate inference algorithm: it does not converge in presence of determinism and it exhibits

poor accuracy when the MLN contains a large number of strongly correlated variables. Sec-

ond, we lift sampling-based approximate inference algorithms to the first-order level, enabling

them to take full advantage of symmetries and relational structure in MLNs. Third, we de-

velop novel approaches for exploiting approximate symmetries. These approaches help scale

up inference to large, complex MLNs, which are not amenable to conventional lifting tech-

niques that exploit only exact symmetries. Fourth, we propose a new, efficient algorithm

for solving a major bottleneck in all inference algorithms for MLNs: counting the number

of true groundings of each formula. We demonstrate empirically that our new counting ap-

proach yields orders of magnitude improvements in both the speed and quality of inference.

Finally, we demonstrate the power and promise of our approaches on Biomedical event ex-

traction, a challenging real-world information extraction task, on which our system achieved

state-of-the-art results.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iv

ABSTRACT . vi

LIST OF FIGURES . xii

LIST OF TABLES . xvii

CHAPTER 1 INTRODUCTION . 1

1.1 Contributions . 3

CHAPTER 2 BACKGROUND . 12

2.1 Representation . 12

2.1.1 Propositional Logic . 12

2.1.2 First-Order Logic . 12

2.1.3 Discrete Graphical Models . 14

2.1.4 Markov Logic Networks . 18

2.2 Inference . 20

2.2.1 Exact Inference in Markov Networks 22

2.2.2 Sampling Based Approximate Inference 24

2.2.3 Lifted Inference . 34

2.3 Learning . 41

2.3.1 Weight Learning in MLNs . 41

CHAPTER 3 HANDLING LOGICAL DEPENDENCIES IN MCMC BASED INFER-
ENCE . 44

3.1 GiSS: Sampling in PGMs with determinism 45

3.1.1 The GiSS Algorithm . 49

3.1.2 Computing the Sample Weights . 49

3.1.3 Related Work and Discussion . 54

3.1.4 Experiments . 55

viii

3.2 Dynamic Blocking and Collapsing . 61

3.2.1 Combining Blocking and Collapsing 63

3.2.2 Optimally Selecting Blocked and Collapsed Variables 65

3.2.3 Dynamic Blocked-Collapsed Gibbs Sampling 68

3.2.4 Related Work . 74

3.2.5 Experiments . 76

3.3 Summary . 81

CHAPTER 4 LIFTING SAMPLING BASED INFERENCE ALGORITHMS 83

4.1 Lifted Blocked Gibbs . 84

4.1.1 Our Approach . 86

4.1.2 PTP-Tree . 89

4.1.3 Lifted Blocked Gibbs . 91

4.1.4 Lifted Messages . 93

4.1.5 Clustering . 101

4.1.6 Experiments . 104

4.2 Lifted Importance Sampling . 108

4.2.1 PTP-based Importance Sampling . 109

4.2.2 New Lifting Rule . 111

4.2.3 Constructing the Proposal Distribution 116

4.2.4 Experiments . 120

4.3 Summary . 121

CHAPTER 5 EXPLOITING APPROXIMATE SYMMETRIES FOR SCALABLE IN-
FERENCE . 124

5.1 Grounding and Evidence Problems . 125

5.2 Approximate Lifting using Evidence-based Clustering 126

5.2.1 Input Specification . 128

5.2.2 Problem Formulation . 130

5.2.3 Evidence Approximation . 131

5.2.4 Algorithm Specification . 133

ix

5.2.5 Evidence Based Distance Function 135

5.2.6 Related Work . 141

5.2.7 Experiments . 142

5.3 Application: Scalable Importance Sampling 149

5.3.1 Constructing and Sampling the Proposal Distribution 150

5.3.2 Computing the Importance Weight 153

5.3.3 Rao-Blackwellisation . 156

5.3.4 Experiments . 158

5.4 Summary . 160

CHAPTER 6 EXPLOITING EFFICIENT COUNTING STRATEGIES FOR SCAL-
ABLE INFERENCE . 162

6.1 Introduction . 162

6.2 Encoding the Counting Problem . 164

6.2.1 CSP Formulation . 165

6.2.2 Counting the Number of Solutions of the CSP 168

6.2.3 Junction Trees for Solution Counting 170

6.3 Application I: Gibbs Sampling . 171

6.4 Application II: MaxWalkSAT . 172

6.5 Extensions . 177

6.5.1 Existential Quantifiers . 177

6.5.2 Lifted Inference . 178

6.6 Experiments . 178

6.6.1 Setup . 178

6.6.2 Results for Gibbs Sampling . 180

6.6.3 Results for MaxWalkSAT . 180

6.7 Summary . 181

CHAPTER 7 JOINT INFERENCE FOR EXTRACTING BIOMEDICAL EVENTS 183

7.1 Introduction . 183

7.2 Background . 186

x

7.2.1 Related Work . 186

7.2.2 The Genia Event Extraction Task . 188

7.3 Pipeline Model . 189

7.3.1 Trigger Labeling . 191

7.3.2 Argument Labeling . 191

7.4 Joint Model . 192

7.4.1 MLN Structure . 192

7.4.2 Weight Learning . 194

7.4.3 Testing . 195

7.4.4 Inference . 196

7.5 Evaluation . 198

7.5.1 Experimental Setup . 198

7.5.2 Results on the BioNLP’13 Dataset 199

7.5.3 Results on the BioNLP’11 Dataset 201

7.5.4 Results on the BioNLP’09 Dataset 201

7.6 Summary . 202

CHAPTER 8 FUTURE WORK . 204

8.1 Advancing Approximate Lifting . 204

8.2 Large Scale Weight Learning . 205

8.3 Learning Feasible Structures . 206

8.4 Systems Engineering . 207

8.5 Joint Inference Applications . 207

8.6 Lifted Inference in High-level Languages . 208

CHAPTER 9 CONCLUSION . 209

REFERENCES . 210

VITA

xi

LIST OF FIGURES

1.1 The space of inference problems in MLNs. The space is divided into several
overlapping regions. The label associated with a region gives the name of the
general inference technique that is capable of efficiently solving problems in the
region. G∗ denotes the class of exact graphical model inference algorithms (or ex-
act propositional inference), Ga denotes the class of approximate graphical model
inference algorithms (approximate propositional inference), L∗ denotes the class
of exact lifted inference algorithms, La denotes the class of lifted approximate
inference algorithms (unbiased approximations with strong provable guarantees),
La′ denotes the class of approximate lifted inference algorithms with new types
of approximations where we may need to sacrifice strong theoretical guarantees
to achieve practical scalability. 4

2.1 An example Markov network. (a) shows the primal graph, (b) - (d) show the po-
tentials defined on cliques in the primal graph and (e) shows the joint distribution
represented by the Markov network. 16

2.2 Example to illustrate conversion of the Markov network potential in (a) to weighted
formulas in a log-linear model as shown in (b). 17

2.3 (a) shows an example MLN. (b) shows the Markov network corresponding to the
MLN. Each clique in the graph shown in (b) represents a potential or equivalently
a ground formula. (c) shows the joint probability distribution represented by the
MLN. Note that in (b) and (c), the predicate names are shortened to their first
letter. 20

2.4 Example for variable elimination. (a), (b) are the original potentials from which
we want to eliminate X. (c) is the product of the two potentials and (d) sums-out
X from the product. 23

2.5 Example of a 2-dimensional Markov chain, both the dimensions, X and Y are
binary. The 4 possible states in the state-space are labeled in (a) and its corre-
sponding 4× 4 transition matrix is shown in (b). 26

2.6 Illustrating the power of lifted inference on high treewidth models. (a) is the
primal graph of the ground Markov network corresponding to ∀x∀y¬R(x)∨ S(y);
w with each variable having a domain-size equal to d. Computing the partition
function for this Markov network is exponential in d. (b) is a schematic illustration
of how PTP would compute the partition function using lifted inference. The
complexity of lifted inference is linear in d. 37

xii

3.1 A Markov network with determinism. (a) and (b) are the potentials of the Markov
network. (c) is the full joint distribution. 45

3.2 (a) shows two functions φ1 and φ2 defining a PGM over four binary random
variables (φ1 is a deterministic function). Let Q(A,B,C,D) = Q(A) Q(B|A)
Q(C|B) Q(D|C) be the proposal distribution where Q(A = 0) = 0.7, Q(B =
0|A = 0) = Q(C = 0|B = 0) = Q(D = 0|C = 0) = 0.6 and Q(B = 0|A = 1)
= Q(C = 0|B = 1) = Q(D = 0|C = 1) = 0.2. (b) shows the probability tree of
Q. In the tree, the left and the right branches of a node labeled by X denote the
assignment of 0 and 1 to X respectively. (c) shows the backtrack-free probability
tree derived from the proposal distribution by removing all sub-trees that contain
only zero weight assignments, and normalizing. We have removed two sub-trees
from the probability tree given in (b): the sub-tree rooted at A = 0, B = 0 and
the sub-tree rooted at A = 1, B = 0, C = 0. Any samples extending these two
partial assignments will have zero weight. 48

3.3 Average Hellinger distance between the exact and the approximate one-variable
marginals plotted as a function of time along with error bars (indicating the
standard deviation taken over 5 runs) for GiSS, MC-SAT, BP, SampleSearch
(SS) and Gibbs sampling. (a)-(c):Grids; (d)-(f):Linkage; 57

3.4 Average Hellinger distance between the exact and the approximate one-variable
marginals plotted as a function of time along with error bars (indicating the
standard deviation taken over 5 runs) for GiSS, MC-SAT, BP, SampleSearch
(SS) and Gibbs sampling.(a)-(c):Relational; (d)-(f):Promedas. 59

3.5 Average Hellinger distance between the exact and the approximate one-variable
marginals plotted as a function of time along with error bars (standard deviation
taken over 5 runs) for GiSS-HM (GiSS with the harmonic mean weighting scheme),
GiSS-Prod: (GiSS with the product weighting scheme) and GiSS-Annealed: (GiSS
with the annealed weighting scheme). 60

3.6 Example to illustrate trade-off between blocking and collapsing. 62

3.7 Average Hellinger distance between the exact and the approximate 1-variable
marginals plotted as a function of time. (a)-(c): Grids, (d)-(f): Relational 77

3.8 Average Hellinger distance between the exact and the approximate 1-variable
marginals plotted as a function of time. (a)-(c): Linkage, (d)-(f): Promedas. . . 79

3.9 Blocking vs. Collapsing tradeoff. (a)-(c): Impact of varying α with β set to a
constant value. (d)-(f): Impact of varying β with α set to a constant value. We
use γ = 50 × α. In all the plots, we plot the average Hellinger distance between
the exact and the approximate 1-variable marginals as a function of time. The
notation shown in the plots is as follows. DBCG-ax-by indicates that α = x and β
= y. 80

xiii

4.1 Two possible clusterings for lifted blocked Gibbs sampling on the example MLN

having two weighted formulas. : R(x, y) ∨ S(y, z), w1 and S(y, z) ∨ T(z, u), w2. . 88

4.2 The PTP tree for the MLN which contains formulas {R(x, y) ∨ Si(y), w}Ki=1 and

{Si(y), w′i}Ki=1. The triangle represents a power node where y is the decomposer

variable. The circle represents a conditioning node corresponding to an atom.

For the atom R(x, Y) which represents ∆x groundings, the conditioning node has

∆x + 1 children, where the j-th child represents conditioning over all groundings

of R(x, Y) by setting any j groundings to true and ∆x − j groundings to false.

After conditioning on R(x, Y), we can split the remaining MLN into k indepen-

dent parts, where each part contains a single atom of the form Sk(Y). This is

represented as a decomposition node by the small square. We then condition on

each of these atoms as represented by the conditioning node. 90

4.3 Propositional vs Lifted State Space . 99

4.4 Illustrating accuracy. Plots show average KL Divergence between the true marginal

probabilities and the approximate marginal probabilities as a function of time for:

(a) Student with 50 objects and (b) Asthma with 50 objects. 106

4.5 Convergence diagnostics using Gelman-Rubin statistic (R) as a function of time

for (a) Topics and (b) WebKB. 107

4.6 Scalability of lifted blocked Gibbs. Time required by 100 Gibbs iterations as a

function of the number of objects for (a) Topics and (b) WebKB. 107

4.7 Illustration of lifted importance sampling. (a) An example MLN. (b) Sampled

groundings of R(x, y). (c) Reduced MLN obtained by instantiating the sampled

groundings of R. 112

4.8 Illustration of the advanced grouping strategy for lifted importance sampling.

Here we sample indices of ji for each Yi ∈ ∆y. Let the sampled indices ji be as

shown. Then, we will get the same MLN as the one in Figure 4.7(c). 113

4.9 Lower bound on the partition function computed using LIS, ILIS and ALIS as

a function of time. (a) The example R, S, T domain with 100 objects. (b) The

example R, S, T domain with 150 objects. (c) WEBKB MLN with 200 objects, (d)

WEBKB MLN with 300 objects, (e) Entity Resolution MLN with 200 objects and

(f) Entity resolution MLN with 300 objects. Note that for each point, we have

plotted error bars showing the standard deviation. When the standard deviation

is small, the error bars are not visible in the plots. 122

5.1 Effect of evidence on an MLN with one formula, 1.75 Strong(x) ⇒ Wins(x,y).

The marginal probabilities which were equal in (a) become unequal in (c) due to

evidence (b). 127

xiv

5.2 Illustrating evidence approximation for ¬Studies(x, y) ∨ Teaches(y, z) ∨ Student
(z, x); 0.75. For varying combinations of samples on Student and Studies,
the average true and approximate marginals (after evidence approximation) for
all groundings of Teaches are plotted. As seen here, evidence approximation
smooths out the variations in the true marginals by introducing additional sym-
metries in the evidence. 133

5.3 Illustrating clusters of marginal probabilities when given different evidence in-
stances. For the MLN with 1 formula, ¬Smokes(x) ∨ ¬Friends(x,y) ∨ Asthma(y);
0.75, where each logical variable has a domain-size equal to 3. The x-axis specifies
the probabilities and the y-axis shows the index of a ground atom of Friends (0-
9). In each figure, we input different evidences for Smokes(x) and Asthma(y), and
plot the resulting marginal probabilities for every ground atom of Friends(x, y).
Our distance function tries to cluster together atoms with similar marginals. . . 136

5.4 Approximation-error vs ICR. The y-axis shows the average KL-Divergence of the
marginals computed on the clustered MLN from the marginals computed on the
original MLN (smaller is better). The inference algorithm used is Gibbs sampling. 144

5.5 Approximation-error vs ICR. The y-axis shows the average KL-Divergence of
the marginals computed on the clustered MLN from the marginals computed
on the original MLN (smaller is better). The inference algorithm used is Belief
Propagation. 145

5.6 Illustrating the effect of evidence. The x-axis varies the amount of evidence on
the atoms in the MLN. The y-axis plots the approximation error for varying
cluster-bounds. The experiment is run using K-Means for clustering and belief
propagation for inference. 147

5.7 Scalability experiments. The y-axis shows the time taken to form the approximate
MLN and the x-axis shows [Nf , Na], where Nf is the number of ground formulas
and Na is the number of ground atoms. 148

5.8 (a) an example MLN M and (b) MLN M̂ obtained from M by grounding each
logical variable in M by the cluster centers µ1, . . ., µ4. 151

5.9 Tradeoff between computational efficiency and accuracy. The y-axis plots the
average KL-divergence between the true marginals and the approximated ones
for different values of Ns. Larger Ns implies weaker proposal, faster sampling.
For this experiment, we set β (sampling bound) to 0.2. Note that changing β did
not affect our results very significantly. 160

5.10 Illustrating scalability. Sampling rate is plotted against Ns that controls quality
of the proposal distribution. We show the results for different sampling bounds
(b) that controls quality of weight approximation. (a) shows the results for Hy-
pertext classification and (b) shows the results for ER. As seen in the plots, the
sampling rate can be controlled by either introducing more approximations in
the proposal (larger values of Ns) and/or by introducing approximations in the
weighting method (larger values of b). 161

xv

6.1 (a) A possible world of an MLN having only one formula: f = ∀x, ∀y,∀z R(x, y)∨
S(y, z). The domain of each logical variable is {A,B}; (b) Functions φ1 and φ2

corresponding to R(x, y) and S(y, z) respectively; and (c) Function φ3 which is
equal to the product of the two functions given in (b). The number of 1s in φ3

equals the number of groundings of f that evaluate to False. 167

7.1 Example of event extraction in the BioNLP Genia task. (b) shows all the events
extracted from sentence (a). Note that successful extraction of E13 depends on
E12 and E14. 185

7.2 The BioMLN structure. 193

7.3 Comparison of the combined model (MLN+SVM) with the pipeline model on
the BioNLP’13 test and development data. 200

xvi

LIST OF TABLES

3.1 Comparing prior work and our work along different dimensions. Blocking (1: uses
a single block, 2: uses 2 blocks, M: uses multiple blocks, N: not blocked), collaps-
ing (Y/N), Rao-Blackwell Estimation (RB) (Y/N) and Dynamic (N: Static,Y:
Dynamic). 75

6.1 #SATGround complexities using various strategies. M is the number of formulas,
Vi is the set of variables in the CSP encoded for the ith formula, d is the domain-
size of each variable and w∗i is the treewidth of the CSP encoded for the ith

formula. 168

6.2 Results on benchmarks for Gibbs sampling using our approach. SRate is the
sampling rate (#samples/second) and CTime is the compilation time in seconds.
X denotes that the system ran out of time or memory. 181

6.3 Results on benchmarks for MaxWalkSAT. For each system, we show CTime;FRate,
where CTime is the compilation time (in seconds) for our system or the ground-
ing time in Alchemy/Tuffy. FRate is the flip rate (#Flips/second). “X” denotes
that the system ran out of time or memory. 182

7.1 Features for trigger labeling and argument labeling. 190

7.2 Statistics on the BioNLP datasets, which consist of annotated papers/abstracts
from PubMed. (x, y, z): x in training, y in development and z in test. #TT
indicates the total number of trigger types. The total number of argument types
is 2. 198

7.3 Recall (Rec.), Precision (Prec.) and F1 score on the BioNLP’13 test data. . . . 199

7.4 Results on the BioNLP’11 test data. 201

7.5 Results on the BioNLP’09 test data. “−” indicates that the corresponding values
are not known. 202

xvii

CHAPTER 1

INTRODUCTION

Over the past few decades, two core theories have contributed immensely to the success and

popularity of Artificial Intelligence (AI) and machine learning (ML): logic and probability.

Each theory enables the user to compactly and faithfully model different facets of the real-

world. Specifically, first-order logic and its various subsets, enable the user to compactly

encode background relational knowledge while probabilistic models and methods enable him

or her to represent and reason about uncertainty in a principled manner.

In the past, research on logic and probability in AI/ML was carried out by researchers

who affiliated themselves with different sub-communities and conferences. These researchers

seldom interacted or shared ideas with each other. A problem with this “to each his own”

approach is that many real-world problems are of such size and complexity that they cannot

be solved accurately until and unless we marry logical and probabilistic representation and

reasoning techniques. Although, researchers as far back as Leibniz in the 17th century and

relatively recently Carnap (Carnap, 1950) and Gaifman (Gaifman, 1964) had emphasized

the need and worked on unifying logic and probability, it was not until recently that these

efforts have gained significant momentum, coinciding with the rise of a new sub-field of

AI/ML called statistical relational learning (SRL) (Getoor and Taskar, 2007).

In this dissertation, we focus on Markov logic (Domingos and Lowd, 2009), a modeling

tool for statistical relational learning that combines probabilistic graphical models (Pearl,

1988) with first-order logic. Although, other languages that combine the two do exist (e.g.,

Blog (Milch et al., 2005), IBAL (Pfeffer, 2001), Problog (De Raedt et al., 2007), BALP

(Raghavan and Mooney, 2011), PSL (Broecheler et al., 2010), etc.), we focus on Markov logic

because it is more intuitive and more widely used than the aforementioned languages.

1

2

At a high level, a Markov logic network (MLN) is a set of weighted first-order logic formu-

las. The formulas encode background knowledge and the weights, which are real numbers,

express the belief in the truth of the corresponding formula. Higher the weight, higher the

probability of the corresponding formula being true in a possible world, all other things being

equal. Given a set of constants that model objects in the real-world domain, the MLN repre-

sents a Markov network, an undirected probabilistic graphical model. The Markov network

represents a joint probability distribution over the ground atoms – all possible propositional

atoms obtained by substituting each argument of each predicate with a constant in the

domain – and thus an MLN can be used to answer any query over the ground atoms via

probabilistic inference.

The key advantage of MLNs is that the user can easily write concise, interpretable models.

As a result, they are widely used by application designers for modeling complex problems in

a variety of domains including natural language understanding, robotics, computer vision,

information extraction, and social networks. Unfortunately, even though great progress has

been made in inference and learning algorithms, several real-world MLNs are so large and

complex that inference (over them) remains out of reach of even the most advanced methods.

The main contribution of this dissertation is a suite of novel methods that significantly

scale up and advance the state-of-the-art in MLN inference, and can solve much harder and

more complex tasks than is possible today. Specifically, we develop several fundamental

techniques for fast, scalable and more accurate inference that fully exploit logical structure

and symmetries encoded in the MLN representation. In developing these techniques, we

draw on concepts from diverse fields such as sampling theory, machine learning, database

theory, constraint satisfaction, SAT and discrete optimization. We demonstrate the wide

applicability of our novel methods by using them to solve a Biomedical event extraction

task, a challenging task in the information extraction domain.

The road map of this dissertation is as follows. In the next section, we present a brief

overview of our contributions. Chapter 2 provides the necessary background to follow the

3

rest of our work. Chapters 3-7 present our original research contributions and chapter 8

presents possible future directions.

1.1 Contributions

Our contributions can be best explained using Figure. 1.1, which schematically illustrates the

space of MLN inference problems. The problems are divided into several overlapping regions,

which we call classes. Each class is labeled with the type of inference techniques that can

be used to accurately and efficiently solve problems in the class. The inner-most class cor-

responds to exact propositional inference algorithms, namely, propositional algorithms that

work on the probabilistic graphical model represented by the MLN and output exact answers.

Unfortunately, these algorithms can solve only a tiny fraction of the inference problems in

practice, even if one uses advanced (exact) methods such as Bucket elimination (Dechter,

1999), AND/OR search (Dechter and Mateescu, 2007), recursive conditioning (Darwiche,

2001) and junction trees (Lauritzen and Spiegelhalter, 1988). Approximate propositional

inference algorithms (e.g., MCMC sampling (Liu, 2001), Belief Propagation (Yedidia et al.,

2000), etc.) output approximate answers and are naturally more scalable; they can accu-

rately solve a much larger class of inference problems than exact methods. The term lifted

inference algorithms refers to algorithms that take advantage of symmetries in the relational

representation (cf. (Poole, 2003; de Salvo Braz, 2007; Gogate and Domingos, 2011b)). These

algorithms include exact propositional inference algorithms as special cases and when sym-

metries are present, are much more scalable than their propositional counterparts. Similar

to propositional inference, exact lifted inference is subsumed by unbiased approximate lifted

inference. We have used the term unbiased to denote conventional approximation infer-

ence techniques such as importance sampling, Belief propagation and Gibbs sampling which

output estimates having strong guarantees (e.g., convergence to the correct distribution,

consistency, etc.). Finally, there is a vast landscape of extremely challenging MLNs which

4

G∗
L∗
Ga

La

La′

Figure 1.1. The space of inference problems in MLNs. The space is divided into several over-
lapping regions. The label associated with a region gives the name of the general inference
technique that is capable of efficiently solving problems in the region. G∗ denotes the class
of exact graphical model inference algorithms (or exact propositional inference), Ga denotes
the class of approximate graphical model inference algorithms (approximate propositional
inference), L∗ denotes the class of exact lifted inference algorithms, La denotes the class
of lifted approximate inference algorithms (unbiased approximations with strong provable
guarantees), La′ denotes the class of approximate lifted inference algorithms with new types
of approximations where we may need to sacrifice strong theoretical guarantees to achieve
practical scalability.

both exact and approximate, propositional as well as lifted methods with strong guarantees

are unable to handle. In such cases, in order to achieve scalability, we require novel ap-

proximations and sometimes need to sacrifice strong theoretical guarantees in lieu of weaker

guarantees. We call such approximations biased approximations.

In this dissertation, we propose algorithms corresponding to several of the general infer-

ence techniques illustrated in Figure. 1.1 and in each case, we push the boundaries of these

techniques outwards, significantly expanding their range (schematically, our new techniques

increase the area of each oval in the figure). We describe our specific contributions in each

subsequent chapter next.

Chapter 3 describes two novel approaches for scaling up Gibbs sampling (Geman and Ge-

man, 1984), arguably the most widely used Markov Chain Monte Carlo (MCMC) algorithm.

Our two approaches respectively address the following issues with Gibbs sampling: (1) it

5

performs poorly in presence of logical dependencies and determinism, and (2) it exhibits

slow convergence when several correlated variables are present. These issues are especially

problematic in the context of MLNs because most real-world MLNs have strong logical and

deterministic dependencies (e.g., formulas having high weights) and a large number of cor-

related variables.

Our first technique called GiSS (Venugopal and Gogate, 2013a) improves the perfor-

mance of Gibbs sampling on models having hard deterministic constraints. Deterministic

constraints fracture the support (the subset of assignments having non-zero probability) of

the probability space into multiple regions. On such models, Gibbs sampling gets struck in

a local cluster in the state space and fails to converge to the desired posterior probability

distribution (the distribution represented by the MLN given evidence). As a result, it may

yield inaccurate answers. GiSS combines Gibbs sampling with SampleSearch (Gogate and

Dechter, 2011), an importance sampling algorithm that generates high quality samples from

deterministic spaces. At a high level, SampleSearch samples the clusters, hopping from one

cluster to another, and Gibbs sampling samples the assignments within each cluster. As a

result, the entire support of the probability space is reachable, and the algorithm (GiSS)

converges to the desired distribution.

Our second approach (Venugopal and Gogate, 2013b) improves the performance of Gibbs

sampling on models having several strongly correlated variables. It is known that the two

strategies of collapsing and blocking (Liu, 2001), when applied separately, can improve the

convergence of Gibbs sampling on such models. We show that the convergence can be further

improved by cleverly combining the two strategies. The combination is non-trivial because

collapsing and blocking are orthogonal – using one diminishes the performance gains achieved

by the other and vice versa. We solve this problem by formulating it as a multi-objective

optimization problem and show that a so-called Pareto optimal solution to the optimization

problem yields a dynamic/adaptive MCMC sampler that is superior in terms of accuracy

6

and convergence to Gibbs sampling and its various advanced variations on a wide variety of

challenging inference problems.

Chapter 4 presents sampling-based lifted inference algorithms for MLNs. Unlike proposi-

tional (graphical model) inference algorithms that operate on the Markov network obtained

by grounding the MLN, lifted algorithms (Poole, 2003; de Salvo Braz, 2007; Gogate and

Domingos, 2011b) exploit symmetries in the relational representation and operate as much

as possible on the compact first-order representation, grounding only when necessary. As a

result, they are far more scalable than propositional approaches. We lift two widely used

sampling algorithms to the first-order level: (i) Blocked Gibbs sampling (Jensen et al., 1993)

which is an advanced variant of Gibbs sampling and (ii) Importance Sampling (Rubinstein,

1981). We briefly describe the two algorithms, in turn, next.

Unlike Gibbs sampling, which samples just one randomly selected variable at each itera-

tion, the blocked Gibbs sampling algorithm partitions the variables into blocks, and jointly

samples all variables in a randomly selected block at each iteration. As the number of vari-

ables in each block (block size) is increased, the accuracy typically improves but so does the

computational complexity and thus there is a trade-off. Our main idea in Lifted Blocked

Gibbs sampling (LBG) (Venugopal and Gogate, 2012) is to cluster first-order atoms rather

than propositional variables. We show that unlike propositional blocking which improves

accuracy at the expense of increased complexity, in some cases, increasing the lifted block

size may increase the accuracy and reduce the complexity. This is because increasing the

block size gives the lifted algorithms more opportunities to exploit symmetries. We show

that LBG has smaller variance and is therefore likely to be more accurate than blocked Gibbs

sampling. We also show via a detailed empirical evaluation on large real-world MLNs that

LBG is far superior to propositional approaches in terms of scalability and convergence.

Our second contribution in Chapter 4 is lifting the importance sampling algorithm. Unlike

Gibbs sampling, which uses dependent unweighted samples for estimating various statistics,

7

importance sampling (IS) uses independent weighted samples. Since it is hard to generate

independent samples from the posterior distribution (the distribution represented by the

MLN), importance sampling draws independent samples from a so-called proposal distri-

bution and corrects the bias by weighting each sample appropriately. The accuracy of IS

depends on how close the proposal is to the posterior distribution. Constructing a good

proposal is challenging in practice, and is the main sub-task in IS.

In lifted importance sampling (LIS) (Gogate et al., 2012), we exploit symmetries in

the MLN representation to design a proposal distribution that is not only highly accurate

but also lifted. Specifically, we leverage what are known as lifting rules (Jha et al., 2010),

namely, rules that identify symmetries from the first-order representation, to group together

symmetric ground atoms. We show that our grouping strategy provably reduces the variance

of importance sampling because each sample from the lifted proposal distribution is worth

several distinct samples from a propositional proposal distribution (it is known that the

accuracy improves as the number of samples is increased). We also develop new lifting rules

which identify several new symmetries that previous methods (Gogate and Domingos, 2011b)

are unable to detect, which further improves the quality of our estimates. We illustrate how

these rules can be used to construct the lifted proposal distribution in a principled, tractable

manner and further, develop an adaptive approach that improves the parameters of the

proposal distribution over time. We demonstrate empirically that our approach significantly

improves the accuracy and scalability of importance sampling in MLNs.

Lifted inference algorithms are extremely powerful when they are able to find “exploitable

symmetries” in the first-order representation. On such MLNs, they work directly on the

compact first-order representation without consulting the much larger ground representation

(Markov network). Unfortunately, the class of MLNs that have exploitable symmetries

(according to our current knowledge of lifted inference) is extremely restrictive (Jha et al.,

2010; Van den Broeck, 2011). Moreover, as the amount of evidence, namely information that

8

some atoms in the MLN are observed to be either true or false, is increased, the performance

of lifted inference algorithms, even on MLNs having exploitable symmetries, deteriorates

considerably. This is because in contrast to propositional inference where evidence can

be used to prune a large portion of the graphical model, evidence breaks symmetries and

increases the size of the lifted network. Because of these two issues, in practice, lifted

inference algorithms often ground a large portion of the MLN and have the same scalability

problems as propositional inference.

Chapter 5 addresses the aforementioned problems and presents a novel, practical ap-

proach that exploits approximate symmetries (Venugopal and Gogate, 2014a,b) and easily

scales to large problems defined over MLNs having arbitrary non-liftable structure and large

amount of (symmetry-breaking) evidence. In order to find approximate symmetries, we for-

mulate a clustering problem and utilize standard unsupervised machine learning algorithms

such as K-Means to partition objects into clusters, such that objects that are approximately

symmetrical (exchangeable) from an inference perspective are in the same cluster. Given

a clustering, we generate a compressed representation of the original MLN by replacing all

objects in each cluster by a new (meta) object. Then, we perform lifted inference over the

compressed MLN and use these results over the full MLN under the assumption that all

objects within a cluster have the same statistics.

To learn approximate symmetries effectively, we develop a novel distance measure (which

will be used by the clustering algorithm) between objects that is based on the evidence

presented to the MLN. Specifically, our premise in designing the distance measure is that

if evidence presented to the MLN affects domain objects in a “similar” manner, then such

objects can typically be exchanged with each other without affecting the inference results.

Thus, our method dynamically adapts itself as the observed evidence changes. We perform

a detailed evaluation of our approach on several real-world MLNs with arbitrary evidence

utilizing different clustering and different inference algorithms to demonstrate the generality

9

of our approach. Our results clearly show that our approach can accurately scale up inference

to far larger and more complex MLNs, which is not possible using existing inference methods.

An issue with approximate symmetries is that it introduces bias; the distribution repre-

sented by compressed MLN can be quite far from the one represented by the original MLN.

To control the bias, we develop a novel importance sampler that utilizes approximate sym-

metries for scalability but has provable guarantees on the estimates (Venugopal and Gogate,

2014b) in that as the number of samples is increased, the bias will go down, and disappear in

the limit of infinite samples (in the statistics literature, such schemes are called asymptoti-

cally unbiased). Specifically, we scale up the two key steps in importance sampling as follows.

First, use the compressed MLN to design an accurate proposal distribution and sample from

this proposal in a tractable, lifted manner. Each sample from our proposal corresponds to

multiple approximately-symmetric worlds in the original MLN. Second, we develop a novel

weighting scheme that approximates the importance weights tractably since computing the

exact importance weight of each lifted sample is computationally expensive. To reduce the

variance of our sampler, we develop a method to perform lifted Rao-Blackwellisation (Casella

and Robert, 1996), namely combine exact lifted inference with lifted sampling in order to

improve the accuracy.

In chapter 6, we introduce a novel strategy for scaling up MLN inference that is quite

distinct from the typical “symmetry-exploiting” techniques developed in the previous three

chapters (Venugopal et al., 2015). Our idea is based on the observation that several inference

algorithms, whether lifted or not, needs to solve the following task: given a possible world

(a truth assignment to all ground atoms), find the number of groundings of each first-order

formula that evaluate to true. Existing inference systems use a naive method which is very

inefficient and slow for solving this problem and is one of the main reasons for their poor

scalability. We develop a new, efficient approach for solving this problem. The key idea in

our approach is to encode the counting problem as the problem of counting the number of

10

solutions of a constraint satisfaction problem (CSP) (Dechter, 2003). The main advantage of

our encoding is that all guarantees, approximations and algorithms from decades of research

in CSPs can be easily leveraged to solve the counting problem efficiently. We apply our

approach to two classical approximate inference algorithms: Gibbs sampling and MaxWalk-

SAT (Kautz et al., 1997) (a local search solver). We show that in both these algorithms,

the key computational steps involve solving the encoded CSP where the constraints change

over time (dynamic CSP). We develop a junction tree (Lauritzen and Spiegelhalter, 1988;

Dechter, 1999) based algorithm (a classic approach for counting the number of solutions of

a CSP) for efficiently computing the number solutions of the dynamic CSP. Our detailed

experiments on several real-world MLNs with large domains clearly show that our approach

is orders of magnitude more scalable than existing state-of-the-art MLN systems such as

Alchemy (Kok et al., 2008) and Tuffy (Niu et al., 2011).

In Chapter 7, we propose a new MLN model for automatically extracting biomedical

events from raw text (Venugopal et al., 2014).1 MLNs are well-suited for this task because

unlike traditional machine learning algorithms (e.g., SVMs), MLNs can perform joint infer-

ence, i.e., exploit relational dependencies that typically exist between different events. We

model these dependencies by constructing an MLN that has both hard (infinite weight) and

soft formulas (we learn these weights from data). In practice, joint inference is extremely

challenging and exhibits poor scalability. Specifically, it turns out that certain rich linguistic

features (Chen and Ng, 2012; Huang and Riloff, 2012b; Li et al., 2012) that are essential

for accurate event extraction are extremely high dimensional and learning their weights re-

liably in our joint model is computationally infeasible (it will also require a large amount of

labeled data for producing reliable estimates). SVMs on the other hand, lack the ability to

perform joint inference but due to their simpler formulation can easily and effectively learn

high-dimensional features from limited data. To get the best of both worlds, we learn high

1Joint work with Prof. Vincent Ng and Chen Chen.

11

dimensional linguistic features using SVMs and embed these features as low-dimensional

soft-evidence in the MLN. However, even with this hybrid MLN, joint inference (and conse-

quently weight-learning) is still infeasible using off-the-shelf inference methods (ILPs (Roth

and Yih, 2005), MaxWalkSAT (Kautz et al., 1997), etc.) since the ground Markov network is

extremely large. Instead, we utilize first-order structure, namely lifted inference in our MLN

and drastically reduce the space/time complexity of joint inference in our event extraction

system. Our approach yields promising results on three BioNLP datasets; our system was

better or on par with the best published results and significantly outperformed all previous

MLN-based systems.2

2Our system did not participate in the BioNLP competition. Results compared against both competition
winners as well other systems that later tested against the same datasets

CHAPTER 2

BACKGROUND

In this chapter, we present a brief background on Markov networks and Markov logic. Specif-

ically, we briefly review the main concepts in representation, inference and learning. We also

provide an overview of sampling based statistical techniques which we have utilized heav-

ily throughout this dissertation. For more details on first-order logic, refer to (Russell and

Norvig, 2003; Genesereth and Kao, 2013), on Markov networks and probabilistic graphical

models, refer to (Koller and Friedman, 2009; Darwiche, 2009), on Markov logic, refer to

(Domingos and Lowd, 2009) and on sampling methods, refer to (Liu, 2001).

2.1 Representation

2.1.1 Propositional Logic

The language of propositional logic consists of atomic sentences called propositions or atoms,

and logical connectives such as ∧ (conjunction), ∨ (disjunction), ¬ (negation), ⇒ (im-

plication) and ⇔ (equivalence). Each proposition takes values from the binary domain

{False, True} (or {0, 1}). A propositional formula f is an atom, or any complex formula

that can be constructed from atoms using logical connectives. For example, A, B and C are

propositional atoms and f = A ∨ ¬B ∧ C is a propositional formula. A knowledge base (KB)

is a set of formulas. A world is a truth assignment to all atoms in the KB.

2.1.2 First-Order Logic

First-order logic (FOL) generalizes propositional logic by allowing relational structure be-

tween atoms. Throughout this dissertation, we assume a strict subset of first-order logic,

12

13

called finite Herbrand logic (cf. (Genesereth and Kao, 2013)). Thus, we assume that we

have no function constants and finitely many object constants. A first-order knowledge base

(KB) is a set of first-order formulas. A formula in first-order logic is made up of quantifiers

(∀ and ∃), logical variables, constants, predicates and logical connectives (∨, ∧, ¬, ⇒, and

⇔). We denote logical variables by lower case letters (e.g., x, y, z, etc.) and constants

by strings that begin with an upper case letter (e.g., A, Ana, Bob, etc.). Constants model

objects in the real-world domain. A predicate is a relation that takes a specific number

of arguments (called its arity) as input and outputs either True (synonymous with 1) or

False (synonymous with 0). We denote predicates by strings in typewriter font (e.g., R,

S, Smokes, etc.). We denote the i-th argument of a predicate R as iR. A term is either a

logical variable or a constant that can substitute an argument of a predicate. The domain

of a logical variable x refers to the set of constants that can be substituted for x and we

represent this as ∆x. An atom is an instance of a predicate in some formula. Throughout

this dissertation, we follow the convention that whenever we refer to an atom, i.e., we write

the predicate symbol followed by a parenthesized set of terms, for instance, R(x1, x2 . . . xn),

we use this notation in a general sense to refer to any atom in the first-order KB that unifies

with R(x1, x2 . . . xn). This gives us an easy way to refer to all atoms that correspond to a

specific predicate symbol, without complicating notation. We denote all possible groundings

that can be generated from a predicate R using ∆R. Any atom with arity equal to one is

called a singleton. That is, R(x) is a singleton and S(x,A) is also a singleton since it can be

renamed as SA(x). Clearly, for a singleton R(x), ∆x = ∆R.

A first-order formula is recursively defined as follows: (i) An atomic formula contains a

single predicate; (ii) Negation of an atomic formula is a formula; (iii) If f and g are formulas

then connecting them by binary connectives such as ∧ and ∨ yields a formula; and (iv) If f

is a formula and x is a logical variable then ∀xf and ∃xf are formulas.

We assume that each argument of each predicate is typed and can only be assigned to a

fixed subset of constants. By extension, each logical variable in each formula is also typed.

14

We further assume that all first-order formulas are disjunctive (clauses), have no free logical

variables (namely, each logical variable is quantified), have only universally quantified logical

variables (CNF). Note that all first-order formulas can be easily converted to this form. To

simplify notation, we at times skip explicitly writing ∀ for each variable. Throughout this

dissertation, any variable for which no quantifier is specified is implicitly assumed to be a

universally quantified variable. A ground atom is an atom that contains no logical variables,

i.e., each variable is substituted with a constant. A possible world, denoted by ω, is a truth

assignment to all possible ground atoms that can be formed from the constants and the

predicates.

2.1.3 Discrete Graphical Models

Graphical models refer to models that integrate classical graph theory and automated rea-

soning methods. In this dissertation, we focus only on discrete graphical models, namely

models that describe a joint distribution with discrete random variables. From here on, when

we use the term random variable, we implicitly mean a discrete random variable. The two

most widely used probabilistic graphical models (PGMs) are Bayesian networks and Markov

networks. Bayesian networks are directed or causal models (Pearl, 1988), where the joint

distribution is represented as a product of conditional probability distributions. Specifically,

each conditional distribution also called a conditional probability table (CPT) is specified

for a variable given all its parents in the Bayesian network. Markov networks, on the other

hand were originally derived from Markov Random Fields that were used to model physical

phenomena in statistical physics (cf. (Kindermann and Snell, 1980)). Markov networks are

un-directed models and represent the joint probability distribution as a product of poten-

tials/functions, where each function is defined over a subset of random variables and maps

each assignment to these variables to a non-negative real number. In this dissertation, for the

most part, we focus our discussions on Markov networks as they form the basis for Markov

logic.

15

We use the following notation to describe graphical models. We represent variables by

capital letters (e.g., X), values in the domain of a variable by corresponding small letters

(e.g., x) and an assignment of a value x to a variable X by x. We represent sets of variables

by bold capital letters (e.g., X) and assignment of values to all variables in the set X by x.

For simplicity of exposition, we assume that all variables are bi-valued or binary.

Markov Networks

Definition 1. A (discrete) PGM or a Markov network, denoted byM is a pair 〈X,Φ〉 where

X = {X1, . . . , Xn} is a set of discrete variables (i.e., they take values from a finite domain)

and Φ = {φ1, . . . , φm} is a set of positive real-valued functions (or potentials). Each function

is defined over one or more variables and the scope of a function, S(φ), is the union of all the

variables occurring in φ. M represents a probability distribution called the Gibbs distribution

which is the normalized product of all its potentials as given by the following equation.

P (x) =
1

Z

∏
φ∈Φ

φ(xS(φ)) (2.1)

where x is an assignment of values to all variables in X, xS(φ) is the projection of x on the

scope S(φ) of φ, and Z is a normalization constant called the partition function. We will

often abuse notation and write φ(xS(φ)) as φ(x).

The primal (or interaction) graph associated with M = 〈X,Φ〉, denoted by G, is an

undirected graph which is defined as follows.

Definition 2. Given M = 〈X,Φ〉 where X = {X1, . . . , Xn}, the primal graph, G, of M is

an un-directed graph, (V, E), that contains n vertices, V1, V2 . . . Vn, where Vi corresponds

to variable Xi. For each function φ ∈ Φ, G contains a clique between a set of vertices V′ ⊆

V, where Vk ∈ V′ ⇒ Xk ∈ S(φ).

16

X Y

U Z

(a) G

X Y Z φ1

0 0 0 4
0 0 1 1.25
0 1 0 2.3
0 1 1 5
1 0 0 4
1 0 1 3
1 1 0 1
1 1 1 2.3

(b) φ1

X U φ2

0 0 1.2
0 1 2.3
1 0 1.2
1 1 2

(c) φ2

U Z φ3

0 0 2
0 1 3
1 0 2.5
1 1 4

(d) φ3

X Y Z U P ()
0 0 0 0 1

Z × 4× 1.2× 2
0 0 0 1 1

Z × 4× 2.3× 2.5
.
.
1 1 1 1 1

Z × 2.3× 2× 4

(e) Gibbs Distribution

Figure 2.1. An example Markov network. (a) shows the primal graph, (b) - (d) show
the potentials defined on cliques in the primal graph and (e) shows the joint distribution
represented by the Markov network.

An example Markov network is shown in Figure 2.1. (a) shows the primal graph of the

Markov network. The joint distribution which is actually exponential in 4 variables as shown

in (e) is stored in a factored form across three potentials shown in (b), (c) and (d). Further,

to convert the weights, i.e., product of potentials into a probability distribution, we need to

plug-in the partition function as shown in (e).

D-Separation

D-Separation is a graphical test used compute conditional independencies in a PGM. A

conditional independence relation between three sets of variables, X, Y and Z is represented

as I(X, Y, Z) to mean that X is conditionally independent of Y given Z or Z d-separates X

and Y. In a Markov network, the conditional independence relation is obtained using graph

separation, i.e., I(X, Y, Z) holds if removing the nodes corresponding to Z in the primal

graph results in a graph where there is no path between any node in X to any node in Y.

17

A B φ
0 0 10
0 1 10
1 0 1
1 1 10

(a) Potential

f w
¬A ∧ ¬B log(10)
¬A ∧B log(10)
A ∧ ¬B log(10)
A ∧B log(1)

(b) Weighted Formulas

Figure 2.2. Example to illustrate conversion of the Markov network potential in (a) to
weighted formulas in a log-linear model as shown in (b).

In Figure 2.1, {Y } and {U} are d-separated by {X,Z}. The Markov blanket (MB) of a

variable X is a set of variables M such that I(X,X\ M,M) holds. For a Markov network,

MB(X) is the set of nodes in the primal graph that are directly connected to X.

Log-Linear Models

Markov networks are frequently described as log-linear models where each entry in a potential

is converted to a feature (propositional formula) that has an associated weight. The weight

is computed as the logarithm of the function value. Figure 2.2 shows the conversion of an

example Markov network potential to weighted propositional formulas.

For a log-linear model, the joint distribution is represented by the following equation.

P (x) =
1

Z
exp

(∑
fi

wiIx(fi)

)
(2.2)

where Z is the normalization constant or partition function, fi is the i-th feature, wi is

the weight of the feature and Ix(fi) is equal to 1 if x satisfies the logical formula fi and 0

otherwise.

It is important to note that encoding potentials of Markov networks in logic has desirable

properties. Namely, it allows us to compactly represent the Markov network in many cases.

For instance, in the example shown in Figure 2.2, all formulas with equal weights can be

merged and we can represent the entire potential table which is exponential in the number of

variables, by a single logical expression, i.e., A ⇒ B. Further, using a logical encoding also

18

allows us to leverage a vast amount of research in the logical inference and SAT communities

(e.g., DPLL (Davis and Putnam, 1960)) for efficient probabilistic inference.

2.1.4 Markov Logic Networks

Markov logic networks (MLNs) (Richardson and Domingos, 2006; Domingos and Lowd,

2009) can be viewed as lifted log linear models that combine Markov networks with first-

order logic. MLNs soften the hard constraints expressed by formulas in first-order logic

by attaching weights to each formula. The weights lie between −∞ and ∞, and have an

intuitive meaning as follows. If formula f has weight w, for 0 < w < ∞, it implies that

worlds that satisfy f are more likely than worlds that do not satisfy f . For −∞ < w < 0, it

implies that worlds that do not satisfy f are more likely. At the extreme, a hard formula or

a formula with weight equal to ∞ (or −∞) implies that f is always true (or false).

An MLN can be regarded as a template to specify extremely large PGMs. That is,

given a set of constants that represent real-world objects in a domain-of-interest, an MLN

specifies a Markov network as follows. We ground each formula of the MLN with all possible

combinations of constants. Each ground atom represents a binary random variable of the

Markov network and each ground formula specifies a potential of the Markov network.

Formally, an MLN is a set of pairs (fi, wi) where fi is a formula in first-order logic and

wi is a real number. Given a set of constants, the probability distribution represented by

the MLN is given by the following equation.

Pr(ω) =
1

Z
exp

(∑
i

wiNfi(ω)

)
where ω is a world, Nfi(ω) is the number of groundings of fi that evaluate to True given

ω and Z is the normalization constant or the partition function of the MLN given by the

following formula.

19

Z =
∑
ω

exp

(∑
i

wiNfi(ω)

)
Figure 2.3 (a) shows an example MLN where the first formula encodes knowledge about

the relationship between smoking and friendship while the second formula encodes the re-

lationship between smoking and cancer. The example is shown for just two objects in the

domain. As shown in Figure 2.3 (b), the Markov network underlying the MLN has 8 ran-

dom variables (ground atoms) and 6 potentials (ground formulas). The joint distribution

represented in (c) is defined over 28 unique worlds.

Normal MLN

Jha et.al (Jha et al., 2010) introduced a canonical form of MLNs called normal MLNs.

Normal MLNs are related to other canonical forms in statistical relational learning such

as the specification in Blog (Milch et al., 2008), parfactors (Poole, 2003) and substitution

constraints (Gogate and Domingos, 2011b; Van den Broeck et al., 2011). Formally, the class

of normal MLNs is defined as follows.

Definition 3. A normal MLN is an MLN that satisfies the following two properties: (1)

There are no constants in any formula, and (2) If two distinct atoms have the same predicate

symbol, say R and if x and y are distinct logical variables that substitute the same argument

position of R, then their domains are identical, i.e., ∆x = ∆y.

Even though there are no constants in a normal form MLN (or normal MLN), throughout

this dissertation, to simplify notation and make ground atoms and constants explicit, we

slightly abuse the definition of normal forms with the following rule. Whenever we have a

logical variable has the domain-size equal to 1, we denote it explicitly with its constant.

Example 1. Consider an MLN having two formulas (Smokes(x) ⇒ Asthma(x), w) and

(Smokes(Ana),∞) (evidence). Its normal form has three formulas: Smokes(x′)⇒ Asthma(x′),

20

MLN : ∀xy ¬Smokes(x) ∨ ¬Friends(x, y) ∨ Smokes(y); w1

∀xy ¬Smokes(x) ∨ Cancer(x); w2

Domain : ∆x = ∆y = {A,B}
(a) MLN

F(A,B)

F(A,A) S(A) S(B) F(B,B)

C(A) F(B,A) C(B)

(b) Markov Network

S(A) S(B) F(A,A) F(A,B) F(B,A) F(B,B) C(A) C(B) P (ω)
0 0 0 0 0 0 0 0 1

Z exp(4w1 + 2w2)
. .
1 1 0 0 0 0 0 1 1

Z exp(0w1 + 1w2)
. .
1 1 1 1 1 1 1 1 1

Z exp(4w1 + 2w2)

(c) Distribution

Figure 2.3. (a) shows an example MLN. (b) shows the Markov network corresponding to
the MLN. Each clique in the graph shown in (b) represents a potential or equivalently a
ground formula. (c) shows the joint probability distribution represented by the MLN. Note
that in (b) and (c), the predicate names are shortened to their first letter.

w Smokes1(y) ⇒ Asthma1(y), w and Smokes1(y), ∞, where ∆x′ = ∆x \ {Ana} and ∆y

= {Ana}. In our simplified notation, we write the constants explicitly as Smokes1(Ana) ⇒

Asthma1(Ana), w and Smokes1(Ana), ∞.

2.2 Inference

The standard inference tasks in MLNs (and also Markov networks) are as follows.

21

(i) Computing the partition function, i.e.,

Z =
∑
ω

exp

(∑
i

wiNfi(ω)

)
(2.3)

(ii) Computing probability of a query given evidence, i.e., P (Q|E). In this dissertation, we

consider 1-variable marginal probability computations. That is, Q is a single ground

atom in an MLN (or equivalently a single random variable in the Markov network). For

example, given a MLN (Smokes(x) ⇒ Asthma(x), w), and evidence that Ana smokes,

i.e., (Smokes(Ana), ∞), we might be interested in knowing the posterior probability

that Ana has Asthma, namely P (Asthma(Ana)|Smokes(Ana)).

(iii) Finding the most probable state of the world ω, i.e., finding a complete assignment to

all ground atoms which has maximum probability in the joint distribution. This task

is known as Maximum a Posteriori (MAP) inference and can be formally stated as

follows,

arg max
ω

1

Z
exp

(∑
i

wiN(fi, ω)

)
(2.4)

Clearly, inference in MLNs can simply be reduced to inference on PGMs. That is, we

simply perform inference on the ground Markov network of the MLN. Therefore, all graphical

model inference algorithms are directly applicable to MLNs. However, this does not utilize

the relational structure of the MLN. Specifically, the distribution represented by MLNs is

somewhat unique compared to standard distributions. Namely, a large number of variables

have implicit/explicit dependencies between each other and several potentials are symmetric

to each other. For example, consider a simple MLN with one formula Strong(x)⇒ Wins(x)

w. Let ∆x have 1 million constants. Clearly, the Markov network associated with the

MLN has 1 million potentials. However, every potential is identical to each other and only

depends upon the value of the parameter w. Generally, graphical model inference algorithms

leverage statistical structure (e.g., conditional independencies), but are typically oblivious to

22

relational/logical structure. Therefore, traditional graphical model inference algorithms need

to be adapted to take advantage of the unique properties in the MLN distribution. In this

section, we first review some standard graphical model inference algorithms, specifically those

based on sampling techniques and then outline some of the recent advances in specialized

inference for relational models, typically referred to as lifted inference, which leverage both

logical as well as statistical structure.

2.2.1 Exact Inference in Markov Networks

The inference tasks of computing the partition function as well as computing marginal prob-

abilities are equivalent to each other. This is because, the marginal probability can be

expressed as a ratio of partition functions. The MAP inference task is slightly different

since it is an optimization problem. Here, we discuss standard techniques for the partition

function and marginal probability computation tasks. For more details on MAP inference

in graphical models, refer to (Koller and Friedman, 2009).

Computing the partition function is known to be a #P -complete problem, where #P

is the complexity class of counting problems. A general approach called variable elimina-

tion can be used to compute the partition function exactly. Several advances to the basic

variable elimination algorithm have also been proposed in methods such as bucket elimina-

tion (Dechter, 1999) and junction trees (Lauritzen and Spiegelhalter, 1988). The basic idea

in all these algorithms is to use dynamic programming to perform computations efficiently.

Specifically, variable elimination consists of two basic operations, namely, product and sum-

out. An example of both these operations is shown in Figure 2.4. To compute the partition

function, variable elimination eliminates one variable from the Markov network at a time as

follows. It creates a new potential which is a product of all the potentials that the variable

occurs in. It then sums-out the variable from this new potential. In the example shown in

Figure 2.4, suppose we want to eliminate X, we first take a product of all the potentials that

23

X Y φ1

0 0 1.2
0 1 2.3
1 0 1.2
1 1 2

(a) φ1

Y Z φ2

0 0 1
0 1 4
1 0 2
1 1 1

(b) φ2

X Y Z φ
0 0 0 1× 1.2
.
.
1 0 0 1.2× 1
.

(c) Product

Y Z φ
0 0 1.2 + 1.2
.
.

(d) Sum-out

Figure 2.4. Example for variable elimination. (a), (b) are the original potentials from which
we want to eliminate X. (c) is the product of the two potentials and (d) sums-out X from
the product.

mention X, i.e., φ1 and φ2 and create a new potential as shown in (c) and finally sum-out

X from this new potential as shown in (d).

The complexity of inference using variable elimination is determined by the order in which

the variables are summed-out. Specifically, it can be shown that the inference complexity is

exponential in the minimum width tree-decomposition (also called treewidth) of the primal

graph of the Markov network. The treewidth of the primal graph of a Markov network is

of particular interest because it allows us to analyze inference in Markov networks from a

graph based perspective. Several exact inference algorithms (e.g., the junction tree algo-

rithm (Lauritzen and Spiegelhalter, 1988), AND/OR graph search (Dechter and Mateescu,

2007), variable (bucket) elimination (Zhang and Poole, 1994; Dechter, 1999), etc.) are expo-

nential in the treewidth of the primal graph. Thus, the primal graph can be used to quantify

the complexity of these algorithms regardless of the underlying probability distribution. Un-

fortunately, computing the treewidth of a graph itself is a NP-complete problem (Arnborg

et al., 1987). Therefore, in practice, we often employ heuristic approaches such as the min-

24

fill heuristic and min-degree heuristic to find an upper-bound on the treewidth. Hereafter,

whenever we refer to the treewidth of a graph, we implicitly assume that we have access to

a close upper-bound to the treewidth.

In practice, exact inference very rarely scales-up to practical problems which more often

than not have larger treewidths. Thus, approximate inference is the method-of-choice for

inference in most practical problems. Dominant approximate inference approaches include

variational methods such as belief propagation (Yedidia et al., 2000; Wainwright et al., 2003)

and sampling based approaches (cf. (Liu, 2001)). Next we provide a brief review of popular

sampling based inference techniques which we use extensively throughout this dissertation.

2.2.2 Sampling Based Approximate Inference

The main idea in all sampling algorithms is to estimate the expected value of a function using

a sample average. Specifically, we draw samples from the distribution-of-interest and com-

pute the expected value of a function w.r.t that distribution by averaging the function value

computed from the samples. Sampling can be used for probabilistic inference as follows. We

formulate the summation in the inference task as an expectation and estimate the expected

value of the summation from the sample average. It is well-known from sampling theory

that as the number of samples tend to ∞, the sample average approaches the true expected

value. Further, as the number of samples increase, the variance of the estimates derived

from the samples reduces. Thus, the aim of sampling based inference is to collect as many

samples as possible from the target distribution. However, here, we are immediately faced

with a problem, i.e., how can we collect samples from the distribution represented by the

MLN/Markov network? That is, to compute the Gibbs distribution of a Markov network,

we need the exact partition function. However, computing the partition function exactly

is an infeasible problem due to which we are using approximate inference in the first place.

Therefore, we require sampling methods that allow us to sample from a Markov network even

25

though we do not know its complete true distribution, i.e., we only know its distribution

up to the normalization constant. Two of the most popular approaches for sampling from

such hard-to-compute distributions are Markov Chain Monte Carlo (MCMC) (Metropolis

et al., 1953) based sampling and Importance Sampling (Geweke, 1989). We provide a brief

overview of both these methods next.

MCMC methods

Markov chains are stochastic processes that transition from one state to the next state in a

given state space. The key property of Markov chains is that they are memoryless, i.e., the

transition to a state only depends upon the previous state. Formally, let X be the set of

variables in a state-space. The transition probability is given by,

P (X(i)|X(i−1), . . . ,X(0)) = P (X(i)|X(i−1)) (2.5)

where X(0) is the starting state and X(i) is the state after exactly i transitions.

For finite state spaces, the probabilities of moving from one state to the next is described

as a matrix called the transition matrix represented by T. Clearly, if the state space has

n dimensions (variables) where each dimension can take m distinct values (states), the

transition matrix T is a square matrix of size nm × nm. Pij refers to the entry in the

transition matrix which gives the probability of moving from state i to state j. A simple

Markov chain with 2 dimensions and 4 possible states is shown in Figure 2.5. As shown, the

transition matrix is a 4× 4 matrix and each row of the matrix is a distribution, i.e., it sums

to 1.

The Markov chain defines a joint probability distribution on the set of possible states.

Clearly, this distribution depends upon the transition probabilities. However, the interesting

property of some specific Markov chains is that irrespective of the starting state, after a

certain number of transitions, the Markov chain always converges to the exact same distri-

bution on the states. This distribution is called the stationary distribution represented by π.

26

x̄0ȳ0 x̄0ȳ1 x̄1ȳ0 x̄1ȳ1

(a) Markov Chain

0.5 0.5 0 0
0.35 0.45 0.2 0

0 0.1 0.15 0.75
0 0 0.5 0.5

(b) Transition Matrix

Figure 2.5. Example of a 2-dimensional Markov chain, both the dimensions, X and Y are
binary. The 4 possible states in the state-space are labeled in (a) and its corresponding 4×4
transition matrix is shown in (b).

Once the Markov chain reaches its stationary distribution, applying the transition matrix

leaves this distribution invariant. Formally,

πT = π (2.6)

Stationary distributions of a Markov chain has been well-studied to describe numerous

physical and computational processes (e.g., thermodynamics, queuing theory, chemical pro-

cesses, etc.). However, typically, in these systems, the task is to compute the stationary

distribution given transition probabilities. For the case that we are interested in, i.e., in

Markov Chain Monte Carlo (MCMC) methods, this task is flipped. That is, we are inter-

ested in computing the transition probabilities that yield a specific stationary distribution.

Specifically, if we can construct a Markov chain that has a unique stationary distribution

that is exactly the same as the distribution represented by the Markov network, we are guar-

anteed that after certain number of transitions, the Markov chain will reach this stationary

distribution. Thus, to sample from the Markov network’s distribution, we can equivalently

sample from the Markov chain once it reaches its stationary distribution. The key challenge

though, is to design the transition matrix such that the stationary distribution is guaran-

teed to be equal to the distribution represented by the Markov network. Next, we provide

conditions under which a Markov chain has a unique stationary distribution.

27

Definition 4. [Reversibility] A Markov chain is said to be reversible w.r.t distribution π if

it satisfies the detailed balance condition, i.e., πPij = πPji and consequently the stationary

distribution of this Markov chain is π.

Note that for a reversible Markov chain, a stationary distribution exists. However, this

condition alone is not sufficient to generate samples from the Markov chain. Specifically, we

require guarantees that the Markov chain will converge to this distribution. This is given by

the following definitions and the accompanying theorem.

Definition 5. [Irreducibility] A Markov chain is said to be irreducible if any state i can be

reached from any other state j in the state space.

Definition 6. [Aperiodicity] An irreducible Markov chain is aperiodic if for any state i, 1 is

the GCD of all integers l ≥ 1 such that P
(l)
ii > 0. In other words, we should be able to come

back to the start state in arbitrary time steps.

Theorem 1. A finite state space Markov chain that is irreducible and aperiodic has a unique

stationary distribution and converges to its unique stationary distribution for all starting

states.

Theorem 1 guarantees that there exists exactly one stationary distribution for the Markov

chain if the irreducibility and aperiodicity properties are satisfied. Further, it also guarantees

that we will reach this stationary point regardless of the starting state. This condition allows

us to sample from the Markov chain starting from any random point in the state space.

Markov chains that satisfy Theorem 1 are often referred to as ergodic Markov chains.

Thus, from Theorem 1, it is clear that for MCMC based inference, we want to design

transition functions that yield ergodic Markov chains. Then, we just simulate the Markov

chain until it reaches its stationary distribution at which time the chain is said to have mixed.

Once the chain has mixed, sampling from the chain guarantees that we are sampling from

28

the target distribution. However, note that samples generated from the Markov chain are

dependent samples and not strictly independent and identically distributed (i.i.d) samples.

To reduce the dependencies between samples, typically, only every k-th sample from the

chain is considered during estimation. Another issue with MCMC is that analyzing mixing

time is an extremely hard problem. Therefore, in practice, a fixed number of iterations

called the burn-in period is used after which the Markov chain is assumed to have mixed

and samples that are collected after this are assumed to be from the target distribution.

Next, we briefly discuss some popular MCMC based algorithms. The earliest method that

introduced MCMC was the Metropolis algorithm (Metropolis et al., 1953). The Metropolis

algorithm used a symmetric transition function. Specifically, the transition function is de-

fined using a symmetric proposal distribution. In each step, the Metropolis sampler draws a

new state from the proposal distribution and jumps to this new state based on an acceptance

probability. The acceptance probability is computed by observing the gain obtained from

moving to the new state. Specifically, the gain for the move from state Xi+1 from Xi is

the ratio P (Xi+1)
P (Xi)

. Note that the ratio need not be computed exactly, i.e., we only need to

know it up to a normalization constant. Therefore, P (Xi) is the un-normalized probability

value for the assignment Xi in the Markov network’s distribution. Several variants of the

basic Metropolis algorithm have been developed. For example, the Metropolis-Hastings algo-

rithm (Hastings, 1970) extends the original Metropolis method by allowing a wider range of

proposal distributions that are non-symmetric. Gibbs sampling (Geman and Geman, 1984)

which is a special case of the Metropolis-Hastings sampler is arguably the most popular

MCMC method in practical applications. We next review Gibbs sampling.

Gibbs Sampling

Gibbs sampling is one of the most widely used MCMC algorithms to date. Here, when

sampling from a n-dimensional state space, we sample exactly one dimension at a time from

the conditional distribution of that dimension as described below.

29

Given a PGMM = 〈X,Φ〉, Gibbs sampling begins by initializing all variables randomly,

denoted by x(0). Then, at each iteration j, it randomly chooses a variable Xi ∈ X and

samples a value xi for it from the conditional distribution P (Xi|x(j−1)
−i), where x

(j−1)
−i denotes

the projection of x(j−1) on all variables in the PGM other than Xi. The new sample is

x(j) = (xi,x
(j−1)
−i). The computation of the conditional distribution can be simplified by

observing that in a PGM, a variable Xi is conditionally independent of all other variables

given its neighbors (or its Markov blanket) denoted by MB(Xi). Formally, P (Xi|x−i) =

P (Xi|xMB(Xi)). Thus, generating each sample is efficient in Gibbs sampling and therefore it

is the arguably the method-of-choice for MCMC based inference in PGMs.

The Gibbs sampling procedure just described is called random-scan Gibbs sampling in

literature. Another variation is systematic-scan Gibbs sampling in which we draw samples

along a particular ordering of variables. It is known that random-scan Gibbs sampling is

statistically more efficient than systematic-scan Gibbs sampling (cf. (Liu, 2001)).

Gibbs sampling is usually used to estimate the marginal probabilities. However, it can

also be used to compute an estimate for the partition function as well. This is slightly

more tricky and discussed in detail in the next chapter (Section 3.1.2). After T samples

are generated, the 1-variable marginal probabilities can be estimated using the following

equation.

P̂T (xi) =
1

T

T∑
t=1

P (xi|x(t)
−i) (2.7)

The estimator presented in Eq. (2.7) to compute the 1-variable marginal probabilities is

commonly referred to as the mixture estimator. We provide more details on the different

types of estimators used in Gibbs sampling and their implications later in this section.

As T → ∞, P̂T (xi) will converge to the P (xi) if the underlying Markov chain is ergodic.

Recall that for ergodicity of the chain, every full assignment (state) is reachable from every

other full assignment (state) with probability greater than zero. Thus, if the PGM contains

30

no deterministic functions, then the Markov chain is guaranteed to be ergodic. Unfortu-

nately, when the PGM encodes hard constraints, the joint probability distribution has 0

probabilities. In such a case, Gibbs sampling is no longer guaranteed to be ergodic and

the estimate given in Eq. (2.7) may not converge to P (xi). In chapter 3, we develop a new

algorithm to handle such cases.

Next, we discuss two advanced variants of Gibbs sampling, namely, blocking and collaps-

ing.

Blocking

Blocked/Blocking Gibbs sampling (Jensen et al., 1993) is variant of Gibbs sampling where

instead of sampling one variable at a time as in the standard Gibbs sampler, variables are

sampled jointly in blocks given assignments to other variables in the PGM. Formally, let the

variables of the PGM be partitioned into disjoint groups or blocks, denoted by B = {Bi}ki=1,

where Bi ⊆ X and ∪iBi = X. Then, starting with a random assignment x(0) to all variables

in the PGM, in each iteration j of blocked Gibbs sampling, we create a new sample x(j)

by replacing the assignment to all variables in a randomly selected block Bi in x(j−1) by a

new assignment that is sampled (jointly) from the distribution, P (Bi|x(j−1)
X\Bi), where x

(j−1)
X\Bi

is the projection of x(j−1) on all variables not in Bi. We define the Markov blanket (MB)

of a block Bi as all other blocks that contain at least one variable in MB(Xi), where Xi

∈ Bi. Similar to Gibbs sampling, an assignment to all variables in MB(Bi) makes Bi

conditionally independent of all other variables. Note that blocked Gibbs sampling is feasible

only when every block Bi is tractable given an assignment to MB(Bi). These tractability

constraints are often imposed in practice by putting a limit on the treewidth of the primal

graph projected on the block.

Collapsing

Collapsing is an alternative technique that improves the accuracy and convergence of

Gibbs sampling. Collapsing operates by eliminating or marginalizing out a subset of variables

31

from the Markov network. That is, given a Markov network M 〈X,Φ〉, we choose C ⊆ X

and sum-out all variables in C from the joint distribution ofM to obtain a collapsed Markov

networkM′ 〈X\C,Φ′〉. Gibbs sampling is then performed on this collapsed Markov network

and this improves its accuracy and convergence because only a sub-space of the original state

space is sampled (cf. (Liu, 2001)). However, collapsing implicitly changes the structure of the

Markov network as follows. Whenever we collapse a variable, Xi, implicitly, we form a clique

connecting all the neighbors of Xi in the primal graph of the Markov network. Therefore,

for collapsing to be feasible in practice, it should be tractable to marginalize/eliminate the

collapsed variables, i.e., the size of the maximum clique formed when the variables are

collapsed should be bounded.

Estimators

Given N Gibbs samples {x(i)}Ni=1 from the distribution P , we can estimate the 1-variable

marginal probabilities using one of the following three different estimators.

1. Histogram estimator:

P̂ (xi) =
1

N

N∑
j=1

Ixi(x(j))

where Ixi(x(j)) is an indicator function which equals 1 if xi appears in x(j) and 0

otherwise.

2. Mixture Estimator:

P̂ (xi) =
1

N

N∑
j=1

P (xi|x(j)
MB(Xi)

) (2.8)

3. Rao-Blackwell Estimator: This estimator is a more advanced estimator that gen-

eralizes the mixture estimator and is given by

P̂ (xi) =
1

N

N∑
j=1

P (xi|x(j)
R) (2.9)

where R ⊆ X.

32

The above three estimators are all unbiased. However, it has been shown that the Rao-

Blackwell estimator has smaller variance than the mixture estimator which in turn has

smaller variance than the histogram estimator (Liu, 2001) and thus the Rao-Blackwell and

the mixture estimators should always be preferred. However, the Rao-Blackwell estimator re-

quires more computation since we are essentially “ignoring” the samples on certain variables

(non-sampled variables). The non-sampled variables, X \R should now be marginalized out

to obtain the estimate P̂ (xi). Therefore, as the set of non-sampled variables grows larger,

estimation becomes more accurate but also computationally more expensive.

Note that all the three estimators can be used with blocked as well as collapsed Gibbs

sampling. To use the Rao-Blackwell estimator with blocked Gibbs sampling, we simply

find the block, say B, in which the variable resides, set R equal to X \ B and compute

P (xi|x(j)
R) by marginalizing out all variables other than Xi in the block. These computations

are tractable if the block is assumed to be tractable. In collapsed Gibbs sampling, we can use

the Rao-Blackwell estimator to estimate the marginals over all the collapsed variables which

is again guaranteed to be tractable by imposing tractability constraints on the collapsed

variables.

Importance Sampling

Importance Sampling (Geweke, 1989) is a sampling strategy that is a popular alternative

to MCMC based sampling. Just like MCMC based inference, importance sampling can be

used to approximately compute the partition function as well as marginal probabilities in

Markov networks. The main idea in importance sampling is to sample from a probability

distribution Q, called the proposal distribution instead of the target distribution P . Q is

carefully chosen such that it is easy to sample from Q even though sampling from P is

hard. Unlike Gibbs sampling, using importance sampling, we obtain independent samples

for estimation. However, to account for fact that we sample from the wrong distribution,

33

each sample is weighted with its importance weight which is the ratio of the probability of

the sample in the true distribution to its probability in the proposal. Just as before, we

can reformulate the inference task as computing the expected value of a function and using

weighted samples drawn from Q, we approximate the expected value by the sample mean

(average over the samples).

Formally, we can express the partition function of a Markov networkM〈X,Φ〉 using the

following equation.

Z =
∑
x

∏
φ∈Φ φ(x)Q(x)

Q(x)
= EQ

[∏
φ∈Φ φ(x)

Q(x)

]
(2.10)

where the notation EQ[x] denotes the expected value of x w.r.t. Q. Q should be such that

it is easy to generate samples from it. It should also satisfy the constraint:
∏

φ∈Φ φ(x) >

0⇒ Q(x) > 0. Given T samples (x(1), . . . ,x(T)) drawn from Q, we can estimate Z using the

following sample mean:

Ẑ =
1

T

T∑
t=1

[∏
φ∈Φ φ(x(t))

Q(x(t))

]
=

1

T

T∑
t=1

w(x(t)) (2.11)

where w(x(t)) is called the importance weight (or simply weight) of x(t). It is well known

that the quality (accuracy) of Ẑ is highly dependent on how close the proposal distribution

Q is to P . Note that we cannot use P as the proposal distribution because it is hard to

generate samples from it.

Typically, Q is expressed in product form or as a Bayesian network so that it is easy to

generate samples from it. Formally, given an ordering of variables (X1, . . . , Xn), the proposal

distribution is expressed using a collection of n conditional probability tables (CPTs) of

the form Qi(Xi|Yi) where Yi ⊆ {X1, . . . , Xi−1} (i.e., Q(x) =
∏n

i=1Qi(xi|yi)). To ensure

polynomial complexity, we ensure that |Yi| is bounded by a constant. We can generate

samples from this Bayesian network using logic sampling (Pearl, 1988), namely, by sampling

variables one by one along the order (X1, . . . , Xn).

34

Similar to approximating the partition function, we can approximate the 1-variable

marginal probabilities using importance sampling as follows.

P̂T (x) =

∑T
t=1 Ix(x

(t))w(x(t))∑T
t=1w(x(t))

(2.12)

where Ix(x) is equal to 1 iff x contains the assignment x and 0 otherwise.

We can also perform Rao-Blackwellisation in importance sampling to reduce the variance

of estimates derived from the samples. For this, we partition the set of variables X in the

distribution into two sets, say Xe and Xs. When computing the sample estimate, we use

the sampled assignment on Xs and conditioned on the sampled assignment, we perform

exact computations on XE. Specifically, after Rao-Blackwellisation, the importance sampler

estimate for 1-variable marginals is equal to

P̂T (x) =

∑T
t=1 P (x|x(t)

s)w(x(t))∑T
t=1w(x(t))

(2.13)

In practice, for Rao-Blackwellisation, Xs ⊆ X should be carefully chosen such that

P (x|x(t)
s) in Eq. (2.13) should be tractable to compute. For more details of Rao-Blackwellisation

in importance sampling, please refer to (Liu, 2001).

Both Ẑ and P̂T (xi) are consistent estimates, namely, as the number of samples get

large, they converge to the correct answer with high probability. However, Ẑ is an unbiased

estimate of Z, namely EQ[Ẑ] = Z, while P̂T (x) is an asymptotically unbiased estimate of

P (x), namely limT→∞ EQ[P̂T (x)] = P (x). P̂T (x) is also called the normalized estimate of

P (x) because we only need to know each sample weight up to a normalizing constant.

2.2.3 Lifted Inference

At a high level, lifted inference in MLNs can be viewed as the probabilistic equivalent of the-

orem proving in first-order logic. That is, just as theorem proving in first-order logic does not

35

ground formulas in a knowledge base but instead reasons on the first-order representation,

lifted inference in statistical relational models aims to perform probabilistic reasoning at the

level of first-order formulas instead of the ground Markov network. Over the last few years,

several lifted inference algorithms have been proposed starting with the pioneering work by

Poole (Poole, 2003). Popular exact inference methods include, FOVE (de Salvo Braz, 2007),

WFOMC (Van den Broeck et al., 2011), Probabilistic Theorem Proving (PTP) (Gogate and

Domingos, 2011b) and lifted inference with soft evidence (Bui et al., 2012). Popular approx-

imate lifted inference methods include (Milch and Russell, 2006; Milch et al., 2008; Singla

and Domingos, 2008; Kersting et al., 2009; Gogate et al., 2012; Niepert, 2012; Venugopal and

Gogate, 2012; Bui et al., 2013; Ahmadi et al., 2013). Almost all lifted inference algorithms,

whether exact or approximate have the same basic idea, namely, they exploit symmetries

in the relational representation and perform efficient inference over groups of symmetrical

ground atoms rather than treating each ground atom as a separate entity. The key chal-

lenge in lifted inference is to identify these symmetrical groups efficiently from the relational

structure without explicitly constructing the ground representation.

We illustrate the power of leveraging symmetries in lifted inference through a simple

example. Consider a MLN with one formula, ∀x∀y¬R(x) ∨ S(y); w. Let |∆x| = |∆y| = d.

Figure 2.6 (a) shows the primal graph of the ground Markov network corresponding to the

MLN. As seen in the figure, this is a complete bipartite graph. The tree-width of the graph

is clearly d, therefore, if we run variable elimination or any other exact inference algorithm

to compute the partition function, it will have time/space complexity exponential in d + 1.

Figure 2.6 (b) shows how Probabilistic Theorem Proving (PTP) (Gogate and Domingos,

2011b), a well-known lifted inference algorithm, computes the exact same partition function

much more efficiently by leveraging symmetries in the MLN representation. First, we observe

the following symmetry. Consider two distinct assignments to all groundings of R denoted

by R
i

and R
j
. If in both R

i
and R

j
, the same number groundings of R have an assignment

36

true (or 1), then it turns out that conditioning the MLN on R
i

is equivalent to conditioning

the MLN on R
j
. Therefore, instead of conditioning over 2d possible assignments for R, we

need to condition over just d + 1 groups of assignments. From each group, we pick a single

assignment and then project the same results to all the other assignments in that group.

The second symmetry that we can leverage is as follows. After conditioning on any of the

aforementioned d+1 distinct assignments, the conditional distribution over all the groundings

of S can be decomposed into d independent and identical distributions. Thus, we need to

only evaluate one of these distributions and project the same results over all equivalent

distributions. Figure 2.6 (b) shows these operations schematically. Computing the partition

function is equivalent to generating the full tree shown in Figure 2.6 (b) and has time/space

complexity that is linear in d + 1, an exponential reduction in complexity when compared

to propositional inference.

To summarize the above example, by utilizing symmetries, treewidth is not a limiting

complexity bound for lifted inference, i.e., lifted inference can in many cases perform tractable

inference on high-treewidth Markov networks by leveraging symmetrical computations and

is thus more general and scalable as compared to propositional inference.

To formalize the notion of lifted inference, (Van den Broeck, 2011; Jaeger, 2015) intro-

duced the concept of domain liftability. Specifically, an MLN is domain liftable if exact

inference on the MLN has time and space complexity that is polynomial in the size of the

domain. The above example MLN (R(x) ∨ S(y)) is domain liftable. However, there are sev-

eral MLN structures which are not known to be domain liftable. For instance, the transitive

relation Friends(x, y) ∧ Friends(y, z) ⇒ Friends(z, x) is not domain liftable as per our

current knowledge. Currently, our understanding is that the structure of the MLN can be

used to determine if that MLN is domain liftable or not. Finding new lifted inference rules

based on the structure of the MLN to push the limits on domain liftability is an area of

active research (Jha et al., 2010; Gogate and Domingos, 2011b; Gogate et al., 2012; Van den

Broeck, 2011; Jaeger, 2015; Taghipour et al., 2013).

37

R(X1) R(X2) R(X3) . . . R(Xd)

S(X1) S(X2) S(X3) . . . S(Xd)

(a) Ground Markov Network

R

S

0

0 1

S

1

0 1

S

2

0 1

S

3

0 1

. S

d

0 1

(b) Illustrating inference using PTP

Figure 2.6. Illustrating the power of lifted inference on high treewidth models. (a) is the
primal graph of the ground Markov network corresponding to ∀x∀y¬R(x)∨S(y); w with each
variable having a domain-size equal to d. Computing the partition function for this Markov
network is exponential in d. (b) is a schematic illustration of how PTP would compute the
partition function using lifted inference. The complexity of lifted inference is linear in d.

Niepert and Broeck (Niepert and Van den Broeck, 2014) recently contributed to a deeper

understanding of lifted inference by connecting inference tractability with the concept of

finite partial exchangeability in statistics (Diaconis and Freedman, 1980). Specifically, distri-

butions with partially exchangeable random variables can be expressed more succinctly using

sufficient statistics. It turns out that most lifted inference algorithms implicitly use finite

exchangeability to perform domain lifted inference. In the next section, we provide a brief

background on one such lifted inference algorithm, PTP (Gogate and Domingos, 2011b),

that we use in this dissertation. For a detailed survey of lifted inference techniques please

refer to (Kimmig et al., 2014). For an in-depth formal treatment of lifted inference theory

and complexity results, refer to (Van den Broeck, 2013).

38

Probabilistic Theorem Proving (PTP)

PTP is a popular lifted inference algorithm that computes the partition function of an

MLN exactly. It defines two lifting rules, i.e., rules that identify symmetries from first-order

structure and applies these rules recursively on the input MLN. We briefly describe the two

rules below.

Power Rule: The power rule identifies identical and independent components in the un-

derlying Markov network. It is based on the concept of a decomposer as defined next.

We first introduce some notation in order to formally define a decomposer. Let iR denote

the i-th argument of predicate R. Two arguments iR and jS are said to be unifiable if they

share a logical variable in some MLN formula. Clearly, the binary relation for unification

U(iR, jS) is symmetric and reflexive. Let U denote the transitive closure of U . Given an

argument iS, let U(iS) denote its equivalence class under U .

Definition 7 (Decomposer). Given a normal MLN M having m formulas denoted by

f1, . . . , fm, d = U(iR) where R is a predicate in M, is called a decomposer iff the follow-

ing conditions are satisfied: (i) there is exactly one argument of R, iR that is an element of

d; and (ii) in each formula fi, there exists a variable x such that x appears in all atoms of

fi and for a predicate S in fi, x substitutes the argument iS, where iS ∈ d.

If an MLN M has a decomposer d, then we can generate a new MLN M|d where we

replace all the logical variables of M that substitute the arguments in d with a constant.

The partition function of M is given by the following recursive formula.

Z(M) = (Z(M|d))D(d) (2.14)

where Z(M|d) denotes that all elements of d have been replaced by the same constant and

D(d) is the “size” of the decomposer, i.e., the domain-size of the variables that can substitute

a decomposer argument.

39

Example 2. Consider the MLN M with one formula, Strong(x) ⇒ Wins(x, y), w with

∆x = ∆y = {A,B,C}. Here, the decomposer d = {1Strong, 1Wins}. Applying the power rule,

we replace d with a logical variable whose domain has exactly one constant. The new MLN

denoted by M|d has the formula Strong(A) ⇒ Wins(A, y), w. D(d) = 3 since |∆x| = 3,

therefore, Z(M) = (Z(M|d))3.

Generalized Binomial Rule: The generalized binomial rule identifies the cases where it

is possible to efficiently condition on all possible assignments to all possible groundings an

atom. In general, this conditioning is exponential in the number of groundings. Specifically,

given R(x), the total number of possible assignments is equal to 2|∆x|. However, in some

cases, it is possible to group the set of assignments such that all the assignments within a

group are equivalent to each other. That is, we can condition on any assignment within a

group and project the same results to all assignments of that group while guaranteeing the

correctness of the partition function computation. The generalized binomial rule provides a

sufficient condition to identify these groups from first-order structure as follows.

Definition 8. Given a normal MLN M and a singleton S(x) that does not participate in

self-joins, the possible assignments to the ground atoms of S can be partitioned into |∆x|+ 1

groups, where the i-th group is the set of all the assignments with exactly i ground atoms of

S assigned to 1. All assignments in a group are symmetrical to each other, i.e., for any two

assignments in the same group, S
i

and S
j
, M|Si ≡ M|Sj

The partition function for M, when conditioned on a singleton S(x) is computed using

Z(M) =

|∆x|∑
i=0

(|∆x|
i

)
Z(M|S̄i)w(i)2p(i) (2.15)

whereM|S̄i denotes the reduced MLN obtained after conditioning on S by assigning any

i ground atoms corresponding to S as True and d − i ground atoms as False, p(i) is the

number of ground atoms (apart from the ones corresponding to the conditioned predicate)

40

that are completely removed as a result of reducing M and w(i) is the total weight of the

formulas that are removed since they are satisfied by the assignment.

Example 3. Consider an MLN M with a single formula, Smokes(x) ⇒ Cancer(y), w with

∆x = ∆y = {A,B,C}. Conditioning on Smokes(x) implies that we need to condition on

all possible groundings of Smokes(x), i.e., 23 different possible assignments. We can group

these 8 assignments into 4 groups containing 1, 3, 3 and 1 assignments respectively. Only

one assignment from each group needs to be considered. An assignment where no groundings

of Smokes is set to 1, an assignment where 1 grounding is set to 1, an assignment where 2

groundings are set to 1 and an assignment where all three groundings of Smokes are set to

1. Let M0, M1, M2 and M3 be the MLNs after conditioning on each of the 4 assignments.

The overall partition function of M is given by,

Z(M) =

(
3

0

)
Z(M0)9w +

(
3

1

)
Z(M1)6w +

(
3

2

)
Z(M2)3w +

(
3

3

)
Z(M3)

Algorithm 1: PTP

Input: Normal MLN, M
Output: Exact Partition function, Z(M)

1 if M is empty then
2 return 1

3 if M contains a decomposer d then
4 return Z(M|d)D(d)

5 if there exists a singleton S(x) then

6 return
∑|∆S|

i=0

(|∆S|
i

)
Z(M|S̄i)w(i)2p(i)

7 else
8 Partially ground M until a singleton can be selected for conditioning

Algorithm 1 illustrates the recursive PTP algorithm. The input is an MLN in normal

form. The base case checks for an empty MLN, i.e., if all formulas have either been removed

(since they are satisfied) or each formula is empty (all atoms in the formulas have been

conditioned), then we return 1. For all other cases, PTP first tries to apply the power rule

41

to the input MLN recursively. If no decomposer can be found, then a singleton predicate is

chosen heuristically (cf. (Gogate and Domingos, 2011b)). Once a singleton is selected, the

MLN is recursively conditioned using Eq. 2.15. If no singletons can be found for conditioning,

then PTP partially grounds a predicate until a singleton is found. In such a case, PTP is no

longer considered tractable or in other words, the MLN is not domain-liftable.

Apart from the two lifting rules shown in Algorithm 1, PTP leverages standard SAT

techniques such as unit propagation and caching to greatly improve the performance of lifted

inference in practice. For more details on these extensions, refer to (Gogate and Domingos,

2011b).

2.3 Learning

The two main types of learning in MLNs are, structure learning and weight learning. In

structure learning, we learn the MLN formulas as well as the weights while in weight learning,

we assume that the formulas are given and learn the weights for each formula. Notable

structure learning algorithms for MLNs are described in (Mihalkova and Mooney, 2007),

(Natarajan et al., 2012) and (Domingos and Lowd, 2009). Here, we give a brief overview on

weight learning in MLNs.

2.3.1 Weight Learning in MLNs

The problem of weight learning assumes that the MLN structure is known and given data, the

task is to learn a weight for each MLN formula. Here, we focus on Max-likelihood learning

which is most popular approach for MLNs.1. In Max-likelihood learning, we choose the

weights for the formulas to maximize the likelihood or the probability of the data. Weights

can be learned either generatively or discriminatively. In generative learning, we maximize

1Other methods such as Max-margin learning have also been proposed for MLNs (Huynh and Mooney,
2009)

42

the log-likelihood of the data while in discriminative learning, we maximize the conditional

log-likelihood, i.e., a set of variables are assumed as evidence variables whose truth value is

known. We briefly review discriminative learning in MLNs below.

We assume that the structure of the MLN is given along with complete data. That is,

we assume that there is no missing data. One easy way to implement this assumption is to

assume a closed world universe. That is, data that is not given is assumed to be false. Given

this complete data, we use gradient ascent to maximize the conditional log-likelihood. For

this, we start with random weights for each formula and in each iteration of gradient ascent,

we update the weight of the i-th formula using the following equation (for a derivation see

(Domingos and Lowd, 2009)).

wi = wi − αEw,y[Ni(x,y)]−Ni(x,y) (2.16)

where wi is the i-th formula’s weight, w is the current weight vector, x represents the non-

evidence variables, y represents the evidence variables, Ni(x,y) is the number of satisfied

groundings of the i-th formula based on the data, α is the learning rate and Ew,y[Ni(x,y)] is

the expected number of satisfied groundings of the i-th formula based on the current weight

vector w.r.t the conditional distribution P (x|y).

Computing the expected value in Eq. (2.16) requires exact inference over the MLN which

is infeasible in practice. Typically, approximate inference is used to compute the expected

value in Eq. (2.16). Two popular approximate inference based approaches are voted percep-

tron (Collins, 2002; Singla and Domingos, 2005) and contrastive divergence (Hinton, 2002;

Lowd and Domingos, 2007a). In voted perceptron, we estimate Ew,y[Ni(x,y)] by counting

the satisfied groundings in the MAP assignment. In contrastive divergence, we estimate

Ew,y[Ni(x,y)] by counting the satisfied groundings from Gibbs samples.

Max-likelihood learning even with approximate inference is computationally expensive

because inference has to be performed at every iteration and typically the gradient ascent

43

algorithm takes several hundreds of iterations to converge. Therefore, pseudo likelihood learn-

ing is a popular alternative that has been adopted because it is computationally inexpensive,

i.e., it does not require inference in each sub-step. Here, the likelihood is approximated as a

product of conditional probabilities and computing the weight-update simply requires count-

ing over the data. For more details on pseudo likelihood learning, please refer to (Domingos

and Lowd, 2009).

CHAPTER 3

HANDLING LOGICAL DEPENDENCIES IN MCMC BASED INFERENCE

Deterministic dependencies or logical constraints are ubiquitous when we consider real-world

applications. For example, application domains such as linkage analysis (Fishelson and

Geiger, 2004), stereo vision (Scharstein and Szeliski, 2002), medical diagnosis (Shwe et al.,

1991) and entity resolution (McCallum and Wellner, 2004) often contain both probabilistic

and deterministic dependencies. MLNs typically model such deterministic dependencies with

very large (or very small) weights in its formulas. Unfortunately, inference which is already a

hard problem becomes much more challenging when the model encodes these dependencies.

Specifically, popular approximate inference methods such as Gibbs sampling (Geman and Ge-

man, 1984) and Belief propagation (Murphy et al., 1999; Yedidia et al., 2005) often perform

poorly in the presence determinism (0 or very small probabilities in the joint distribution).

Further, a second problem is that logical constraints implicitly lead to highly correlated vari-

ables in the distribution which drastically slows down convergence of approximate inference

algorithms, especially sampling based ones. In this chapter, we address both problems in the

context of Gibbs sampling. Specifically, we propose two algorithms, (i) GiSS, an algorithm

that combines Gibbs sampling with SampleSearch (Gogate and Dechter, 2011), an advanced

importance sampling algorithm that can sample from hard deterministic state spaces, (ii) an

adaptive Gibbs sampler that tractably and effectively combines blocking and collapsing, two

strategies that help improve convergence in the presence of correlations. We next describe

in detail the theory and experimental evaluations for each of the two algorithms.

44

45

X Y φ1

0 0 0.5
0 1 0
1 0 0
1 1 0.5

(a)

Y Z φ2

0 0 0.25
0 1 0.25
1 0 0.25
1 1 0.25

(b)

X Y Z P
0 0 0 0.25
0 0 1 0.25
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0.25
1 1 1 0.25

(c)

Figure 3.1. A Markov network with determinism. (a) and (b) are the potentials of the
Markov network. (c) is the full joint distribution.

3.1 GiSS: Sampling in PGMs with determinism

Gibbs sampling performs poorly in the presence of determinism and converges to incorrect

results as its Markov chain is no longer ergodic (Gilks et al., 1996). This is because, deter-

minism fractures the support (assignments that have non-zero probability) of the state space

into disconnected clusters. Gibbs sampling will get trapped in one cluster and its Markov

chain will converge to the marginal probability distribution over that cluster, which is clearly

incorrect. We illustrate this with the following example.

Example 4. Consider a graphical model with 3 variables X,Y and Z with 2 potentials as

shown in Figure 3.1. X,Y share 2 deterministic constraints (given by the 0 probability values

in the table). Assume that the Gibbs sampler starts at state (0,0,0) and X, Y and Z are

sampled in that order. Since P (X = 0|Y = 0) = 1, the next Gibbs sample is necessarily

(0,0,0). Similarly, in sampling Y , since P (Y = 1|X = 0, Z = 0) = 0, the state of the

sampler stays at (0,0,0). Further, P (Z = 0|Y = 0) = P (Z = 1|Y = 0) = 0.5 and therefore,

the next sample is either (0,0,0) or (0,0,1) with equal probability. Thus, we converge to the

distribution where the states (0,0,0) and (0,0,1) each have probability 0.5 which as seen in

Figure 3.1 (c) is clearly not the correct distribution.

46

Many solutions have been proposed in the past to address the aforementioned prob-

lem. Notable examples are Blocking (Jensen et al., 1993), Rao-Blackwellisation (Casella and

Robert, 1996; Liu, 2001) and the recently proposed scheme by (Gries, 2011). However, none

of them are scalable to large PGMs because they require the PGM projected over the deter-

ministic variables to be tractable and thus amenable to exact inference. This is not always

possible, especially when the number of deterministic variables (or their treewidth) is large.

Here, we propose a hybrid approach for solving this problem: combine Gibbs sampling with

SampleSearch (Gogate and Dechter, 2011, 2007b), a state-of-the-art importance sampling

algorithm that leverages complete CSP/SAT solvers to generate high quality samples from

hard deterministic spaces. We call our new algorithm GiSS.

The key idea in GiSS is the following: use SampleSearch to sample the variables involved

in hard constraints (henceforth called deterministic variables) and then use Gibbs sampling

to sample the remaining variables (henceforth called non-deterministic variables) given the

sampled assignment to the deterministic variables. In essence, the use of SampleSearch

partitions the state-space into multiple clusters, one corresponding to each unique sample

generated by SampleSearch. SampleSearch samples the clusters independently while Gibbs

sampling collects dependent samples within each cluster. Since GiSS uses importance sam-

pling as a sub-step, its samples need to be weighted appropriately in order to guarantee that

the estimates derived from them converge to the correct answer. It turns out that computing

these weights involves computing the probability of the sampled (partial) assignment to all

deterministic variables, a problem that is in #P. We therefore propose several approximate

methods, which estimate the weights using the samples on the non-deterministic variables

generated via Gibbs sampling. We show that our approximate weighting schemes are correct

in that they yield consistent (asymptotically unbiased) estimates of one-variable marginals

– a standard inference task in PGMs.

47

SampleSearch

Importance sampling performs poorly in presence of determinism because it suffers from the

rejection problem (Gogate and Dechter, 2011), namely, the proposal distribution may be such

that the probability of generating a sample having zero weight1 from it is arbitrarily close

to one. Assuming finite sample size, which is the case in practice, with high probability, all

samples drawn from such a proposal distribution will have zero weight. This is problematic

because the estimate of the partition function (Ẑ) will equal zero while the estimate of the

marginal probabilities (P̂T (x)) will be an undefined number 0/0.

One can solve the rejection problem by modifying the proposal distribution such that it is

backtrack-free along an ordering. One approach to make the proposal distribution backtrack-

free is to write it as a probability tree and remove all sub-trees that contain only zero weight

assignments, normalizing to ensure that it represents a valid probability distribution. This

approach is illustrated in Figure 3.2. Unfortunately, this approach is infeasible in practice

because it has exponential time and space complexity. Moreover, the problem of constructing

a backtrack-free proposal distribution is #P-complete (Roth, 1996; Yu and van Engelen,

2012) and thus there is no hope of solving it using other methods.

SampleSearch (Gogate and Dechter, 2007b, 2011) solves the rejection problem by in-

terleaving backtracking search with sampling. It can be understood as a randomized or

probabilistic depth-first search (DFS) for an assignment having non-zero weight over the

probability tree. At each non-leaf node in the probability tree, the DFS algorithm selects

one of its child nodes as the next node to visit with probability attached to the edge be-

tween the node and the child. (Gogate and Dechter, 2007b) proved that this randomized

DFS algorithm generates independent samples from the backtrack-free distribution QBF

of Q. Thus, given a set of samples generated via SampleSearch, we can weight them as

1A sample x has zero weight if Q(x) > 0 but
∏

φ∈Φ φ(x) = 0.

48

A B C φ1

0 0 0 0
0 0 1 0
0 1 0 0.7
0 1 1 0.3
1 0 0 0
1 0 1 1
1 1 0 0.25
1 1 1 0.75

B D φ2

0 0 0.25
0 1 0.75
1 0 0.3
1 1 0.7

(a) A PGM

A

B

0.7

C

0.6

D

0.6

0.6 0.4

D

0.4

0.2 0.8

C

0.4

D

0.2

0.6 0.4

D

0.8

0.2 0.8

B

0.3

C

0.2

D

0.6

0.6 0.4

D

0.4

0.2 0.8

C

0.8

D

0.2

0.6 0.4

D

0.8

0.2 0.8

(b) Proposal Distribution as a probability tree

A

B

0.7

0

C

1

D

0.2

0.6 0.4

D

0.8

0.2 0.8

B

0.3

C

0.2

0

D

1

0.2 0.8

C

0.8

D

0.2

0.6 0.4

D

0.8

0.2 0.8

(c) Backtrack-free probability tree of (b)

Figure 3.2. (a) shows two functions φ1 and φ2 defining a PGM over four binary random vari-
ables (φ1 is a deterministic function). Let Q(A,B,C,D) = Q(A) Q(B|A) Q(C|B) Q(D|C)
be the proposal distribution where Q(A = 0) = 0.7, Q(B = 0|A = 0) = Q(C = 0|B = 0) =
Q(D = 0|C = 0) = 0.6 and Q(B = 0|A = 1) = Q(C = 0|B = 1) = Q(D = 0|C = 1) = 0.2.
(b) shows the probability tree of Q. In the tree, the left and the right branches of a node la-
beled by X denote the assignment of 0 and 1 to X respectively. (c) shows the backtrack-free
probability tree derived from the proposal distribution by removing all sub-trees that contain
only zero weight assignments, and normalizing. We have removed two sub-trees from the
probability tree given in (b): the sub-tree rooted at A = 0, B = 0 and the sub-tree rooted at
A = 1, B = 0, C = 0. Any samples extending these two partial assignments will have zero
weight.

w(x(t)) =
∏
φ∈Φ φ(x(t))

QBF (x(t))
and use Equations (2.11) and (2.12) to estimate the partition function

and one-variable marginals respectively.

In practice, we can speed-up SampleSearch by using advanced backtracking (DFS) schemes

developed in the SAT/CSP literature over the past few decades. These advanced search pro-

cedures and their implementations are quite fast and can consistently solve problems having

49

millions of variables in a few seconds (Eén and Sörensson, 2003). We leveraged these ad-

vanced schemes in our experiments.

3.1.1 The GiSS Algorithm

In this section, we describe Algorithm GiSS, which combines Gibbs sampling with Sample-

Search. We propose several weighting schemes that trade computational complexity with

accuracy for it and show that all of them are correct in the sense that they yield consistent

estimates.

Before describing the algorithm, we introduce some additional notation. Given a PGM

M = 〈X,Φ〉, let Xd and Xp respectively denote the sets of deterministic and non-deterministic

variables (Xp = X \Xd) in M. Also, let M|xd denote the PGM obtained by instantiating

xd in M.

Algorithm 2 gives the pseudo-code of GiSS. The algorithm takes as input a PGM M,

two integers T and U and outputs an estimate of all one-variable marginals. The algorithm

begins by initializing the estimates of all one-variable marginals to zero. It then constructs

a proposal distribution Q(Xd) over the deterministic variables and uses SampleSearch to

generate T samples, one by one, from the backtrack-free distribution QBF (Xd) of Q(Xd).

For each sampled assignment x
(i)
d generated by SampleSearch, the algorithm generates U

samples over the non-deterministic variables by performing Gibbs sampling over M|x(i)
d .

The algorithm then weights the samples appropriately and updates the running estimate

of all one-variable marginals. Finally, after all the samples are generated, the algorithm

normalizes the estimates and returns them.

3.1.2 Computing the Sample Weights

Unlike Gibbs sampling in which every sample has the same weight, each sample generated by

GiSS needs to be weighted properly in order to guarantee convergence to the correct answer.

The weighting scheme of GiSS is formalized by the following theorem.

50

Algorithm 2: GiSS

Input: Graphical Model M = 〈X,Φ〉, Integers T and U
Output: An estimate of all one-variable marginals

1 for each value x in the domain of X ∈ X do

2 P̂ (x) = 0 // Initialize the estimates

3 Construct the proposal distribution Q(Xd) over the deterministic variables;
4 for t = 1 to T do

5 Use SampleSearch to generate a sample x
(t)
d from the backtrack-free distribution

QBF (Xd) of Q(Xd);
// Sample the non-deterministic variables

6 for j = 1 to U do

7 x(j)
p = Gibbs-iteration(M|x(t)

d);

8 Compute the sample weight w(x
(t)
d ,x

(j)
p);

9 for each value x in the domain of X ∈ X do

10 P̂ (x) = P̂ (x) + w(x
(t)
d ,x

(j)
p)Ix(x(t)

d ,x
(j)
p);

11 Normalize the estimates and return {P (x)};

Theorem 2. Given M and a complete GiSS sample (xd, xp) for M, where xd is sampled

from QBF (Xd), and xp is sampled from M|xd, the importance weight of the GiSS sample

(up to a normalization constant) is given by,

w(xd,xp) =
Z(M|xd)
QBF (xd)

(3.1)

where Z(M|xd) is the partition function of M|xd.

Proof. Since xd is sampled from the proposal distribution QBF , while xp is sampled from the

true distribution, namely, P (xp|xd), the importance weight of the full sample is given by,

w(xd,xp) = w(xd) =
P (xd)

QBF (xd)
(3.2)

Substituting for P (xd), in Eq. (3.2), we obtain the following equation,

w(xd) =
1

Z

∑
xp

∏
φ∈Φ φ(xd,xp)

QBF (xd)
∝ Z(M|xd)

QBF (xd)
(3.3)

51

The following Theorem now follows directly from to the correctness of the importance

weight for each sample.

Theorem 3. Assuming that the Gibbs sampling sub-step in Algorithm GiSS generates sam-

ples fromM|x(t)
d , where x

(t)
d is sampled from QBF (Xd), if the weight of the sample w(x

(t)
d ,x

(j)
p)

is computed as specified in Eq (3.3), the estimate P̂ (x) output by Algorithm GiSS converges

almost surely to P (x) as T →∞. Namely, Algorithm GiSS yields an asymptotically unbiased

estimate of one-variable marginals.

Approximating the Sample Weights

The weighting scheme given in Eq. (3.1) requires computing the partition function ofM|xd.

However, the latter is intractable in general, i.e., computing the partition function is in the

complexity class #P. Therefore, we consider three sampling-based approximate estimators

for it.

The first estimator that we consider is the harmonic mean estimator (Newton and

Raftery, 1994). The main advantage of this method is that it uses the samples generated by

Gibbs sampling and thus requires no additional computation. Formally, the harmonic mean

estimate of Z(M|xd) is

Ẑh(M|xd) =
2|Xp| × U∑U

j=1
1∏

φ∈Φ φ(xd,x
(j)
p)

(3.4)

Substituting the harmonic mean estimate of Z(M|xd) given in Eq. (3.4) in Eq. (3.1), we get

ŵh(xd) =
2|Xp| × U∑U

j=1
1∏

φ∈Φ φ(xd,x
(j)
p)
QBF (xd)

(3.5)

Notice that in computing the marginals using the ratio estimator, since the set of determin-

istic variables never changes, we can eliminate 2|Xp| from Eq. (3.5). Despite its ease of use

and asymptotic convergence properties, the harmonic mean estimator has large variance and

can often yield highly inaccurate answers (Neal, 2008). To reduce its variance, we propose

52

to store (cache) the weight of each partial assignment xd generated by SampleSearch. If the

same assignment is generated again, we simply replace its weight by the running average of

the current weight and the new weight. The variance is reduced because as more samples

are drawn the stored weights will get closer to the desired exact weights.

The second estimator that we consider is the product estimator (Jerrum et al., 1986;

Chib, 1995). Here, we pick a random assignment, say x∗p, and compute P (x∗p) as a product

of |Xp| conditional distributions:

P (x∗p) =

|Xp|∏
k=1

P (x∗k|x∗1, . . . , x∗k−1)

To estimate each component of the form P (x∗k|x∗1, . . . , x∗k−1), we use Gibbs sampling, running

it over M|xd with x∗1, . . ., x∗k−1 as evidence (in principle, we can also use other inference

approaches such as loopy Belief propagation (Murphy et al., 1999) instead of Gibbs sam-

pling). Let P̂ (x∗p) denote the estimate of P (x∗p). Then, we can estimate the partition function

Z(M|xd) using:

Ẑc(M|xd) =

∏
φ∈Φ φ(xd,x

∗
p)

P̂ (x∗p)
(3.6)

Substituting the product estimate of Z(M|xd) given in Eq. (3.6) in Eq. (3.1), we get

ŵc(xd) =

∏
φ∈Φ φ(xd,x

∗
p)

P̂ (x∗p)QBF (xd)
(3.7)

Assuming that U samples generated by Gibbs sampling are used to estimate each com-

ponent P (x∗k|x∗1, . . . , x∗k−1), the product estimator is |Xp| times more expensive to compute

than the harmonic mean estimator. However, its variance is likely to be much smaller and

thus there is a trade-off.

The third estimator that we consider is based on annealed importance sampling (Neal,

1993) (we will call the resulting weighting scheme annealed weighting scheme). To compute

the estimate, we define a family of PGMs by parameterizing the original PGM using an

“inverse temperature” setting. Specifically, given a series of inverse temperatures β0 = 0 <

53

β1 . . . < βk+1 = 1, we define k + 2 intermediate PGMs (M|xd)βi , 0 ≤ i ≤ (k + 1) where

(M|xd)βi denotes the PGM obtained by replacing each function φ inM|xd by φβi . Note that

the PGM corresponding to βk+1 is the same PGM as M|xd (the original PGM). Rewriting

Z(M|xd),

Z(M|xd) =
k+1∏
i=1

Z
(
(M|xd)βi

)
Z ((M|xd)βi−1)

(3.8)

Given U samples generated from (M|xd)βi−1 using Gibbs sampling, we can estimate the ith

ratio in the right hand side of Eq. (3.8) using the following quantity (Neal, 1993):

1

U

U∑
j=1

∏
φ∈Φ

(φ(x(j)))βi−βi−1 (3.9)

Substituting the ratio estimates obtained using Eq. (3.9) in Eq. (3.8), we obtain an estimate

for Z(M|xd). Substituting this estimate in Eq. (3.1), we get

ŵa(xd) =
1

U

∏k+1
i=1

∑U
j=1

∏
φ∈Φ(φ(x(j)))βi−βi−1

QBF (xd)
(3.10)

We can show that all three weighting schemes are correct in the sense that they yield

consistent estimates .

Theorem 4. Assuming that the Gibbs sampling algorithm generates samples from M|x(t)
d

and the weight of each sample is given by either Eq. (3.5), Eq. (3.7) or Eq. (3.10), the

estimate output by Algorithm GiSS converges almost surely to P (x) as T →∞.

Proof. Consider the harmonic mean estimator in Eq. (3.5). Substituting the approximate

weight ŵh(x
(t)
d) in the asymptotically unbiased estimator specified in Theorem 3, we have,

P̂ (x) =

∑T
t=1

∑U
j=1 ŵh(x

(t)
d ,x

(j)
p)Ix(x(t)

d ,x
(j)
p)∑T

i=1

∑U
j=1 ŵh(x

(t)
d ,x

(j)
p)

(3.11)

The harmonic mean estimator yields an unbiased estimate of Z(M|xd). This means that,

as T → ∞, for every partial sample x
(t)
d , ŵh(xd) → w(xd). Therefore, Eq. 3.11 is a ratio

of asymptotically unbiased quantities and is thus an asymptotically unbiased estimator for

P (x).

54

3.1.3 Related Work and Discussion

As mentioned earlier, a number of approaches have been proposed in the past to solve the

convergence problem of Gibbs sampling in presence of determinism. The two conventional,

popular solutions are Blocking (Jensen et al., 1993) and Rao-Blackwellisation (or collaps-

ing) (Casella and Robert, 1996; Liu, 2001). Unlike GiSS, these methods are not scalable to

large PGMs because in order to guarantee convergence to the correct answer, they require

Z(M|xp) to be tractable, where xp is a full assignment to the non-deterministic variables.

Another related work is the MC-SAT algorithm (Poon and Domingos, 2006) which combines

slice sampling (Neal, 2000) with SAT solution samplers (Wei et al., 2004). Unlike GiSS,

MC-SAT is a local-search procedure and as a result is unable to make large moves in the

state-space. Large moves often promote rapid mixing. Recently (Gries, 2011) proposed a

modified Gibbs sampling algorithm for inference in probabilistic logic models with determin-

istic constraints. His method assumes that the deterministic portion of the PGM is tractable

and can be succinctly expressed using a subset of description logic. GiSS does not make this

assumption and therefore is more widely applicable. Finally, GiSS is related to (Hajishirzi

and Amir, 2008) who first sample deterministic paths in a probabilistic sequence to improve

accuracy. However, unlike GiSS, their approach is applicable specifically to dynamic first

order models.

GiSS is based on the premise that whenever possible, it is better to use Gibbs sampling

(MCMC) rather than importance sampling (SampleSearch); we stop performing importance

sampling when the underlying Markov chain is guaranteed to be ergodic. Although this

premise is debatable, Gibbs sampling and other MCMC techniques are preferred by practi-

tioners over importance sampling because it is often hard to derive a good proposal distri-

bution for large PGMs. In GiSS, we only have to construct the proposal distribution over a

fraction of the variables in the PGM – on variables involved in deterministic functions. Fur-

ther, generating independent importance samples is computationally more expensive than

55

generating Gibbs samples. Therefore, GiSS can generate more samples than SampleSearch

and therefore reduce the variance of its estimates.

It is also possible to view GiSS as a general algorithm for combining Gibbs sampling and

importance sampling. To see this, notice that all we have to do is partition the set of variables

in the PGM into two sets, Xd and Xp and use GiSS as before. This general method can

especially useful when we have domain knowledge or access to a (provably) good proposal

distribution over Xd. The key problem here is finding a partitioning that is likely to yield a

good accuracy in practice.

3.1.4 Experiments

We compared GiSS with four approximate inference algorithms from literature: MC-SAT

(Poon and Domingos, 2006), Belief Propagation (BP) (Murphy et al., 1999), SampleSearch

(SS) (Gogate and Dechter, 2011) and Gibbs sampling. We used the implementations of

MC-SAT and BP available in the Alchemy system (Kok et al., 2006). We implemented GiSS

on top of the code base for SampleSearch, available from the authors (Gogate and Dechter,

2011). For a fair comparison, in GiSS, the proposal is constructed using the the same scheme

as SampleSearch. The only difference is that in Samplesearch, the proposal distribution is

defined on all the variables whereas in GiSS the proposal is defined only on the deterministic

variables. The proposal is constructed for both algorithms using the output of BP. In GiSS,

we set U = 25 and used 25 samples for burn-in. We performed our experiments on a quad-

core machine with 8GB RAM, running CentOS Linux and ran each algorithm for 500 seconds

on each benchmark PGM. Note that both SampleSearch (co-winner of the UAI 2010 and the

PASCAL 2011 competitions) and MC-SAT are state-of-the-art solvers that explicitly reason

about and exploit determinism in PGMs. Therefore, our main comparison is with them.

We evaluated the algorithms on mixed deterministic and probabilistic graphical models

from four benchmark domains: Grids, linkage analysis, statistical relational learning, and

56

medical diagnosis. All the PGMs and test cases are available from the UAI 2008 repository

(http://graphmod.ics.uci.edu/uai08/). Note that in order to fairly evaluate approximate in-

ference, we need to compute the exact marginal probabilities on these benchmarks. Thus,

the benchmarks have relatively small treewidth where exact inference can be performed in

a computationally feasible manner. However, they correspond to several varied applica-

tions as described in the next section. In our experiments, we measured performance using

the average Hellinger distance (Kokolakis and Nanopoulos, 2001) between the exact and

the approximate one-variable marginals. We implemented and experimentally evaluated all

three weighting schemes described in the previous section. We found that the harmonic

mean weighting scheme is the most cost-effective. Therefore, we will first compare our best

algorithm, GiSS equipped with the harmonic mean weighting scheme, with BP, MC-SAT,

SampleSearch and Gibbs sampling. After that, we will describe our results comparing the

three weighting schemes.

Results Comparing GiSS with Other Techniques

Figures 3.3 and 3.4 illustrate our results. We can see that on all instances, GiSS is either

better than or competitive with the other algorithms in terms of accuracy.

Grids. We experimented with three grid PGMs having sizes 12×12, 17×17 and 18×18

respectively. These networks were generated by (Sang et al., 2005). Almost 75% of the

functions in these PGMs are deterministic. Figure 3.3(a)-(c) show that GiSS is the best

performing algorithm on Grids. Specifically, on all the three grids, GiSS had smaller error

as well as variance (indicated by the small error bars) compared to the other algorithms.

Linkage PGMs are generated by converting data used for linkage analysis in compu-

tational Biology (Fishelson and Geiger, 2004) into a PGM. We experimented with three

linkage PGMs: pedigree1 (300 variables), pedigree23 (300 variables) and pedigree30 (1000

variables). Almost 85% of the functions in these PGMs are deterministic. Figure 3.3(d)-(f)

57

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 H
el

lin
ge

r
di

st
an

ce

Time in Seconds

MCSAT
GiSS

GIBBS
BP
SS

(a) grid-12x12

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 H
el

lin
ge

r
di

st
an

ce

Time in Seconds

MCSAT
GiSS

GIBBS
BP
SS

(b) grid-17x17

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 H
el

lin
ge

r
di

st
an

ce

Time in Seconds

MCSAT
GiSS

GIBBS
BP
SS

(c) grid-18x18

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 H
el

lin
ge

r
di

st
an

ce

Time in Seconds

MCSAT
GiSS

GIBBS
BP
SS

(d) pedigree1

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 H
el

lin
ge

r
di

st
an

ce

Time in Seconds

MCSAT
GiSS

GIBBS
BP
SS

(e) pedigree23

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 H
el

lin
ge

r
di

st
an

ce

Time in Seconds

MCSAT
GiSS

GIBBS
BP
SS

(f) pedigree30

Figure 3.3. Average Hellinger distance between the exact and the approximate one-variable
marginals plotted as a function of time along with error bars (indicating the standard de-
viation taken over 5 runs) for GiSS, MC-SAT, BP, SampleSearch (SS) and Gibbs sampling.
(a)-(c):Grids; (d)-(f):Linkage;

58

show the results. On pedigree1 and pedigree23, GiSS is clearly superior while on pedigree30,

GiSS is slightly better than than the other algorithms (however, SampleSearch has smaller

variance than GiSS).

Relational PGMs are obtained by grounding statistical relational models (Getoor and

Taskar, 2007; Domingos and Lowd, 2009). Statistical relational models often have large

amount of determinism and GiSS is ideal for such models because it combines logical (Sam-

pleSearch) and probabilistic inference (Gibbs sampling). We experimented with three rela-

tional PGMs: mastermind-13 (1200 variables), blockmap-14 (700 variables) and students-08

(400 variables). Almost 90% of the dependencies in these networks are deterministic. From

Figure 3.4(a)-(c), we see that on the mastermind and student networks, GiSS is slightly bet-

ter than SampleSearch and clearly superior to the others. On blockmap-14, SampleSearch

is the best performing scheme followed by GiSS.

Promedas PGMs are noisy-OR networks generated by the Promedas system for medical

diagnosis (Wemmenhove et al., 2007). In our experiments, we used three networks from this

class, or-chain-111, or-chain-154 and or-chain-180. These PGMs have around 500 variables

and almost 50% of the functions in them are deterministic. From Figure 3.4(d)-(f), we

can see that on or-chain-154, GiSS is the best performing algorithm. On or-chain-180,

GiSS is marginally better than Gibbs sampling but significantly better than the others.

However, on or-chain-111, Gibbs sampling performs better than GiSS. We suspect that this

is because the Markov chain associated with Gibbs sampling for this network is ergodic (note

that determinism is necessary but not sufficient for breaking ergodicity of the Markov chain

underlying the Gibbs sampler). Moreover, the proposal used by GiSS is a poor approximation

of P as evidenced by the poor performance of BP on this network.

Results Comparing the Weighting Schemes

Next, we compared the efficacy of our different weighting schemes. Figure 3.5 shows the

impact of varying time on the accuracy of the three weighting schemes. For these experi-

59

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 H
el

lin
ge

r
di

st
an

ce

Time in Seconds

MCSAT
GiSS

GIBBS
BP
SS

(a) blockmap-14

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 H
el

lin
ge

r
di

st
an

ce

Time in Seconds

MCSAT
GiSS

GIBBS
BP
SS

(b) mastermind-13

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 H
el

lin
ge

r
di

st
an

ce

Time in Seconds

MCSAT
GiSS

GIBBS
BP
SS

(c) students-08

 0.001

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 H
el

lin
ge

r
di

st
an

ce

Time in Seconds

MCSAT
GiSS

GIBBS
BP
SS

(d) or-chain-111

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 H
el

lin
ge

r
di

st
an

ce

Time in Seconds

MCSAT
GiSS

GIBBS
BP
SS

(e) or-chain-154

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 H
el

lin
ge

r
di

st
an

ce

Time in Seconds

MCSAT
GiSS

GIBBS
BP
SS

(f) or-chain-180

Figure 3.4. Average Hellinger distance between the exact and the approximate one-variable
marginals plotted as a function of time along with error bars (indicating the standard devia-
tion taken over 5 runs) for GiSS, MC-SAT, BP, SampleSearch (SS) and Gibbs sampling.(a)-
(c):Relational; (d)-(f):Promedas.

60

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 H
el

lin
ge

r
di

st
an

ce

Time in Seconds

GiSS-HM
GiSS-Prod

GiSS-Annealed

(a) grid-18x18

 0.01

 0.1

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 H
el

lin
ge

r
di

st
an

ce

Time in Seconds

GiSS-HM
GiSS-Prod

GiSS-Annealed

(b) pedigree1

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 H
el

lin
ge

r
di

st
an

ce

Time in Seconds

GiSS-HM
GiSS-Prod

GiSS-Annealed

(c) student-08

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 H
el

lin
ge

r
di

st
an

ce

Time in Seconds

GiSS-HM
GiSS-Prod

GiSS-Annealed

(d) or-chain-154

Figure 3.5. Average Hellinger distance between the exact and the approximate one-variable
marginals plotted as a function of time along with error bars (standard deviation taken over
5 runs) for GiSS-HM (GiSS with the harmonic mean weighting scheme), GiSS-Prod: (GiSS
with the product weighting scheme) and GiSS-Annealed: (GiSS with the annealed weighting
scheme).

ments, we used U = 25 for the harmonic mean and the product weighting schemes. For the

annealed weighting scheme, we used a linear schedule βk = βk+1 × 0.95 to vary the inverse

temperature. We see that the harmonic mean scheme dominates others in terms of average

accuracy as well as the variance. The harmonic mean scheme is computationally more effi-

cient than the other schemes and as a result its estimates are based on a larger sample size.

However, its weights are less accurate. Our results suggest that larger sample size is more

critical to improving the accuracy than high quality weights.

61

3.2 Dynamic Blocking and Collapsing

We now present our second MCMC algorithm that combines blocking (Jensen et al., 1993;

Liu et al., 1994) and collapsing (Liu et al., 1994), two of the most popular strategies for

improving the statistical efficiency of Gibbs sampling, particularly when the distribution

under consideration contains highly correlated variables. Both these strategies trade sample

quality with sample size. Thus, the hope is that users will achieve the right balance between

the two for the specific PGM at hand, improving the estimation accuracy as a result. Here,

we show that striking this balance is non-trivial and systematically develop an approach to

combine these two techniques into a unified adaptive MCMC sampler.

Unlike Gibbs sampling which samples each variable individually given others, blocked

Gibbs sampling partitions the variables into disjoint groups or blocks and then jointly samples

all variables in each block given an assignment to all other variables not in the block. Joint

sampling is more expensive than sampling variables individually but the samples are of higher

quality in that for a fixed sample size, the estimates based on blocked Gibbs sampling have

smaller variance than the ones based on Gibbs sampling (Liu et al., 1994). A collapsed Gibbs

sampler operates by marginalizing out a subset of variables (collapsed variables) and then

generating dependent samples from the marginal distribution over the remaining variables via

conventional Gibbs sampling.2 Marginalizing out variables is more expensive than sampling

them. However, since only a sub-space is sampled, the samples are of higher quality.

Although, it is provably better to collapse a variable rather than block (group) it with

other variables (Liu et al., 1994), collapsing is computationally more expensive than blocking

and in practice, in many cases, the latter is feasible while the former is not. Therefore, an

2Collapsing is often called Rao-Blackwellisation. Technically, the latter is an advanced estimator while
blocking and collapsing are advanced sampling strategies. In principle, we can also use the Rao-Blackwell
estimator in blocked Gibbs sampling (Hamze and de Freitas, 2004). Here, we will separate sampling from
estimation.

62

B C D

A E F

(a) A PGM

B C D

A

(b) Collapsed PGM

Figure 3.6. Example to illustrate trade-off between blocking and collapsing.

obvious idea is to combine blocking and collapsing, and we aim to investigate this combi-

nation in the context of PGMs. Specifically, the key question we seek to answer is: find a

k-way partitioning of the variables in the PGM where each of the first k − 1 subsets is a

block and the k-th subset contains all the collapsed variables, such that the estimation error

is minimized and the resulting algorithm is tractable. This problem is non-trivial because of

the complex interplay between collapsing and blocking. For example,

Example 5. Consider the pair-wise Markov network (potentials defined on edges) given in

Figure 3.6(a). Let us assume that each variable in the network has d values in its domain

and our time and memory resource constraints dictate that we cannot incur more than O(d3)

complexity. Let us further assume that we have prior knowledge that A, B, C, and D should

be blocked in order to improve the estimation accuracy (for instance, they are highly correlated

or involved in deterministic constraints). Notice that we can only collapse (eliminate) E

and F from the PGM . Otherwise, we will violate the complexity constraints. However,

eliminating both E and F yields a clique over A,B,C,D (see Figure 3.6(b)) and we can

no longer block these variables because the complexity of computing a joint distribution over

them (using junction tree propagation) and then sampling from it is O(d4). A much better

solution in this case is to collapse F , create two blocks {A,B,C,D} and {E} and perform

blocked Gibbs sampling over this sub-space.

63

As seen from the above example, in computation-limited settings, in many cases, variables

that can be blocked in the original PGM can no longer be blocked in the collapsed PGM. In

other words, there is a trade-off between blocking and collapsing which needs to be taken into

account while combining the two schemes. We model this tradeoff by (i) defining two integer

parameters α and β which bound the complexity of collapsing and blocking respectively and

thus allow the user to control the number of blocked versus collapsed variables; (ii) defining

two scoring functions, one each for blocking and collapsing, which favor blocks that contain

variables that are highly correlated with each other and the collapsed set that contains

variables which are highly correlated with other variables in the network; and (iii) casting

the problem of finding the k-way partitioning into blocked and collapsed variables as a multi-

objective optimization problem. This problem seeks to simultaneously maximize the scoring

functions subject to the tractability constraints enforced by α and β.

The optimization problem is NP-hard in general and therefore we propose a dynamic,

greedy algorithm to solve it approximately. We integrate this algorithm with blocked-

collapsed Gibbs sampling yielding a dynamic sampling algorithm. The algorithm begins

by generating samples from the PGM using a feasible k-way partitioning computed using

the (primal) graph associated with the PGM. It then periodically updates the partitioning

after every M samples by leveraging the correlations computed from the generated sam-

ples and performs blocked-collapsed Gibbs sampling using the new partitioning. As more

samples are drawn and as the accuracy of the measured correlation increases, the underly-

ing Markov chain is likely to mix rapidly because highly correlated variables will be either

blocked together or collapsed out.

3.2.1 Combining Blocking and Collapsing

As we seek to combine blocking and collapsing, the obvious question to ask is: can we prove

theoretically whether such a combination will be beneficial. The answer to this question is

“yes” and we briefly describe the theoretical justification for this next.

64

Let F denote the forward operator (Liu, 2001) for a Markov chain induced by the Gibbs

sampler, let x = {x1 . . . xd} be the variables of the distribution (d dimensional state space),

let x−a1,...,−an indicate x \ {xa1 , . . . , xan}. (Liu, 2001) shows that the convergence rate w.r.t

a finite-variance function h is given by,

||Fh|| =
d∑
i=1

αivar{EP [h(x)|x−i]} (3.12)

P is the stationary distribution of the chain, αi is the probability of sampling the i-th

dimension of the state space and var is the variance.

Let FB be the forward operator for the blocked sampler where x1 and x2 have been

blocked, FC be the forward operator for the collapsed sampler where x1 has been collapsed,

FBC be the forward operator for the combined blocked-collapsed sampler where x1 has been

collapsed and x2,x3 have been blocked and FS be the forward operator for the random scan

Gibbs sampler. Then, we have the following relation,

Theorem 5. ||FBCh|| ≤ ||FCh|| ≤ ||FBh|| ≤ ||FSh||.

Proof. Since x1 is collapsed and x2, x3 are blocked, we can re-write Eq. (3.12) as,

||FBCh|| = α1var{EP [h(x)|x−1]}+ (α2 + α3)var{EP [h(x)|x−1,−2,−3]}

+
d∑
i=4

var{EP [h(x)|x−i,−1]} (3.13)

Similarly, we have,

||FCh|| = α1var{EP [h(x)|x−1]}+ α2var{EP [h(x)|x−1,−2]}+ α3var{EP [h(x)|x−1,−3]}

+
d∑
i=4

var{EP [h(x)|x−i,−1]} (3.14)

Further we have,

EP [h(x)|x−1,−2,−3] = EP [EP [h(x)|x−1,−2]|x−3] (3.15)

65

From the law of total variance, we can directly show that,

var{EP [h(x)|x−1,−2,−3]} ≤ var{EP [h(x)|x−1,−2]} (3.16)

Similarly, we have

var{EP [h(x)|x−1,−2,−3]} ≤ var{EP [h(x)|x−1,−3]} (3.17)

Using the inequalities in Eq. (3.16) and Eq. (3.17), we directly have Eq. (3.13) ≤

Eq. (3.14). Using the same reasoning as above, we can show the rest of the inequalities

in the theorem.

3.2.2 Optimally Selecting Blocked and Collapsed Variables

Integrating blocking and collapsing is tricky because they interact with each other. Moreover,

we cannot collapse and block indiscriminately because for our algorithm to be practical

we need to ensure that both blocking and collapsing are computationally tractable. We

model this complex interplay as a constrained optimization problem. We start with some

definitions.

Given a Markov network M, let G be its primal graph. Recall that eliminating any node

in G changes the structure of G by adding edges to it. For any (partial or full) ordering of

vertexes in G, say, π = (X1, . . . , Xn), the width of the ordering is defined as follows.

Definition 9. The width of an ordering (either partial or full) π = (X1, . . . , Xn) of nodes

in G denoted by w(π,G), is the maximum degree of Xi in Gi−1, where G = G0,G1, . . . ,Gn is

a sequence of graphs such that Gi is obtained from Gi−1 by adding edges so as to make the

neighbor set of Xi in Gi−1 a clique, and then removing Xi from Gi (i.e., eliminating Xi from

Gi−1).

66

The treewidth of G (V,E), denoted by tw(G) equals the minimum width over all possible

orderings of V. The example in Figure 3.6(b) shows the graph obtained after eliminating E

and F from the graph in Figure 3.6(a). The width of the partial order (E,F) is equal to 2.

The width of the total order (E,F,A,B,C,D) is equal to 3. For this example, the treewidth

of the graph shown in Figure 3.6(a) is also equal to 3.

We now capture these constraints and the complex interplay between blocking and collapsing

in a principled manner by formulating the problem of selecting the blocks and collapsed

variables as an optimization problem, as defined next.

Definition 1. Given a PGM M = 〈X,Φ〉, two scoring functions ω and ψ for blocking and

collapsing respectively (defined in the next sub-section), and integer parameters α, and β,

find a k-way partition of X denoted by X = B ∪ C, where B = {Bi}k−1
i=1 is a set of k − 1

blocks and C is the set of collapsed variables such that both ω(B) and ψ(C) are maximized,

subject to two tractability constraints: (i) The minimum width of C in the primal graph G

is bounded by α; and (ii) The treewidth of G\C (the graph obtained by eliminating C from G)

projected on each block Bi is bounded by β, namely, ∀ Bi ∈ B, tw(G\C(Bi)) ≤ β .

The optimization problem just presented requires maximizing two functions and is thus an

instance of a multi-objective optimization problem (Marler and Arora, 2004; Hwang and S.,

1979). As one can imagine, this problem is much harder than typical optimization problems

in machine learning which require optimizing just one objective function. In general, there

may not exist a feasible solution that simultaneously optimizes each objective function.

Therefore, a reasonable approach is to find a Pareto optimal solution , i.e., a solution which

is not dominated by any other solution in the solution space. A Pareto optimal solution

cannot be improved with respect to any objective without worsening another objective.

To find Pareto optimal solutions, we will use the lexicographic method – a well-known

approach for managing the complexity of multi-objective optimization problems. In this

67

method, the objective functions are arranged in order of importance and we solve a sequence

of single objective optimization problems. Since collapsing changes the structure of the

primal graph while blocking does not, it is obvious that we should first find the collapsed

variables (i.e., give more importance to the objective function for collapsing) and then com-

pute the blocks. We will use this approach. To reduce the sensitivity of the final solution to

the objective-function for collapsing, we introduce a hard penalty which penalizes solutions

that result in small block sizes (since the accuracy typically increases with the block size).

We describe our proposed scoring (objective) functions and the hard penalty used next.

Scoring Functions

We wish to design scoring functions such that they improve mixing time of the underlying

Markov chain. However, it is well known that computing the exact mixing time analytically

is an extremely hard problem (Liu, 2001). Therefore, we use a heuristic scoring function that

uses correlations between the variables measured periodically from the generated samples. In

general, collapsing variables is much more effective when the collapsed variables exhibit high

correlation with other variables in the PGM. For instance, a variable X that is involved in a

deterministic dependency (or constraint) with another variable Y (e.g., Y = y→ X = x) is a

good candidate for collapsing; sampling such variables likely causes the Markov chain to get

stuck and hinders mixing. Similarly, blocking is effective when we jointly sample variables

which are tightly correlated because sampling them separately may cause the sampler to get

trapped. Moreover, we also want to minimize the number of blocks or maximize the number

of variables in each block because sampling a variable jointly with other variables in a block

is better than or at least as good as sampling the variables individually (Liu, 2001). We

quantify these desirable properties using the following scoring functions:

ω(B) =
1

|B|
∑
Bi∈B

∑
Xj ,Xk∈Bi

D(Xj, Xk) (3.18)

68

where D(Xi, Xj) is any distance measure between the joint distribution P (Xi, Xj) and the

product of the marginal distributions P (Xi)P (Xj).

ψ(C) =

p∑
i=1

1

|X \Ci−1|
∑

X∈X\Ci−1

D(Ci, X) (3.19)

where (C1, . . . , Cp) is a user-defined order on variables in C, Ci = {C1, . . . , Ci} and C0 =

∅. We use the Hellinger distance, which is a symmetric measure to compute D(Xi, Xj).

Formally, this distance is given by:

D(Xi, Xj) =
1√
2

√√√√∑
xi,xj

(√
P (xi, xj)−

√
P (xi)P (xj)

)2

D(Xi, Xj) measures the statistical dependence (correlation) between variables. Higher values

indicate that the variables are statistically dependent while smaller values indicate that the

variables are statistically independent. Notice that in order to compute D(Ci, Cj), we need

to know the 1-variable and 2-variable marginals. Their exact values are clearly not available

and therefore we propose to estimate them from the generated samples.

As mentioned above, since we choose the collapsed variables before constructing the

blocks, we have to penalize the feasible solutions that are likely to yield small blocks. We

impose this penalty by using a hard constraint. The hard constraint disallows all feasible

solutions C such that eliminating all variables in C along the ordering (C1, . . . , Cp) adds

more than γ edges to the primal graph. Thus, γ controls the relative importance of blocking

versus collapsing. When γ is infinite or sufficiently large, the optimal solution to the objective

function for collapsing is further refined to construct the blocks. On the other hand, when

γ is small, a suboptimal solution to the objective function for collapsing, which can in turn

enable higher quality blocking, is refined to construct the blocks.

3.2.3 Dynamic Blocked-Collapsed Gibbs Sampling

Although splitting the multi-objective optimization problem into two single objective opti-

mization problems makes it comparatively easier to handle, it turns out that the resulting

69

Algorithm 3: Greedy-Collapse

Input: A PGM M = 〈X,Φ〉, Integers α, and γ
Output: The collapsed PGM MX/C obtained by eliminating C from M

1 E = 0; C = ∅;
2 repeat

// Let G be the primal graph associated with M
3 Compute the value of the heuristic evaluation function for each vertex in G (see

Eq. (3.21));
4 Select a variable X with the maximum heuristic value such that the degree

deg(X,G) ≤ α where deg(X,G) is the degree of X in G ;
// Let E(X,G) be the number of new edges added to G by forming a

clique over neighbors of X
5 E = E + E(X,G);
6 Eliminate X from M;
7 C = C ∪ {X};
8 until all vertices in G have degree larger than α or E > γ;
9 returnM;

single objective optimization problems are NP-hard. For instance, the problem of comput-

ing the set of collapsed variables includes the NP-hard problem of computing the (weighted)

treewidth (cf. (Arnborg et al., 1987)) as a special case. We therefore solve them using greedy

methods.

Solving the optimization problem for Collapsing

Our greedy approach for computing the collapsed variables is given in Algorithm 3. The

algorithm takes as input the PGM M, two integer parameters α and γ which constrain

the width of the collapsed variables (tractability constraints) and the total number of edges

added to the primal graph after eliminating the collapsed variables (penalty) respectively,

selects the collapsed variables, and outputs a PGM obtained by eliminating the collapsed

variables.

Algorithm 3 heuristically selects variables one by one for collapsing until no variables

can be selected because they will violate either the tractability constraints or the (penalty)

70

constraint on the total number of edges added. For maximizing the objective function, we

want to collapse as many highly correlated variables as possible. Thus, a simple greedy

approach would be to select, at each iteration, the variable X with the maximum correlation

score ψ(X) where ψ(X) is given by

ψ(X) =
1

|X|
∑
Xi∈X

D(X,Xi) (3.20)

However, this approach is problematic because a highly correlated variable may add several

edges to the primal graph, potentially increasing its treewidth. This will in turn constrain

future selections and may yield solutions which are far from optimal. In other words, at

each iteration, we have to balance locally maximizing the scoring function with the number

of edges added in order to have a better chance of hitting the optimum or getting close to it.

We therefore use the following heuristic evaluation function to evaluate the various choices:

χ(X) = ψ(X) +

((
α
2

)
− E(X,G)(

α
2

))
(3.21)

where ψ(X) is defined in Eq. (3.20) and E(X,G) is the number of new edges that will

be added to G by forming a clique over X. Note that since the maximum degree of any

eliminated variable is bounded by α, the maximum number of edges that can be added

is bounded by
(
α
2

)
. Therefore, the quantity in the brackets in Eq. (3.21) lies between 0

and 1 and high values for this quantity are desirable since very few edges will be added by

eliminating the particular variable (ψ(X) also lies between 0 and 1 and high values for it are

desirable too).

Solving the optimization problem for Blocking

Algorithm 4 presents the pseudo-code for our greedy approach for constructing the blocks.

The algorithm takes as input a PGM M and an integer parameter β which bounds the

treewidth of the primal graph of M projected on each block, and outputs a partitioning of

71

Algorithm 4: Greedy-Block

Input: A PGM M = 〈X,Φ〉 and Integer β
Output: A partition of X denoted by B

1 Initialize B = {{X}|X ∈ X} (each block contains just one variable);
2 repeat

// Let Bi,j denote the partitioning formed from B by merging two

blocks Bi,Bj in B
3 Merge two blocks Bi and Bj in B such that:

1. they are in the Markov blanket of each other,

2. tw(G(Bi ∪Bj)) ≤ β

3. there does not exist another pair Bk, Bm in B which satisfies the above two
constraints and ω(Bk,m) > ω(Bi,j)

4 until ∀Bi,Bj ∈ B, tw(G(Bi ∪Bj)) > β;
5 return B;

the variables ofM into blocks. The algorithm begins by having |X| blocks, each containing

just one variable. Then it greedily merges two blocks such that they will yield the maximum

increase in the score ω(B) under the constraint that the treewidth of the merged block is

bounded by β. (Note that computing the treewidth is NP-hard (Arnborg et al., 1987) and

therefore in our implementation we use the min-fill algorithm to compute an upper bound

on it.) To guard against merging blocks which are far away from each other in the primal

graph (and thus likely to be statistically independent), we merge two blocks only if they are

in the Markov blanket of each other.

Dynamic Blocked Collapsed Gibbs sampling

Next, we describe how to use the greedy blocking and collapsing algorithms within a Gibbs

sampler, yielding an advanced sampling technique. Our proposed method is summarized

in Algorithm 5. The algorithm takes as input a PGM M, parameters α, β and γ for

performing blocking and collapsing, and two integers T and M which specify the sample size

72

Algorithm 5: Dynamic Blocked-Collapsed Sampling

Input: A PGM M = 〈X,Φ〉; integers T , M ; integers α, β and γ
Output: An estimate of marginal probabilities for all X ∈ X

1 Initialize all 1-variable P (xi) and 2-variable marginals P (xi, xj) to zero;
2 for t = 1 to T do
3 MX\C = Greedy-Collapse(M,α,γ);
4 B = Greedy-Block(MX\C,β);
5 Generate M samples from MX\C using Blocked Gibbs sampling with B as blocks;
6 Update all 1-variable P (xi) and 2-variable marginals P (xi, xj) using the

Rao-Blackwell estimator (see Eq. (2.9)).

return P (xi) for all variable-value combinations.

and the interval at which the statistics are updated. At termination, the algorithm outputs

an estimate of all 1-variable marginal probabilities.

The algorithm maintains an estimate of 1-variable and 2-variable marginals. The 2-

variable marginals are used for computing the scoring functions. At each iteration, given a

k-way partitioning of the variables into blocked and collapsed variables, denoted by B and

C respectively, the algorithm generates M samples via blocked Gibbs sampling overMX\C.

After every M samples, the algorithm updates the blocks and collapsed variables using the

greedy procedures outlined in the previous two subsections. The 1-variable and 2-variable

marginals are updated using the Rao-Blackwell estimator (Eq. (2.9)).

Next, we describe how to update the 1-variable marginals (2-variable marginals can be

updated analogously). At each iteration t where t ∈ {1, T}, let {x(i,t)}Mi=1 be the set of M

samples generated via Blocked Gibbs sampling and let P̂t(x) denote the estimate of P (X = x)

at iteration t. Then P̂t(x) is given by:

P̂t(x) =
(t− 1)P̂t−1(x) +Qt(x)

t
(3.22)

where Qt(x) is computed as follows. If X ∈ C is a collapsed variable, then without loss of

generality, let Bk denote the largest block in B. Similarly, If X is a blocked variable, then

without loss of generality, let Bk denote the block in B in which X is present. Let x
(i,t)
−k

73

denote the projection of x(i,t) on all variables in B \Bk. Then Qt is given as follows:

Qt(x) =
1

M

M∑
i=1

P (x|x(i,t)
−k) (3.23)

To compute P (x|x(i,t)
−k) we have to marginalize out all variables in Bk ∪C\{X}. Computing

this is tractable because according to our assumptions marginalizing out C is tractable. After

marginalizing out C, marginalizing out Bk is tractable because its treewidth is bounded by

β.

Note that when the correlation statistics are not available, i.e., when t = 0, the blocked

and collapsed variables are computed by consulting the primal graph of the PGM. Thus, the

blocks are constructed by randomly merging variables which are in the Markov blanket of

each other; ties broken randomly. Similarly, the collapsed variables are selected along a con-

strained min-fill ordering (constrained by α). Thus, if we use a time bound, namely we stop

sampling after the time bound has expired, and set M to be sufficiently large, Algorithm 5

is equivalent to a static graph-based blocked-collapsed Gibbs sampling procedure.

Convergence

Clearly, the sampler in Algorithm 5 is non-Markovian. That is, since we change the blocks

and collapsed variables dynamically, the state of the Markov chain is not memoryless and

depends upon the previous samples that were generated from the chain. Thus, it is an in-

stance of what is referred to as adaptive MCMC techniques (Roberts and Rosenthal, 2009).

Analyzing the convergence such adaptive samplers is known to be a hard problem and is

an area of active research in statistics. In fact it is known that some well-known adaptive

samplers do not converge (cf. (Roberts and Rosenthal, 2007)). Gonzalez et al. (Gonzalez

et al., 2011) prove that if a Markov chain depends upon the state of a sampler, then the chain

is not guaranteed to be ergodic even in a finite state space where each variable is sampled

74

infinitely often. The solution commonly used to ensure convergence is the concept of dimin-

ishing adaptation (Roberts and Rosenthal, 2007). This means that the rate of adaptation

must tend towards 0 as the samples tend towards ∞. In our case, this is straightforward to

achieve since M controls the rate at which the blocks and collapsed variables are updated.

By using a policy in which M is progressively increased as t increases, using the results from

adaptive MCMC (Roberts and Rosenthal, 2007), it directly follows that the estimates output

by Algorithm 5 will converge to P (xi) as T tends to infinity.

3.2.4 Related Work

A number of earlier papers have investigated blocking and collapsing in the context of PGMs.

Table 3.1 summarizes some notable ones and how they are related to our work. Blocked

Gibbs sampling was first proposed by Jensen et al. (Jensen et al., 1993). The key idea in

their algorithm was to create a “single block” by removing variables one by one from the

primal graph until the treewidth of the remaining network is bounded by a constant and

then sample this block using the junction tree algorithm. Unlike Jensen et al.’s work, we

allow multiple blocks, combine collapsing with blocking and use the Rao-Blackwell estimator

for computing the marginals (Jensen et al. use the histogram estimator).

Our algorithm is related to the Rao-Blackwellised blocked Gibbs sampling (RBBG) al-

gorithm proposed by Hamze and de Freitas (Hamze and de Freitas, 2004). RBBG operates

by dividing the network into two tractable tree-structured blocks and then performing Rao-

Blackwellised estimation in each block. Unlike our algorithm, RBBG is applicable to grid

Markov networks only. Also, unlike our algorithm, RBBG does not use multiple blocks and

does not update the blocks dynamically. Moreover, RBBG does not use collapsing.

Another related work is that of Bidyuk and Dechter (Bidyuk and Dechter, 2007) in which

the authors propose a collapsed Gibbs sampling algorithm. The key idea in their work is

similar to Jensen et al.: remove variables one by one until the treewidth is bounded by a

75

Table 3.1. Comparing prior work and our work along different dimensions. Blocking (1:
uses a single block, 2: uses 2 blocks, M: uses multiple blocks, N: not blocked), collapsing
(Y/N), Rao-Blackwell Estimation (RB) (Y/N) and Dynamic (N: Static,Y: Dynamic).

Algorithm Blocked Collapsed RB Dynamic
Geman & Geman (Geman and Geman, 1984) N N N N

Jensen et al. (Jensen et al., 1993) 1 N N N
Bidyuk & Dechter (Bidyuk and Dechter, 2007) N Y Y N

Hamze & de Freitas (Hamze and de Freitas, 2004) 2 N Y N
Paskin (Paskin, 2003) M Y Y N

Our work M Y Y Y

constant w (the removed variables form a w-cutset). However, unlike Jensen et al., they use

the junction tree to sample the w-cutset variables. Formally, let W be the set of w-cutset

variables and V = X \W be the set of remaining variables. Then, the junction tree is used

to compute the distribution P (Wi|w−i) and sample from it. Effectively, the set V is always

collapsed out. A key drawback of this algorithm is that the junction tree algorithm must be

run from scratch for sampling each w-cutset variable and as a result the algorithm can be

quite slow. In our approach, we save time by marginalizing out a subset of variables before

running the junction tree algorithm (i.e., marginalization is a pre-processing step before

sampling). Also, unlike our work, the Bidyuk and Dechter algorithm does not use blocking

and is not dynamic.

The sample propagation algorithm of Mark Paskin (Paskin, 2003) is the only blocked-

collapsed algorithm for PGMs that we are aware of. The algorithm integrates sampling with

message passing in a junction tree. The key idea is to walk the clusters of a junction tree,

sampling some of the current cluster’s variables and then passing a message to one of its

neighbors. The algorithm designates a subset of variables for sampling and marginalizes out

the remaining variables by performing message passing over the junction. In that sense,

sample propagation is similar to (but more efficient than) Bidyuk and Dechter’s algorithm.

The only difference is that variables within each cluster are sampled jointly (or blocked) if

76

the cluster size is small enough or sampled using Metropolis-Hastings otherwise. Since the

blocks in sample propagation are confined to the clusters of a junction tree, they can be

much smaller than the blocks used in our algorithm. Also, this algorithm is not dynamic.

Finally, our work is related to parallel Gibbs sampling by Gonzalez et al. (Gonzalez et al.,

2011) who use likelihood estimates to compute the blocks.

3.2.5 Experiments

In this section, we experimentally evaluate the performance of the following algorithms on

several benchmark PGMs: (a) Naive Gibbs sampling (Gibbs); (b) Static Blocked Gibbs sam-

pling (SBG); (c) Static blocked collapsed Gibbs sampling (SBCG); and (d) Dynamic blocked

collapsed Gibbs sampling (DBCG) . SBG is similar to the algorithm of Hamze and de Fre-

itas (Hamze and de Freitas, 2004) except that we allow multiple blocks and do not constrain

the blocks to be tree structured. SBCG is an advanced version of Paskin’s sample propagation

algorithm (Paskin, 2003). We implemented SBG and SBCG by setting M to a sufficiently large

value i.e., these methods consult only the primal graph of the PGM to choose the blocks

and collapsed variables. To compute marginals, we use the Rao-Blackwell estimator in SBG,

SBCG and DBCG, and the mixture estimator in Gibbs. In DBCG we set α = β = 8, γ = 50× α
and M = 1000 (progressively increasing it). We evaluate the impact of α, β and γ in the

next sub-section.

Figures 3.7 and 3.8 illustrate our results. We see that DBCG is more accurate than all

other algorithms on almost all the PGMs, often outperforming the competition by an order

of magnitude.

Ising models. Figures 3.7(a)-(c) show the performance of various algorithms on three

Ising models of size 20×20 with evidence on 5, 10 and 15 randomly selected nodes respec-

tively. DBCG is the best algorithm on all three PGMs. SBCG performs better than the other

two algorithms on grid20x20.f10 and grid20x20.f15 and its performance is almost similar to

SBG and Gibbs on grid20x20.f5.

77

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG

SBCG

SBG

Gibbs

(a) grid-20x20.f5

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG

SBCG

SBG

Gibbs

(b) grid-20x20.f10

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG

SBCG

SBG

Gibbs

(c) grid-20x20.f15

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG

SBCG

SBG

Gibbs

(d) students-0015

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG

SBCG

SBG

Gibbs

(e) blockmap-0014

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG

SBCG

SBG

Gibbs

(f) mastermind-0014

Figure 3.7. Average Hellinger distance between the exact and the approximate 1-variable
marginals plotted as a function of time. (a)-(c): Grids, (d)-(f): Relational

78

Relational PGMs are obtained by grounding statistical relational models which often

have large number of correlated variables as well as deterministic dependencies. Our dynamic

approach is beneficial on such models because it has the ability to learn correlations and

adjust the partitions accordingly. We experimented with three relational PGMs available

from the UAI-08 repository: students-0015, blockmap-0014 and mastermind-0014. Figures

3.7 (d)-(f) show the results. Again, we see that DBCG is the best performer followed by SBCG.

Linkage PGMs are used for performing genetic linkage analysis (Fishelson and Geiger,

2004). Figures 3.8 (a)-(c) show results on three linkage PGMs. Again, on all three PGMs,

DBCG is the best performing algorithm and SBCG is the second best.

Promedas PGMs are noisy-OR medical diagnosis networks generated by the Promedas

medical diagnosis system (Wemmenhove et al., 2007). The networks are two-layered bipartite

graphs in which bottom layer has the symptoms and the top layer has the diseases. We

experimented with three PGMs: or-chain-62, or-chain-129 and or-chain-236. Figures 3.8

(d)-(f) show the results. DBCG performs better than all other algorithms in two out of the

three PGMs. On or-chain-236, SBCG is slightly better than DBCG, but has larger variance.

Impact of varying the parameters α and β

Figure 3.9 shows the impact of changing the parameters α and β on the performance of

DBCG. Figures 3.9 (a)-(c) show the impact of increasing α with β set to a constant while

Figures 3.9 (d)-(f) show the impact of increasing β with α set to a constant. We see that

increasing α or β typically increases the accuracy and reduces the variance as a function of

time. However, in some cases (e.g., Figure 3.9(c) and Figure 3.9(f)), we see that the accuracy

goes down as we increase α and β, which indicates that there is a trade-off between blocking

and collapsing. In summary, α and β help us explore the region between a completely

collapsed and a completely blocked sampler, and in turn help us achieve the right balance

between blocking and collapsing.

79

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG

SBCG

SBG

Gibbs

(a) FamilyDominant-1.5

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG

SBCG

SBG

Gibbs

(b) FamilyDominant-20.5

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG

SBCG

SBG

Gibbs

(c) pedigree23

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG

SBCG

SBG

Gibbs

(d) or-chain-62

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG

SBCG

SBG

Gibbs

(e) or-chain-129

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG

SBCG

SBG

Gibbs

(f) or-chain-236

Figure 3.8. Average Hellinger distance between the exact and the approximate 1-variable
marginals plotted as a function of time. (a)-(c): Linkage, (d)-(f): Promedas.

80

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG-a3-b8

DBCG-a6-b8

DBCG-a9-b8

DBCG-a12-b8

(a) grid-20x20.f10

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG-a3-b8

DBCG-a6-b8

DBCG-a9-b8

DBCG-a12-b8

(b) students-0015

 0.01

 0.1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG-a3-b8

DBCG-a6-b8

DBCG-a9-b8

DBCG-a12-b8

(c) familyDominant-1.5

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG-a8-b3

DBCG-a8-b6

DBCG-a8-b9

DBCG-a8-b12

(d) grid-20x20.f10

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG-a8-b3

DBCG-a8-b6

DBCG-a8-b9

DBCG-a8-b12

(e) students-0015

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

H
el

li
n
g
er

 d
is

ta
n
ce

Time in Seconds

DBCG-a8-b3

DBCG-a8-b6

DBCG-a8-b9

DBCG-a8-b12

(f) familyDominant-1.5

Figure 3.9. Blocking vs. Collapsing tradeoff. (a)-(c): Impact of varying α with β set to
a constant value. (d)-(f): Impact of varying β with α set to a constant value. We use γ =
50 × α. In all the plots, we plot the average Hellinger distance between the exact and the
approximate 1-variable marginals as a function of time. The notation shown in the plots is
as follows. DBCG-ax-by indicates that α = x and β = y.

81

3.3 Summary

Gibbs sampling performs poorly in PGMs that encode logical dependencies. In this chap-

ter we presented two algorithms that improve the performance of Gibbs sampling in such

PGMs. First, we introduced GiSS, a hybrid algorithm that combines Gibbs sampling with

SampleSearch to perform inference in models with determinism. Determinism fractures the

state space into multiple clusters and Gibbs sampling get struck in a local cluster converging

to the wrong distribution. The main virtue of GiSS is that unlike Gibbs sampling which does

not converge to the correct answers in presence of determinism, GiSS yields provably correct

(asymptotically unbiased) estimates of various inference tasks. We proposed three schemes

for correctly weighting the samples generated by GiSS and showed that they trade compu-

tational complexity with accuracy. We performed experiments on benchmark PGMs from

several domains and found that GiSS is often better in terms of accuracy than state-of-the-art

algorithms such as MC-SAT and SampleSearch.

Next, we improved the performance of Gibbs sampling in the presence of correlations.

Specifically, we presented an approach that combines two widely used techniques that prov-

ably improve the convergence of Gibbs sampling, namely, blocking and collapsing. We

showed that combining these two tractably and effectively is a hard problem and formulated

it as a multi-objective optimization problem. We proposed a greedy algorithm to solve this

problem which assumes access to correlations between all pairs of variables. Since the exact

value of these correlations is not available, we proposed to estimate them from the gener-

ated samples, and update the greedy solution periodically. This yields a dynamic/adaptive

blocked collapsed Gibbs sampling algorithm which iterates between two steps: partitioning

and sampling. In the partitioning step, the algorithm uses the current estimate of corre-

lations between variables to partition the variables in the PGM into blocked and collapsed

subsets and constructs the collapsed PGM. In the sampling step, the algorithm uses the

blocks constructed in the previous step to generate samples from the collapsed PGM. As

82

the dynamic sampler learns correlations, the mixing of the sampler is improved. Our exper-

iments showed that this dynamic method has much better accuracy than using static blocks

and collapsed variables.

CHAPTER 4

LIFTING SAMPLING BASED INFERENCE ALGORITHMS

Graphical model inference algorithms ignore the first-order structure of MLNs and treat it

as a regular Markov network. Thus, they are propositional in the sense that they work on

the ground representation of the MLN. Since the ground representation is typically several

orders of magnitude larger than the first-order specification of the MLN, propositional in-

ference techniques have limited scalability. On the other hand, lifted inference algorithms

can be viewed as algorithms with “relational-awareness”. That is, lifted inference algorithms

exploit symmetries in the MLN’s relational structure and work at the first-order level ground-

ing the MLN only as needed. The central idea behind most lifted inference algorithms is

the same, namely, identify and perform efficient inference over groups of symmetric variables

instead of treating each variable as a separate entity, which is typically the assumption made

by propositional inference algorithms. The challenge though is to identify such symmetries

efficiently from first-order structure without consulting the ground representation. As is the

case with propositional inference, algorithms that yield exact results, namely, exact lifted in-

ference algorithms (e.g., FOVE (de Salvo Braz, 2007), PTP (Gogate and Domingos, 2011b),

WFOMC (Van den Broeck et al., 2011), etc.) are typically computationally infeasible for

several real-world MLNs. Therefore, approximate inference is the method-of-choice in these

cases. In this chapter, we introduce two sampling based lifted approximate inference algo-

rithms, namely, (i) Lifted Blocked Gibbs (LBG), which lifts an advanced variant of Gibbs

sampling and (ii) Lifted Importance Sampling (LIS). Just like exact lifted inference, both

LBG and LIS leverage relational structure for inference, however, they produce approximate

results but with strong, provable convergence guarantees. At a high level, the central theme

83

84

in both LBG and LIS is the notion of sampling from a lifted state space instead of a proposi-

tional state space. That is, the sampling algorithm explores a state space where symmetric

variables are grouped together. To find such groups efficiently while preserving correct-

ness and convergence guarantees of the sampler, we exploit symmetries in the first-order

representation of MLNs. Next, we describe the LBG and LIS algorithms in detail.

4.1 Lifted Blocked Gibbs

Gibbs sampling is an instance of the well-known Markov Chain Monte Carlo (MCMC) based

sampling technique. Several earlier papers have attempted to exploit relational or first-

order structure in various MCMC based sampling algorithms. Notable examples are MC-

SAT (Poon et al., 2008), Metropolis-Hastings MCMC for Bayesian logic (BLOG)(Milch

and Russell, 2006), typed MCMC (Liang et al., 2010) and orbital MCMC (Niepert, 2012).

Unfortunately, none of the aforementioned techniques are truly lifted. In particular, they do

not exploit first-order structure to the fullest extent. Upon close observation, in fact, lifting

a generic MCMC technique is difficult because at each point, in order to ensure convergence

to the desired stationary distribution, one has to maintain an assignment to all random

variables in the distribution. For instance, if we wish to apply Gibbs sampling to MLNs,

each iteration can sample exactly one ground atom and thus, it is necessary to maintain

an assignment over every ground atom in the MLN. In other words, the Gibbs sampler

implicitly works in a propositional state space. We circumvent these issues by lifting an

advanced variant of Gibbs sampling called blocked Gibbs sampling and show that it is more

amenable to lifted inference.

Blocking or blocked Gibbs sampling (Jensen et al., 1993; Liu et al., 1994) is an advanced

technique that improves upon the Gibbs sampling algorithm by grouping variables (each

group is called a block) and then jointly sampling all variables in the block. Blocking

improves the mixing time and as a result improves both the accuracy and convergence of

85

Gibbs sampling (cf. (Liu, 2001)). The difficulty is that to jointly sample variables in a block,

we need to compute the exact joint distribution over them. This is typically exponential in

the treewidth of the ground Markov network projected on the block.

Our main idea in applying the blocking strategy to MLNs is the following. Instead of

blocking over propositional variables, we partition the set of first-order atoms in the model

into a set of disjoint liftable clusters, i.e., the MLN projected on each cluster can be solved

tractably using exact lifted inference. Given such a set of liftable clusters, we show that

Gibbs sampling is essentially a message passing algorithm over the graph that is formed

by connecting clusters where an edge between clusters Ci and Cj indicates that at least

one atom in Ci and one atom in Cj are in the Markov blanket of each other. A message

from Ci to Cj in this case is the current state (truth assignment) of all ground atoms in Ci

that are in the Markov blanket of some atom in Cj. We then show how to lift each such

message while maintaining invariance of the MLN distribution by exploiting symmetries that

can be identified from the first-order structure. Surprisingly, we show that in some cases

more blocking can in fact reduce the complexity of inference. This is a counter-intuitive

result since, in propositional inference, more blocking always increases inference complexity.

However, with lifted inference, in some cases more blocking preserves more symmetries within

a block which in-turn reduces the complexity of inference.

We present experimental results comparing the performance of lifted blocked Gibbs sam-

pling with (propositional) blocked Gibbs sampling, MC-SAT (Poon and Domingos, 2006;

Poon et al., 2008) and Lifted BP (Singla and Domingos, 2008) on various MLN benchmarks.

Our experiments show that lifted Gibbs sampling is superior to blocked Gibbs sampling and

MC-SAT in terms of convergence, accuracy and scalability. It is also more accurate than

lifted BP on some instances.

86

4.1.1 Our Approach

We illustrate the key ideas in our approach using an example MLN having two weighted for-

mulas: R(x, y)∨S(y, z), w1 and S(y, z)∨T(z, u), w2. Note that the problem of computing the

partition function of this MLN for arbitrary domain sizes is non-trivial; it cannot be poly-

nomially solved using existing exact lifted approaches such as PTP (Gogate and Domingos,

2011b), WFOMC (Van den Broeck et al., 2011) and lifted VE (de Salvo Braz, 2007).

Our main idea is to partition the set of first-order atoms into disjoint blocks (clusters)

such that exact lifted inference using PTP is tractable in each cluster. We then sample all

the ground atoms in a cluster jointly, given assignments to all other clusters. Recall that

PTP is tractable if we can apply its two rules, namely, the power rule and the generalized

binomial rule (Section 2.2.3) recursively or at least until we can reduce the MLN to a size

that is “small-enough” such that it can be solved by any exact inference algorithm (e.g.

variable elimination). For this, the treewidth of the remaining ground network of the MLN

after applying the PTP operations should be bounded by a constant.

Now, let us apply the clustering idea to our example MLN. Let us put each first-order

atom in a cluster by itself, namely we have three blocks/clusters: R(x, y), S(y, z) and T(z, u)

(see Figure 4.1(a)). Note that each (first-order) cluster represents all groundings of all

atoms in that cluster. To perform Gibbs sampling over this clustering, we pick any cluster

and sample all the atoms in that cluster given assignments to all other clusters. Thus, in the

above example, we need to compute three conditional distributions: P (R(x, y)|S̄(y, z), T̄(z, u))

(where T̄(z, u) denotes an assignment to all groundings of T), P (S(y, z)|R̄(x, y), T̄(z, u)) and

P (T(z, u)|R̄(x, y), S̄(y, z)) where R̄(x, y) denotes a truth assignment to all possible ground-

ings of R. Let the domain size of each variable be d. Naively, given an assignment to

all other atoms not in the cluster, we will need O(2d
2
) time and space for computing and

specifying the joint distribution at each cluster. This is because there are d2 ground atoms

87

associated with each cluster. However, PTP has a smaller complexity by taking advan-

tage of conditional independence. Specifically, consider the application of PTP to compute

P (S(y, z)|R̄(x, y), T̄(z, u)). When we instantiate the evidence R̄(x, y), T̄(z, u) and normalize

the MLN, we obtain 2×d3 ground formulas. Each ground formula is either empty or satisfied

or has exactly one unit ground clause of the form S(X, Y). The normal MLN now has d2

atoms and conditioning on each can be done independently in constant time. Therefore, the

overall complexity is equal to O(d3). Note that the complexity of sampling all variables us-

ing propositional Gibbs sampling is also O(d3) because grounding the entire MLN produces

2× d3 ground formulas.

Now, let us consider an alternative clustering in which we have two clusters as shown in

Figure 4.1(b). Intuitively, this clustering is likely to yield better accuracy than the previous

one because more atoms will be sampled jointly. For instance, consider the degenerate case

where every predicate is in a single cluster, this is the ideal blocking because it produces exact

results. Also, it is easy to see that, in graphical model inference, more blocking will increase

the complexity of exact inference, since implicitly, this adds more variables and edges into the

graphical model projected on a block. However, since lifted inference works on the relational

representation and not the ground Markov network, it turns out that, counter-intuitively, as

we show next, Clustering 2 will yield a blocked sampler having smaller complexity than the

one based on Clustering 1.

To perform blocked Gibbs sampling over Clustering 2, we need to compute two distribu-

tions P (R(x, y), S(y, z)|T̄(z, u)), P (T(z, u)|R̄(x, y), S̄(y, z)). Let us see how PTP will compute

P (R(x, y), S(y, z)|T̄(z, u)). If we instantiate all groundings of T, we get the following reduced,

normal MLN {R(x, y) ∨ S(y, Zi), w1}di=1 and {S(y, Zi), kiw2}di=1 where Zi ∈ ∆z and ki is the

number of False groundings of T(y, Zi). This MLN contains a decomposer y. PTP will

now apply the decomposer rule, yielding formulas of the form {R(x, Y) ∨ S(Y, Zi), w1}di=1

and {S(Y, Zi), kiw2}di=1 where Y ∈ ∆y. R(x, Y) is a singleton atom and therefore applying

88

R(x, y) S(y, z)

T(z, u)

y

z

(a) Clustering1

R(x, y),S(y, z) T(z, u)
z

(b) Clustering2

Figure 4.1. Two possible clusterings for lifted blocked Gibbs sampling on the example MLN
having two weighted formulas. : R(x, y) ∨ S(y, z), w1 and S(y, z) ∨ T(z, u), w2.

the generalized binomial rule, we will get d + 1 reduced MLNs, each containing d atoms

of the form {S(Y, Zi)}di=1. These atoms are conditionally independent of each other and

a distribution over them can be computed in O(d) time. Thus, the complexity of com-

puting P (R(x, y), S(y, z)|T̄(z, u)) is O(d2). Samples for R and S can be generated from

P (R(x, y), S(y, z)|T̄(z, u)) in O(d2) time as well. Notice that P (T(z, u)|R̄(x, y), S̄(y, z)) =

P (T(z, u)|S̄(y, z)) because R is not in the Markov blanket of T. This distribution can also

be computed in O(d2) time. Therefore, the complexity of sampling all atoms using the

clustering shown in Figure 4.1(b) is O(d2).

Space Complexity: For Clustering 2, notice that to compute the conditional distribution

P (R(x, y), S(y, z)|T̄(z, u)), we only need to know how many groundings of T(Zi, u) are True

in T̄(z, u) for all Zi ∈ ∆z. Cluster T(z, u) can share this information with its neighbor using

only O(d) space. Similarly, to compute P (T(z, u)|S̄(y, z)) we only need to know how many

groundings of S(y, Zi) are True in S̄(y, z) for all Zi ∈ ∆z. This requires O(d) space and

thus the overall space complexity of Clustering 2 is O(d). On the other hand, the space

complexity of Gibbs sampling over Clustering 1 is O(d2).

89

4.1.2 PTP-Tree

Before, we formalize the example presented in the previous section, we define a canonical

structure from which we obtain lifted samples. Specifically, just as advanced search based

inference algorithms such as AND/OR search (Dechter and Mateescu, 2007) represent the

probability distribution as a conditioning tree/graph by taking advantage of independent

sub-problems, PTP can be visualized as algorithm that explores a lifted conditioning tree

during its execution. We refer to this tree as a PTP-tree

Each node in PTP-tree represents a lifted operation of PTP (Section 2.2.3). Thus, a PTP-

tree can be viewed as a lifted representation of the input MLN’s joint distribution. However,

note that we have assumed a tree structure for ease of exposition. Using extensions of PTP,

we can easily compile a PTP-tree into a more compact graph through techniques such as

caching that exploit repeated sub-steps. However, for the purpose of this chapter, we strictly

assume a tree structure.

Formally, a PTP-tree T for an MLNM has three distinct types of nodes, each of which

is defined as below.

1. Power Node represents the application of the power rule in PTP. A power node W
has exactly one child denoted by C(W , 1). The distribution represented atW denoted

by PW is the product of D(d) independent and identical distributions, where d is the

decomposer and D(d) is size of the decomposer.

PW =

D(d)∏
j=1

PC(W,1)

2. Decomposition Node represents the operation where an MLN is decomposed into

disjoint parts. The distribution at a decomposition node D is the product of the K

independent distributions, where K is the number of children of D.

PD =
K∏
i=1

PC(D,i)

90

y

R(x, Y)

. rs

. Sk(Y)

j

0 1

Figure 4.2. The PTP tree for the MLN which contains formulas {R(x, y)∨ Si(y), w}Ki=1 and
{Si(y), w′i}Ki=1. The triangle represents a power node where y is the decomposer variable. The
circle represents a conditioning node corresponding to an atom. For the atom R(x, Y) which
represents ∆x groundings, the conditioning node has ∆x + 1 children, where the j-th child
represents conditioning over all groundings of R(x, Y) by setting any j groundings to true
and ∆x − j groundings to false. After conditioning on R(x, Y), we can split the remaining
MLN into k independent parts, where each part contains a single atom of the form Sk(Y).
This is represented as a decomposition node by the small square. We then condition on each
of these atoms as represented by the conditioning node.

3. Binomial Node represents the application of the generalized binomial rule in PTP.

The distribution at a node that conditions on all groundings of R(x) denoted by PR is

defined in a lifted manner as follows.

PR(i) =

(|∆x|
i

)
Z(PC(R,i+1))∑|∆x|

j=0

(|∆x|
j

)
Z(PC(R,j+1))

where PR(i) denotes the probability that any i groundings of R are assigned true.

An example PTP tree is illustrated in Figure 4.2. To obtain lifted samples from the joint

distribution represented by a PTP-tree, we simply visit every node of the PTP-tree and

sample the distribution corresponding to that node.

91

4.1.3 Lifted Blocked Gibbs

We now formalize the lifted blocked Gibbs sampling (LBG) algorithm. We assume that the

input to our algorithm is a normal MLN (Section 2.1.4). First, we begin with some required

definitions.

Definition 10 (Gibbs cluster graph). Given an MLN M, a Gibbs cluster graph, G, is an

undirected graph where the set of nodes represent a partition of the atoms of M and an edge

between two nodes Ci and Cj exists iff there exist two ground atoms, one in Ci and the other

in Cj which are in the Markov blanket of each other.

Definition 11 (Ground Messages). Given a Gibbs cluster graph G, corresponding to each

edge (Ci, Cj), there exists two ground messages defined as follows. GM(Ci,Cj) is an

assignment to each ground atom in Ci that is in the Markov blanket of some ground atom

in Cj and GM(Cj,Ci) is an assignment to each ground atom in Cj that is in the Markov

blanket of some ground atom in Ci

Example 6. The two graphs shown in Figure 4.1 (a) and (b) are both two different Gibbs

cluster graphs. Consider Figure 4.1 (a). The message GM(S, R) contains an assignment to

all groundings corresponding to S and the message GM(R, S) contains an assignment to all

groundings of R.

Algorithm 6 illustrates LBG. Given a normal MLNM and its Gibbs cluster graphG, LBG

computes the marginal probabilities for a given set of query atoms. To start, we initialize

all the ground messages in G randomly. In each iteration, t, we choose a random cluster in

G, say Ci and instantiate M with every incoming message to Ci, i.e.,
⋃

Cj
GM(Cj,Ci) to

obtain a reduced-MLN,M(t). We then sample Ci fromM(t) in a lifted manner. Specifically,

we first run PTP onM(t) to construct its PTP-tree, T (t). We then sample Ci by traversing

T (t) top-down and at each node, we sample the distribution associated with that node as

92

Algorithm 6: LBG

Input: A normal MLNM, a Gibbs cluster graph G, integers T , b and query atoms Q
Output: P̂M(Q), where Q ∈ Q

1 begin
2 for each edge (Ci,Cj) ∈ G do
3 Randomly initialize GM(Ci,Cj) and GM(Cj,Ci)

4 for t = 1 to T do
5 Choose a cluster Ci uniformly at random

6 M(t) = Instantiate ∪C′GM(C′,Ci) in M
7 T (t) = PTP(M(t))

8 Sample Ci from T (t)

9 Update all outgoing messages from Ci

10 if t ≥ b then

11 Update P̂M(Q) for all query atoms in Ci

specified in section 4.1.2. Using the sampled value for Ci, we update all the outgoing ground

messages from Ci. After the burn-in period, i.e., when we assume that the sampler has

mixed, we use the sampled assignment to Ci to update the probability estimates for the

query atoms using the following mixture estimator (see Section 2.2.2).

P̂M(Q) =
1

T

T∑
t=1

PM(Q|S̄(t)
−Q) (4.1)

where S̄
(t)
−Q is the t-th sample projected on all atoms except Q. The mixture estimator shown

in Eq. (4.1) is unbiased, i.e., P̂M(Q) approaches PM(Q) as T → ∞, if Algorithm 6 draws

each sample correctly from the distribution represented by M. We prove this next.

Theorem 6. The Markov chain induced by LBG (Algorithm 6) is ergodic, i.e., for any input

normal MLNM and its Gibbs cluster graph G, the Markov chain induced by LBG converges

to PM for any random initialization of ground messages in G.

Proof. First, we begin by showing that the Markov chain underlying LBG is a reversible

Markov chain. Note that the transition function of LBG is given by the following equation.

PM(Ai1, Ai2 . . . AiN |S̄(t)
−i) (4.2)

93

where {Aij}Nj=1 are the ground atoms in cluster Ci and S̄
(t)
−i is the t-th sample projected on

all atoms of M except those in Ci.

Consider the transition from A
(t)
i1 . . . A

(t)
iN ∪ S̄

(t)
−i → A

(t+1)
i1 . . . A

(t+1)
iN ∪ S̄

(t)
−i according to the

transition function defined above. This occurs with probability equal to

P (A
(t+1)
i1 , A

(t+1)
i2 . . . A

(t+1)
iN |S̄(t)

−i)

We now show that the above transition function satisfies the detailed balance condition.

PM(A
(t+1)
i1 . . . A

(t+1)
iN |S̄(t)

−i)PM(A
(t)
i1 . . . A

(t)
iN ∪ S̄

(t)
−i)

=
PM(A

(t+1)
i1 . . . A

(t+1)
iN ∪ S̄

(t)
−i)

PM(S̄
(t)
−i)

(PM(S̄
(t)
−i)PM(A

(t)
i1 . . . A

(t)
iN |S̄

(t)
−i)

= PM(A
(t+1)
i1 . . . A

(t+1)
iN ∪ S̄

(t)
−i)PM(A

(t)
i1 . . . A

(t)
iN |S̄

(t)
−i)

Thus, LBG generates a reversible Markov chain. Further, since M represents a positive

distribution (no zero values in the distribution), the distribution in Eq. (4.2) is guaranteed

to be positive. Thus, the Markov chain is irreducible and since it is reversible w.r.t PM, PM

is a unique stationary distribution of the Markov chain. Further, the probability of staying

in any state is non-zero and therefore the chain is aperiodic. Thus, the Markov chain is

ergodic and converges to PM for any starting state obtained by randomly initializing the

messages in G.

4.1.4 Lifted Messages

Even though Algorithm 6 samples each cluster in a lifted manner, its messages are still

propositional. Recall that, a cluster Ci sends a message to Cj over all ground atoms in

Ci that are in the Markov blanket of some atom in Cj. Therefore, technically, we need

to maintain an assignment over the propositional state space, i.e., a 0/1 assignment to all

94

ground atoms in M. Here, we show how to modify the sampler in Algorithm 6 such that

it works in a lifted state space. Specifically, by taking advantage of symmetries in the MLN

representation, we group together symmetric atoms and send an aggregate message over the

state of these atoms while maintaining invariance of the MLN distribution.

We first illustrate the idea of lifted messages with our running example. In our example

MLN (M), consider the clustering in Figure 4.1 (b), i.e., C1 = {R, S} and C2 = {T}. Let

us instantiate a ground message from C2 in M. After instantiating the message, let the

reduced normal MLN, M′, contain the following d+ 1 sets of formulas.

F′ = {R(x, y) ∨ Si(y, Zi)}di=1;w1

F1 = {S1(y, Z1);w2(>), S1(y, Z1);w2, . . .}

F2 = {S2(y, Z2);w2, S2(y, Z2);w2(>), . . .}

. . .

Fd = {Sd(y, Zd);w2(>), Sd(y, Zd);w2(>), . . .}

where the symbol (>) denotes that the formula is satisfied due to one or more assignments

to atoms of T.

Now, consider a grouping where all the ground atoms of T that have the same constant

substituting their first argument are placed in the same group. That is, all possible ground-

ings of Tj(Zj, u) are in the same group. We now sum the assignments in each of these

groups. Each summation produces the total number of ground atoms that have a value

equal to 1 (or true) in that group. Now, let us see how this number can be used to represent

M|T̄. Observe that in the set Fj, the number of satisfied groundings is exactly equal to the

number of groundings of T(Zj, u) that have an assignment 1. Thus, we can schematically

represent all the unsatisfied formulas in each of the d sets F1 . . . Fd with d formulas by

re-parameterizing the weight of the formulas. Specifically, the unsatisfied formulas can be

95

represented as S1(y, Z1); (d − θZ1)w2, . . . Sd(y, Zd); (d − θZd)w2, where θZj is the number of

true assignments in T(Zj, u). Thus, instead of sharing d2 ground assignments, T can sim-

ply share d lifted assignments θZ1 . . . θZd with cluster C1 and this information sufficiently

specifies the MLN that represents the conditional distribution M|T̄.

We now formalize the above example to define lifted messages in the Gibbs cluster graph.

We say that a representation of truth assignments to the groundings of an atom is lifted if

we only specify the number of true (or false) assignments to its full or partial grounding.

Example 7. Consider an atom R(x, y), where ∆x = {X1, X2} and ∆y = {Y1, Y2}. We can

represent the truth assignment (R(X1, Y1) = 1, R(X1, Y2) = 0, R(X2, Y1) = 1, R(X2, Y2) = 0)

in a lifted manner using either an integer 2 or a vector ([R(x, Y1), 2], [R(x, Y2), 0]). The first

representation says that 2 groundings of R(x, y) are true while the second representation says

that 2 groundings of R(x, Y1) and 0 groundings of R(x, Y2) are true.

Next, we state sufficient conditions for representing a message in a lifted manner while

ensuring correctness as summarized in Theorem 6. For any formula f in MLNM, we define

a logical variable x that occurs in f as a shared variable of f iff x occurs in more than one

atom in f . Further, given an MLNM and its Gibbs cluster graph, x ∈ x is a shared term of

R(x) w.r.t cluster Cj iff there exists a formula f such that an atom of Cj occurs with R(x)

in f and x is a shared variable of f .

Example 8. Consider the formula R(x) ∨ S(x, y). x is a shared variable in the formula.

Further, consider a clustering where C1 = {R} and C2 = {S}. x is a shared term of S(x, y)

w.r.t C2.

Definition 12 (Lifted Message). The lifted message from Ci to Cj denoted by LM(Ci,Cj)

contains the number of true groundings corresponding to every atom in Ci for each possible

grounding of its shared terms w.r.t Cj.

96

Example 9. In the same formula R(x) ∨ S(x, y), let |∆x| = |∆y| = d and let C1 = {R}

and C2 = {S}, LM(C2,C1) is a vector of d values, ([S(X1, y), θ1], . . . [S(Xd, y), θd]) where

θj is an integer in the range [0, d] and corresponds to the number of true ground atoms in

S(Xj, y) according to the current assignment.

We now show that LBG with lifted messages is correct, i.e., its Markov chain converges to

the distribution represented by the input MLN.

Lemma 1. Given a normal MLNM with atom R(x) (singleton), if R is an assignment to all

groundings of R, the number of groundings of R assigned to true in R is sufficient to compute

the conditional distribution P (M|R).

Proof. The proof follows directly from the generalized binomial rule in PTP (Section 2.2.3).

That is, there are
(|∆x|

i

)
distinct ways to define the assignment R. However, conditioning on

each of these assignments yields the exact same distribution P (M|R̄). Thus, i is sufficient

to specify P (M|R̄).

Lemma 2. Given a normal MLN M representing the joint distribution PM, if there exists

R(y) such that no terms in the set y are shared variables in any formula containing the

predicate symbol R and we replace R(y) by a singleton R′(y) with ∆y equal to the cross-product

of the domains of the variables in y to obtain MLN M′, then PM′ ≡ PM.

Proof. We form a bijection B : ω → ω′, where ω is a world of M and ω′ is a world in M′.

Let ζ : R̄ → R̄′ denote a bijection between a ground atom of R(y) and a ground atom in

R′(y). Notice that since ∆y is equal to the cross-product of the domains of the variables

in y, we can form ζ directly. B is now easy to define as follows. For any world ω, if the

groundings of R say R̄1 . . . R̄n have assignments a1 . . . an, then in ω′ ζ(R̄1) . . . ζ(R̄n) have

assignments equal to a1 . . . an. Importantly, since y is not shared in any formula containing

R, replacing the variables in y with a single term y does not change the terms in any other

97

atom of M. This means ω projected on all ground atoms apart from the groundings of R is

identical to ω′ projected on all ground atoms apart from the groundings of R′. Further, it is

easy to see that if ω makes a ground formula containing R true (or false), B(ω) will make the

corresponding ground formula where the atoms of R have been replaced by ground atoms

defined by ζ true (or false). Thus, the probability of ω and B(ω) is identical. Therefore, the

theorem holds.

Theorem 7 (Sufficient Conditions for a Lifted Message Representation). If each

ground message in LBG is substituted by a lifted message as given by definition 12, then the

stationary distribution of the Markov chain induced by LBG is the distribution represented

by the input normal MLN.

Proof. Let G be the Gibbs cluster graph of the input normal MLN M. Let Ci and Cj be

the neighbors of each other in G. Let R be an element of Ci and let x be its shared terms

and y its non-shared terms. Let ∆x be the Cartesian product of the domains of all terms in

x, Xk ∈ ∆x is the k-th element in ∆x and rk is the number of groundings of R(Xk,y) that

are true in the current assignment. By definition 12, LM(Ci,Cj) contains a vector of size

|∆x| for R where the k-th element of the vector is equal to [R(Xk,y), rk]. Next, we show that

each R(Xk,y) is equivalent to a singleton.

Consider the MLN M′ which is obtained from M by first removing all formulas that

do not mention atoms in Cj and then (partially) grounding all the shared terms of R. Let

y′ be a logical variable such that its domain ∆y′ = ∆y, where ∆y is the Cartesian product

of the domains of all variables in y and let R′k(y
′) = R(Xk,y) where Xk ∈ ∆x is the k-th

element in ∆x. By Lemma 2, R(Xk,y) inM′ can be replaced by R′k(y
′) without changing the

associated distribution. Moreover, each atom R′k(y
′) is a singleton and therefore it follows

from Lemma 1 that in order to compute the distribution associated withM′ conditioned on

R′k(y
′), we only need to know how many of its possible groundings are true. Since Ci sends

98

precisely this information to Cj using the message defined in definition 12, it follows that LBG

with lifted messages is equivalent to the algorithm that uses a propositional representation

(Algorithm 6). Since Algorithm 6 converges to the distribution represented by the MLN

(Theorem 6), the proof follows.

Lifted State Space

We now take a closer look at how lifted messages influence the Markov chain induced by

LBG. Theorem 7 provides a method for representing the messages in LBG succinctly by

taking advantage of the symmetry in MLN structure which reduces the space complexity of

messages in LBG. Formally,

Proposition 1 (Space Complexity of a Message). Given a Gibbs cluster graph G and

an MLN M, let the outgoing message from cluster Ci to cluster Cj in G be defined over the

set of atoms, {R1, . . . , Rk}. Let xi denote the set of shared terms of Ri w.r.t Cj. Then, the

space complexity of LM(Ci,Cj) is O(
∑k

i=1 |∆xi |).

Apart from reducing the space complexity, by specifying each message succinctly in a

lifted manner, LBG explores a lifted state space which means that each sample drawn from

this space is equivalent to a number of distinct propositional samples. We illustrate this with

the following example.

Example 10. Figure 4.3 shows a 12-dimensional propositional state space (each dimension

is represented by a binary variable) and a corresponding 3-dimensional lifted state space.

Assume that both spaces represent the exact same probability distribution. The lifted space

is defined by grouping together the variables that form the propositional space. Specifically,

variables representing dimensions 1 through 4, 4 through 8 and 8 through 12 are grouped

together. For each of the three groups, we have one meta-variable in the lifted state space that

specifies the number of 1’s assigned to the propositional variables in that group. Importantly,

99

Propositional State Space Lifted State Space
0000 0000 0000 0 0 0
0000 0000 0001 0 0 1
0000 0000 0010 0 0 1
0000 0000 0011 0 0 2
0000 0000 0100 0 0 1
0000 0000 0101 0 0 2

.
1111 1111 1111 4 4 4

Figure 4.3. Propositional vs Lifted State Space

the number of possible samples in the propositional space is 212 while in the lifted space

this number is equal to 53. Thus, a single lifted sample is virtually equivalent to 212

53 ≈ 38

propositional samples.

To formalize the above example, let Q be a probability distribution defined over nd

binary random variables X11, X12 . . . X1d . . . Xnd. Let ω and ω′ be two full assignments to

X11, X12 . . . X1d . . . Xnd. Let ω assign vi variables among {Xij}dj=1 to 1. Let ω′ assign v′i

variables among {Xij}dj=1 to 1. Q(ω) = Q(ω′) if ∀i, vi = v′i. Let Q′ be defined over n random

variables each with a integer range [0, d], specifying the count of 1-assignments to each of

the groups {X1j}dj=1, {X2j}dj=1 . . . {Xnj}dj=1. Q′(x̄′) =
∑

x̄∼x̄′ Q(x̄), where x̄ ∼ x̄′ denotes

that assignment x̄ in Q is consistent with the counts to its variables specified in assignment

x̄′ in Q′. Suppose, we wish to estimate a function f with expected value equal to,

EQ[f] =
∑
x̄

f(x̄)Q(x̄)

We can estimate f using a Gibbs sampler whose stationary distribution is Q. The sample

mean for f derived from these Gibbs samples is clearly unbiased, i.e., the expected value of

the sample mean is equal to the expected value of f . However, instead of sampling from Q,

we can construct a Gibbs sampler whose stationary distribution is Q′, where we estimate

f by projecting each sample from Q′, say x̄(t)′ to x̄(t), where x̄(t) ∼ x̄(t)′ . Let us denote

100

the sample means of the two samplers as ĒQ[f] an ĒQ′ [f] respectively, and the variances as

V arQ(f) and V arQ′(f).

Theorem 8. ĒQ′ [f] = EQ[f] and if d
log(d+1)

≥ n+1
n

then V arQ′(f) ≤ V arQ(f)

Proof. First, it is easy to see that the sample means are identical. That is, since Q′(x̄′) =∑
x̄∼x̄′ Q(x̄) and Q(x̄) is the same for all x̄ ∼ x̄′, it follows that ĒQ[f] and ĒQ′ [f] are the

same and are both unbiased estimates for EQ[f].

Let K Gibbs samples be drawn from Q. The expected equivalent number of samples from

Q′ is K 1
d+1

, since to generate each Gibbs sample from Q′, we need to compute a distribution

of size (d + 1). However, each sample from Q′ is in expectation worth 2nd

(d+1)n
samples of Q,

since Q is a distribution over 2nd states while Q′ is defined over (d + 1)n states. Thus the

equivalent number of samples from Q′ is K 2nd

(d+1)n+1 . It is known that the variance of the

sample estimate is equal to σ2

N
, where σ2 is the variance of f and N is the number of samples

used to derive the sample estimate. Thus, V arQ′(f) ≤ V arQ(f) if,

K
2nd

(d+ 1)n+1
≥ K

2nd

(d+ 1)n+1
≥ 1

Re-arranging terms and taking log, we have the required condition,

d

log(d+ 1)
≥ n+ 1

n

Assuming that d � log(d) and n+1
n
≈ 1, the condition in Theorem 8 is always satisfied.

Thus, the variance of estimates derived from samples of Q′ is smaller than the estimates

derived from Q. Since lifted messages group assignments on ground atoms, from the above

theorem we immediately have the following result.

Corollary 1. The marginal probability estimates derived from LBG with lifted messages has

lower variance than the estimates derived from an equivalent propositional Gibbs sampler.

101

4.1.5 Clustering

Next, we present a heuristic algorithm to construct the Gibbs cluster graph. From a com-

putational perspective, we want to compute each conditional distribution tractably. From a

mixing perspective, we want to place correlated variables within a block. We first discuss

the complexity of our sampler and then describe the clustering algorithm that constructs

graphs that ensure tractability while improving mixing in the sampler.

Complexity

The sampling complexity is the complexity of running PTP over the MLN projected on each

cluster. We quantify this complexity with the lifted width of an MLN. Note that in propo-

sitional inference, the treewidth of the graphical model bounds the complexity of inference.

However, this is not a sufficient complexity measure for lifted inference (Section 2.2.3).

Definition 13 (Lifted Width). The lifted width of an MLN M is defined as follows

LW ∗(M) = min
TM

(Nc(TM)tw(GTM))

where TM is a possible PTP-tree for M, Nc(TM) is the number of conditioning nodes in TM
and tw(GTM) is an upper bound on the treewidth of the remaining ground Markov network

after applying the operations specified in TM

Clearly computing the lifted width is NP-hard since a special case is the NP-complete

problem of computing the treewidth for the ground Markov network. Therefore, we can only

compute a heuristic estimate for the lifted width. Specifically, we execute a symbolic trace

of the PTP algorithm and obtain an upper-bound on the lifted width. This is illustrated

in Algorithm 7. Algorithm 7 is a recursive procedure where the input is a normal MLN

and the output is an estimate of the lifted width. As shown here, we first try to apply the

power rule of PTP. We then recursively compute the lifted width on the reduced MLN after

102

Algorithm 7: LW

Input: A normal MLN M
Output: An upper-bound for the lifted width of M

1 begin
2 if M contains a decomposer d then
3 return LW(M|d)

4 if there exists a singleton S(x) then
5 Remove all instances of S from M
6 return (|∆x|+ 1)LW(M)

7 else
// tree-width of the ground Markov network

8 return tw(M)

applying the power rule. If we cannot apply the power rule, we find a singleton and apply

the generalized binomial rule. If we find such a singleton say S(x), we simple remove all

atoms with predicate symbol S and multiply the lifted with with |∆x|+ 1. Note that, this is

an approximation that can overestimate the lifted width because the complexity of exploring

each of these branches can be different. For example, consider a simple formula R(x)∨S(x), if

all groundings of R(x) are assigned to 1, then we do not need to condition on any groundings

of S(x) at all since they essentially become “don’t-care” variables. However, if no groundings

of R(x) are true, then we need to condition on the groundings of S(x) as they are no longer

don’t-care variables. Thus, logical structure contributes to the complexity of exploring each

of the S(x) + 1 branches. However, for a heuristic upper-bound of lifted width, we simply

ignore this structure. Finally, if we can apply neither rule, then we compute an upper-bound

for the treewidth of the remaining ground Markov network using standard heuristics such

as min-fill and min-degree.

103

Constructing the Gibbs Cluster Graph

Given a cluster graph G corresponding toM, let the message complexity M(G) be given by

the following equation.

M(G) =
∑

(Ci,Cj)∈E(G)

|LM(Ci,Cj)|+ |LM(Cj,Ci)|

where E(G) is the set of edges in G. Note that minimizing M(G) passes fewer messages

across clusters. This implicitly places more atoms which are in the Markov blanket of each

other inside the same cluster. These are the atoms that are likely to have correlations and

thus, the mixing time is likely to improve. Formally, the optimization problem is defined as

follows.

arg min
GM

M(GM) (4.3)

s.t. max
C∈GM

LW(MC) ≤ α

where C is a cluster defined by GM and MC is the MLN M projected on cluster C.

The above optimization problem is NP-hard since a special case is the bin packing prob-

lem. That is, we can re-formulate an equivalent bin-packing problem, where each cluster

has a capacity equal to α and we need minimize a function over these clusters, where,

adding/removing to/from the clusters alters its capacity. To solve this optimization prob-

lem, we start with an initial set of clusters and then iteratively improve the clustering.

Specifically, for the initial solution, we place each first-order atom of M in a separate clus-

ter. We assume that this initial solution is a feasible solution that satisfies the constraints.

Note that, we may need to pre-process the original MLN by partially grounding it to ensure

that the tractability constraint is satisfied for the specified α. In the degenerate case, a com-

pletely ground MLN guarantees a feasible solution for any α ≥ 1. That is, in normal form,

each ground atom is in a separate cluster and therefore our algorithm becomes equivalent to

regular Gibbs sampling on the ground Markov network.

104

Given an initial Gibbs cluster graph, we define edge weights on the graph, where for

any edge (Ci,Cj), its weight is equal to |LM(Ci,Cj)| + |LM(Cj,Ci)|. We construct a

new graph by collapsing edges (merging the clusters connected by this edge) from this initial

graph such that the function defined in Eq. (4.3) is minimized. Specifically, we maintain a set

of feasible edges, i.e., all the edges that whose end-nodes can be merged while satisfying the

tractability constraint. In each iteration, we choose a single feasible edge which maximizes

the objective function and construct a new graph where that edge is collapsed. After each

merge, we update the feasible edge set. That is, we re-evaluate the feasibility for every edge

that is incident on the merged nodes. If the feasible edge-set becomes empty or we reach a

maximum number of iterations, the algorithm terminates.

4.1.6 Experiments

Setup

In this section, we compare the performance of lifted blocked Gibbs sampling (LBG) with

(propositional) blocked Gibbs sampling (BG), lazy MC-SAT (Poon and Domingos, 2006;

Poon et al., 2008) and lifted belief propagation (LBP) (Singla and Domingos, 2008). We

experimented with four MLNs whose formulas are given below.

(i) Student : Student(x)⇒ Takes(x, c), Jobs(p, x)⇒ Takes(x, c)

(ii) Asthma : Asthma(x) → ¬Smokes(x), Asthma(x) ∧ Friends(x, y) ⇒ ¬ Smokes (y),

Smokes(x) ⇒ Cancer(x)

(iii) Topics : Word(w, p)⇒ Topic(p, t), Topic(p, t)⇒ Class(t, c)

(iv) WebKB : The WebKB MLN used in (Lowd and Domingos, 2007b).

Note that the first two MLNs can be solved in polynomial time using PTP while PTP

is exponential on Topics and WebKB. For each MLN, we set 10% randomly selected ground

105

atoms as evidence. We varied the number of objects in the domain from 5 to 200. We used

a time-bound of 1000 seconds for all algorithms.

We implemented LBG and BG in C++ and used alchemy (Kok et al., 2006) to implement

MC-SAT and LBP. For LBG, BG and MC-SAT, we used a burn-in of 100 samples to negate

the effects of initialization.

For Student and Asthma, we measure the accuracy using the KL divergence between

the estimated marginal probabilities and the true marginal probabilities computed using

PTP. Since computing exact marginals of Topics and WebKB is not feasible, we perform

convergence diagnostics for LBG and BG using the Gelman-Rubin statistic (Gelman and

Rubin, 1992), denoted by R. R measures the disagreement between multiple Markov chains

generated by the algorithm. Specifically, it compares the between-chain variances with the

within-chain variances as follows.

V̂ = (1− α)W + αB (4.4)

where B measures the between-chain variance, W measures the within chain variance and

α is a parameter in the weighted average which is normally set to the reciprocal of the total

number of parallel chains in the simulation.

R =

√
V̂

W
(4.5)

Note that in Eq. (4.5), the closer the value of R is to 1, the better the mixing.

Results

Accuracy: Figure 4.4 illustrates the accuracy of LBG on the tractable MLNs. Specifi-

cally, we plot the average KL divergence between the true marginal probabilities and the

approximate marginal probabilities as a function of time for the MLNs Student and Asthma

respectively. In both cases, LBG converges much faster than both BG and MC-SAT and

106

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600 700 800

A
v
er

ag
e

K
L

 d
iv

er
g
en

ce

Time(seconds)

BG

MC-SAT

LBP

LBG

(a)

 0.0001

 0.001

 0.01

 0.1

 0 100 200 300 400 500 600 700 800

A
v
er

ag
e

K
L

 d
iv

er
g
en

ce

Time(seconds)

BG

MC-SAT

LBP

LBG

(b)

Figure 4.4. Illustrating accuracy. Plots show average KL Divergence between the true
marginal probabilities and the approximate marginal probabilities as a function of time for:
(a) Student with 50 objects and (b) Asthma with 50 objects.

also has a smaller error. LBP is more accurate than LBG on Student while LBG is more

accurate than LBP on Asthma.

Mixing Rate: Figure 4.5 illustrates the convergence of the Markov chain induced by LBG.

We run this experiment for the MLNs, Topics and WebKB, which are larger MLNs on which

inference is intractable. Here, for both LBG and BG, we plot log(R) as a function of time

for Topics and WebKB respectively. We see that the Markov chain associated with LBG

mixes much faster than the one associated with BG for both MLNs. This can be attributed

to the fact that LBG works in a lifted state space and therefore samples more effectively,

i.e., each sample from LBG is worth several samples from BG.

Scalability: Finally, Figures 4.6(a) and (b) compare the scalability of LBG with BG. Here,

we use running time per Gibbs iteration as a performance metric. A short running time per

sample means that given a finite amount of time, we are able to generate a larger number of

samples which typically results in faster convergence and higher quality estimates. Figures

4.6(a) and 4.6(b) show the time required by 100 Gibbs iterations as a function of number

of objects for Topics and WebKB respectively. As clearly illustrated in these figures, LBG

107

 0.0001

 0.001

 0.01

 0.1

 50 100 150 200 250 300 350 400

lo
g
(R
)

Time(s)

LBG

BG

(a)

 0.0001

 0.001

 0.01

 0.1

 50 100 150 200 250 300 350 400

lo
g
(R
)

Time(s)

LBG

BG

(b)

Figure 4.5. Convergence diagnostics using Gelman-Rubin statistic (R) as a function of time
for (a) Topics and (b) WebKB.

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180 200

T
im

e(
s)

Num-objects

LBG

BG

(a)

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180 200

T
im

e(
s)

Num-objects

LBG

BG

(b)

Figure 4.6. Scalability of lifted blocked Gibbs. Time required by 100 Gibbs iterations as a
function of the number of objects for (a) Topics and (b) WebKB.

is much more scalable than BG. Also, with increasing domain-size LBG scales up almost

linearly while the time taken by BG increases exponentially. This clearly illustrates the

advantage of lifted inference over propositional inference because as the domain gets larger,

while the ground MLN gets larger, LBG utilizes the symmetries that it can identify directly

from relational structure without requiring to process the full ground MLN.

108

4.2 Lifted Importance Sampling

We now present our next approximate inference algorithm, namely lifted importance sam-

pling (LIS). In contrast to Gibbs sampling where we obtain samples directly from the MLN

distribution, importance sampling (IS) samples from a different distribution called the pro-

posal distribution and corrects for this by weighting each sample. Its main advantage is that,

unlike Gibbs sampling where each of our samples were not strictly independent samples, us-

ing IS, we obtain independent samples, which is beneficial in statistical estimation. However,

in IS, the estimates are highly dependent on the quality of the proposal distribution. The

closer the proposal distribution is to the true distribution, the higher the quality of estimates

obtained from IS. In propositional IS, the proposal distribution (Q) is defined over the same

space as the original distribution (P). That is, suppose P is defined over n binary random

variables, then the joint distribution of Q has size 2n. The difference though is that Q is

carefully designed such that Q is easy to sample while P may be an arbitrary distribution

that is hard to sample (e.g., a Markov network). In LIS, we design an accurate proposal

distribution that is also lifted, i.e., considering our previous example with n variables, the

size of the lifted proposal QL is � 2n. Implicitly, every sample from QL corresponds to

virtually many samples from Q. Importantly, the increase in samples improves the accuracy

of LIS as compared to propositional IS.

Previously, (Gogate and Domingos, 2011b) introduced a PTP based lifted importance

sampling algorithm for the inference task of approximating the partition function of an MLN.

However, it has two limitations. First, it does not use lifting (relational structure) to the

fullest extent and as a result it can be needlessly inefficient and inaccurate on some problems.

Second, it uses an uninformative proposal distribution and therefore produces poor estimates

in many cases. We remedy these issues as follows.

First, we propose a new lifting rule that identifies additional symmetries and using this,

reduces the sampling space exponentially in many instances. We show how to perform

109

importance sampling in this reduced space and prove that our new sampling algorithm has

smaller variance. Second, we propose an adaptive, structured approach for constructing and

dynamically updating the proposal distribution. Given an MLN and evidence, the main idea

here is to apply various lifting and probability propagation rules in an approximate manner

by relaxing their pre-conditions, yielding a polynomially specifiable proposal distribution.

Then, we initialize it to the prior distribution and dynamically update its parameters via

adaptive importance sampling (Cheng and Druzdzel, 2000; Ortiz and Kaelbling, 2000).

We present experiments comparing the quality of estimation of our advanced LIS scheme

with the LIS scheme of (Gogate and Domingos, 2011b) for the task of computing the partition

function on MLNs from various domains. Our experiments clearly demonstrate that our

advanced algorithm is always superior.

4.2.1 PTP-based Importance Sampling

Recall that the partition function of an MLN is given by the following equation.

Z(M) =
∑
ω

exp

(∑
i

wiN(fi, ω)

)
(4.6)

The main idea in IS is to reformulate the summation problem in Eq. (4.6) as an ex-

pectation problem using a probability distribution Q, called the proposal or the importance

distribution. Q should be such that it is easy to generate independent samples from it. Also,

in order to apply IS to MLNs, Q should satisfy the constraint: exp(
∑

iwiN(fi, ω)) > 0 ⇒

Q(ω) > 0. Formally, using Q, we can rewrite Eq. (4.6) as

Z(M) =
∑
ω

exp

(∑
i

wiN(fi, ω)

)
Q(ω)

Q(ω)
(4.7)

=EQ
[

exp (
∑

iwiN(fi, ω))

Q(ω)

]
(4.8)

110

where EQ[x] denotes the expected value of the random variable x w.r.t. Q. Given N worlds

(ω(1), . . . , ω(N)), sampled independently from Q, we can estimate Z(M) using:

Ẑ(M) =
1

N

N∑
j=1

exp
(∑

iwiN(fi, ω
(j))
)

Q(ω(j))
(4.9)

It is known that E[Ẑ(M)] = Z(M) (i.e., it is unbiased) and therefore the mean squared

error between Ẑ(M) and Z(M) can be reduced by reducing its variance. The variance can

be reduced by using a proposal distribution Q that is as close as possible to the distribution

PM. Thus, a majority of research on importance sampling is focused on finding a good Q.

For more details, see (Liu, 2001).

The PTP based lifted importance sampling algorithm (Gogate and Domingos, 2011a)

operates by grouping symmetric random variables, sampling just one member from each

group and using the sampled member to estimate quantities defined over the group. It uses

the generalized binomial rule from PTP to sample singleton atoms efficiently. Specifically,

given a normal MLN M having a singleton atom R(x) that is not involved in self-joins, we

can compute the partition function as given by the following equation.

Z(M) =

|∆x|∑
i=0

(|∆x|
i

)
Z(M|R̄i)w(i)2p(i)

where R̄i is a truth-assignment to all groundings of R such that exactly i groundings of R are

set to True (and the remaining are set to False). M|R̄i is the MLN obtained from M by

performing the following steps in order: (i) Ground all R(x) and set its groundings to have

the same assignment as R̄i, (ii) Delete all formulas that evaluate to either True or False, (iii)

Delete all groundings of R(x) and (iv) Convert the resulting MLN to a normal MLN. w(i)

is the exponentiated sum of the weights of formulas that evaluate to True and p(i) is the

number of ground atoms that are removed from the MLN as a result of removing formulas

(these are essentially don’t care propositional atoms which can be assigned to either True

or False).

111

Algorithm 8: LIS

Input: A normal MLN M and a proposal distribution Q
Output: An unbiased estimate of the partition function of M
if M is empty then return 1
if there exists a singleton atom R(x) that does not appear more than once in the same
formula then

Use Q to sample an integer i from the range [0, |∆x|]
return LIS(M|R̄i)w(i)2p(i)

Q(i)

(|∆x|
i

)
Choose an atom A and sample all of its groundings from Q. Let Ā be the sampled
assignment.

return LIS(M|Ā)w(Ā)2p(Ā)

Q(Ā)

Algorithm 8 provides a schematic description of LIS. It takes as input a normal MLN

M and a proposal distribution Q. If the MLN is empty, the algorithm returns 1. The

algorithm then checks if there exists a singleton atom R(x). If there exists one, then the

algorithm samples an integer i from Q and recurses on M|R̄i according to the generalized

binomial rule. If not, the algorithm selects an atom A, samples all of its groundings from

Q and recurses on the MLN obtained by instantiating the sampled assignment Ā (denoted

by M|Ā). w(Ā) denotes the exponentiated sum of the weights of formulas that evaluate to

True because of the assignment Ā and p(Ā) denotes the number of ground atoms that are

removed from the MLN as a result of removing formulas.

4.2.2 New Lifting Rule

The proposal distribution Q is lifted over all the singleton atoms that are encountered in

Algorithm 8. However, for all other atoms, the proposal is defined over a propositional

space. It turns out that Algorithm 8 does not fully exploit the symmetries in the MLN. We

now introduce a new lifting rule that leverages these additional symmetries not handled in

Algorithm 8 and using this, we define a much more advanced lifted importance sampler with

reduced variance.

112

MLN: (R(x, y) ∨ S(y, z) ∨ T(z, u), w)
Domains:
∆x = {X1,X2,X3}, ∆y = {Y1, Y2, Y3}
∆z = {Z1, Z2, Z3}, ∆u = {U1, U2, U3}

(a)

Sampled goundings of R(x, y)
R(X1, Y1),¬R(X1, Y2),¬R(X1, Y3)
R(X2, Y1), R(X2, Y2),¬R(X2, Y3)
¬R(X3, Y1), R(X3, Y2), R(X3, Y3)

(b)

Reduced MLN after instantiating R

(S(Y1, z) ∨ T(z, u), 2w)
(S(Y2, z) ∨ T(z, u), 2w)
(S(Y3, z) ∨ T(z, u), w)

(c)

Figure 4.7. Illustration of lifted importance sampling. (a) An example MLN. (b) Sampled
groundings of R(x, y). (c) Reduced MLN obtained by instantiating the sampled groundings
of R.

Isolated Variables Rule

We first describe the isolated variables rule using a non-trivial MLN having just one weighted

formula f = R(x, y) ∨ S(y, z) ∨ T(z, u) and then generalize it. Note that none of the existing

exact techniques (de Salvo Braz, 2007; Gogate and Domingos, 2011b; Van den Broeck et al.,

2011) that we are aware of can compute Z({(f, w)}) in time that is polynomial in the domain

sizes of x, y, z and u.

We begin by demonstrating how LIS will estimate the partition function of {(f, w)} (see

Figure 4.7). LIS will first select an atom, either R, S or T, and check if it can be sampled in

a lifted manner. For the given f , this is not possible. Therefore, it will define an importance

distribution over all groundings of the selected atom and sample all of its groundings from

it. Let us assume that LIS selected R, which has nxny possible groundings, assuming that

|∆x| = nx and |∆y| = ny. Sampling R has the effect of removing it from all groundings of f ,

yielding an MLN having possibly nxny formulas of the form S(Yi, z)∨T(z, u). Note that some

of the formulas in the resulting MLN can be deleted because they will evaluate to False.

Also, we can further reduce the representation by merging identical formulas; the weight

of the new formula equals the sum of the weights of the merged formulas. Figure 4.7(c)

113

Lifted sampling of groundings of R(x, y):
For i = 1, 2, 3 do

Select an index ji from Qji|j1,...,ji−1

Randomly set ji of R(x, Yi) to True, remaining to False.

Let the sampled indices be j1 = 2, j2 = 2 and j3 = 1.

Figure 4.8. Illustration of the advanced grouping strategy for lifted importance sampling.
Here we sample indices of ji for each Yi ∈ ∆y. Let the sampled indices ji be as shown. Then,
we will get the same MLN as the one in Figure 4.7(c).

shows the reduced MLN obtained by instantiating the sampled assignments of R(x, y) given

in Figure 4.7(b). We now show how we can group instantiations of R(x, y) yielding an

estimate having smaller variance than LIS. Let ∆y = {Y1, . . . , Yny} and ∆x = {X1, . . . , Xnx}.

For i = 1 to ny, let ji ∈ {0, . . . , nx}, yielding a vector (j1, . . . , jny). Consider the set of truth-

assignments to the groundings of R(x, y) such that exactly ji of R(x, Yi) are instantiated

to True and the remaining to False. For each such group of truth assignments we have

the following reduced MLN Mj1,...,jny =
⋃ny
i=1{(S(Yi, z) ∧ T(z, u), jiw)}. Moreover, there are∏ny

i=1

(
nx
ji

)
members in this group (since for each ji, there are

(
nx
ji

)
ways in which ji of R(x, Yi)

can be made True). Therefore, Z(M) can be expressed as a sum over all possible vectors

(j1, . . . , jny):

Z(M) =
nx∑
j1=0

. . .
nx∑

jny=0

Z(Mj1,...,jny)

ny∏
i=1

(
nx
ji

)
(4.10)

In LIS, we sampled a truth assignment to all groundings of R(x, y) from a state space of

size O(2nxny). If we sample from the grouping described above, the state space size reduces

exponentially from O(2nxny) to O((nx + 1)ny).

Next, we describe how to define an importance distribution Q over this space. From Eq.

(4.10), it is easy to see that we can define it sequentially as
∏ny

i=1 Qji|j1,...,ji−1
along an order

(Y1, . . . , Yn) of ∆y, where each Qji|j1,...,ji−1
gives the conditional probability of sampling the

index ji ∈ {0, . . . , nx} given an assignment to all previous indices.

Figure 4.8 shows how to use our advanced grouping strategy to generate samples from

the MLN given in Figure 4.7.

114

The ideas presented in this section can be generalized using the following isolated variables

rule in LIS. For a predicate symbol R of an MLN M, we partition its arguments into two

sets, A1 and A2. A1 contains all those arguments such that in any formula of M where R

occurs, the logical variables that substitute the arguments in A1 are exclusive to R. Let x be

a set of logical variables where each x ∈ x substitutes a unique argument in A1. Similarly,

let y be variables that substitute A2. We refer to x as isolated variables for R. Let ∆y denote

the Cartesian product of the domains of variables in y and let Yi denote the i-th element

in ∆y. Let M[R,x] be an MLN obtained from M by applying the following steps in order:

(i) for i = 1 to |∆y|, sample ji from a distribution Qi(ji|j1, . . . , ji−1) and set ji arbitrarily

selected groundings of R(x,Yi) to True and the remaining to False, (ii) Delete all formulas

that evaluate to either True or False, (iii) Delete all groundings of R and (iv) Convert the

MLN to a normal MLN. Let w(R) be the exponentiated sum of the weights of formulas that

evaluate to True and let p(R) be the number of ground atoms that are removed from the

MLN as a result of removing formulas. The unbiased estimate of Z(M) is given by:

Ẑ(M) = Ẑ(M[R,x])w(R)2p(R)

|∆y|∏
i=1

(|∆x|
ji

)
Qi(ji|j1, . . . , ji−1)

(4.11)

where Ẑ(M[R,x]) is the unbiased estimate of Z(M[R,x]).

Note that in general, the isolated variables rule is only applicable to atoms not involved in

self-joins. However, if the isolated variables appear in the same position in all instances of R

that are involved in self-joins, we can safely apply it to R. For efficiency reasons, the isolated

variables rule should be applied only if the generalized binomial rule is not applicable. In

other words, we should apply the the generalized binomial rule followed by the isolated

variables rule. In summary,

Theorem 9. LIS augmented with the isolated variables rule yields an unbiased estimate of

the partition function of its input MLN.

115

Proof. We first show the correctness of Eq. (4.10). Let R be the predicate where the isolated

variable rule is applied, let ∆x be the possible groundings of isolated variables and ∆y be

the possible groundings of non-isolated variables of R. Grounding R with any y ∈ ∆y results

in a singleton atom with ∆x groundings. From the generalized binomial rule, we can specify

conditioning over this singleton using |∆x| + 1 values. Thus, conditioning over R can be

specified using all possible vectors of size |∆y|, where each vector element varies from 0 to

|∆x| as in Eq. (4.10). Since,
∏|∆y |

i=1 Q(ji|j1 . . . ji−1) is a distribution over these |∆y|(|∆x|+ 1)

assignments, it follows that Eq. (4.11) is an unbiased estimator of the partition function.

Therefore, the theorem holds.

Variance Reduction

Intuitively, the scheme that utilizes the most grouping is likely to have better accuracy be-

cause it samples a smaller (sub)space. We formalize this notion using the following grouping

lemma:

Lemma 3 (Grouping Lemma). Let Z be a sum over M numbers grouped into k groups

such that all numbers in each group are identical. Let (m1,1, . . . ,m1,g1 , . . . ,mk,1, . . . ,mk,gk)

denote an arbitrary ordering of the M numbers such that ∀ a, b, c, ma,b = ma,c, where a ∈

{1, . . . , k}, b, c ∈ {1, . . . , ga} and ga is the number of numbers in group a. Let Q be a proposal

distribution defined over all the M numbers and R be a proposal distribution defined over

the k groups such that R(i) =
∑gi

j=1Q(mi,j). Then, the variance of the importance sampling

estimate of Z defined with respect to R is smaller than the variance of the estimate of Z

defined with respect to Q.

Proof. Let fQ and fR be two estimators defined as follows.

fQ =
1

T

T∑
i=1

(
m(t)

Q(m(t))

)

116

where m(t) is drawn from Q

fR =
1

T

T∑
i=1

(
m(t)

R(g(t))

)
where g(t) is a group drawn from R and m(t) ∈ g(t)

Clearly, EQ[fQ] = Z and ER[fR] = Z. That is, both Q and R yield unbiased estimates of

Z. R is defined over k values while Q is defined over
∑k

j=1 gj values. Thus, each sample from

R in expectation, is equivalent to
∑k
j=1 gj

k
samples from Q. Therefore, drawing T samples from

S is equivalent to drawing
T
∑k
j=1 gj

k
if we sample from R. Since the sample mean (expected

value) for both fQ and fR is equal, we have,

V ar(fQ)

V ar(fR)
=
T
∑k

j=1 gj

kT

.

Therefore, it follows that V ar(fR) ≤ V ar(fQ).

Since the isolated variables rule groups atoms (see Eq. (4.10)) that were not grouped in the

original LIS algorithm, it directly follows from the grouping lemma that:

Theorem 10. The variance of LIS (Algorithm 8) is reduced by augmenting it with the

isolated variables rule.

4.2.3 Constructing the Proposal Distribution

As mentioned earlier, the accuracy of any importance sampling algorithm depends on how

close the proposal distribution is to the target distribution (the one represented by the MLN).

Often, practical constraints dictate that the importance distribution should be polynomially

specifiable (i.e., tractable) as well as easy to sample from. To construct such a tractable

117

distribution for MLNs, a natural choice is to use the generalized binomial rule approximately

by relaxing the requirement that the atom must be a singleton. For example,

Example 11. Consider our example MLN, M = {(R(x, y) ∧ S(y, z) ∧ T(z, u), w)}. Apply-

ing the approximate generalized binomial rule to R(x, y), we can rewrite the partition func-

tion as
∑|∆x×∆y |

i=0 Z(M|R̄i). Each MLN, M|R̄i is tractable and therefore we can associate a

tractable probability distribution, say Q(M|R̄i) with each. The full proposal distribution is

Q(i)Q(M|R̄i) where Q(i) is the distribution defined over |∆x × ∆y| + 1 points, where each

i-th point corresponds to setting exactly i groundings of R(x, y) to True and the remaining

to False.

Although the approximate rule reduces the branching factor (of the search space) from

2|∆R| to |∆R| + 1 for an atom R, it is still infeasible when the number of atoms is large. In

particular, we will assume that the proposal distribution is specified in the product form,

i.e., a relational Bayesian network (Jaeger, 1997). Formally, given an ordered set of atoms

(R1, . . . , Rm), the proposal distribution is given by
∏m

i=1 Qi(Ri|R1, . . . , Ri−1). The space re-

quired by this product form will be O(m[maxi(|∆Ri |)]m), where ∆Ri is the Cartesian product

of arguments of Ri. Therefore, in order to achieve polynomial complexity, we make the follow-

ing conditional independence assumption: Ri is conditionally independent of all other atoms

given k atoms from the set {R1, . . . , Ri−1}, where k is a constant. Thus, each component

of the proposal distribution is of the form: Qi(Ri|pa(Ri)) where pa(Ri) ⊆ {R1, . . . , Ri−1} and

|pa(Ri)| ≤ k. We will refer to pa(Ri) as the parents of Ri.

Algorithm 9 describes a recursive approach for constructing the proposal distribution

using the ideas discussed above. The algorithm takes as input an MLN M, a constant k

that limits the parent size for each atom (in our experiments, we used k = 2), and the

potential parent set R. The algorithm first checks the base condition: if the MLN is empty,

it returns a 1. Then, the algorithm checks if the MLN can be decomposed into (multiple)

118

Algorithm 9: Construct Proposal (CP)

Input: An normal MLN M, an integer k and a set of atoms R
Output: The structure of the proposal distribution Q

1 if M is empty then return 1
2 if M can be decomposed into m MLNS M1, . . . ,Mk such that no two MLNs share

any atoms then
3 for i = 1 to m do
4 CP(Mi, k,R)

5 return 1

6 Heuristically select an atom R from M
7 Heuristically select k atoms from R as parents of R
// Construct Proposal over R

8 for every assignment to the groundings of pa(R) index by i do
9 if R contains no isolated variables then

10 Use the approximate generalized binomial rule to construct Qi(R)

11 else
12 Use the isolated variables rule to construct Qi(R)

13 Add R to R
14 Ground R and then remove it from all formulas of M
15 return CP(M, k,R)

independent MLNs (if two MLNs do not share any atoms, they are independent). If it

can be decomposed, the algorithm recurses on the independent MLNs and exits. Then the

algorithm heuristically selects an atom Ri and selects k atoms from the potential parent set

R as parents of R. It then constructs the proposal distribution component for R (described

below), adds R to R, reduces the MLN by removing R from all formulas and recurses on the

reduced MLN.

The proposal distribution component for R is computed as follows. Given an assignment

to all groundings of the parents, denoted by pa(R) each conditional marginal distribution

Q(R|pa(R)) is constructed as follows. If R contains a set x of isolated variables, we use the

following method. Let y denote the set of variables which are not isolated in R. Note that

to effectively utilize the isolated variables rule, we have to sample a number in the range

[0, |∆x|], for each value Y ∈ ∆y. We propose to express this distribution using a product

119

of |∆y| marginal distributions, each defined over |∆x| + 1 points. Namely, using notation

from the previous section, we define Qi(j1, . . . , j|∆y|) =
∏|∆y|

a=1 Qi,a(ja). If R has no isolated

atoms then we use the approximate generalized binomial rule and define a distribution over

|∆A|+ 1 points. To limit the number of assignments pa(R) (see line 10 of Algorithm 9), we

group the assignments to each atom A ∈ pa(R) into |∆A| + 1 groups, where the j-th group

has j groundings of Ai set to True and the remaining to False. This helps us polynomially

bound the space required by the proposal distribution component at R. In particular, the

space complexity of each component is O(|∆R|(
∑

A∈pa(R) |∆A|)).

We use the following heuristics to select the atom R: Select any singleton atom. Other-

wise, select an atom that participates in most formulas, ties broken randomly. This heuristic

is inspired by the max-degree conditioning heuristic which often yields a smaller search space.

To select parents of R, we first select atoms, say R1, that are mentioned in the same formula

that R participates in, followed by atoms which participate in formulas that atoms in R1

participate in and so on. Again, ties are broken randomly.

Until now, we have described an algorithm that outputs the structural form of the pro-

posal distribution. To use it in LIS, we have to define its parameters. Moreover, we should

define its parameters in such a way that the resulting distribution is as close as possible to

the target distribution. In principle, we can use any approximate inference method such as

lifted BP (Singla and Domingos, 2008) to compute the parameters. However, because of the

relatively high time-complexity of lifted BP, this approach is not likely to be cost effective.

Therefore, we use the following adaptive importance sampling approach (Cheng and

Druzdzel, 2000; Ortiz and Kaelbling, 2000) that dynamically updates the proposal distribu-

tion Q based on the generated samples. The updating step is performed every l samples.

Since the initial proposal distribution, no matter how well chosen, is often very different

from the target distribution, dynamic updating can substantially improve the accuracy of

importance sampling. The hope is that as more and more samples are drawn, the updated

120

proposal distribution gets closer and closer to the target distribution. We initialize the pro-

posal distribution to the prior distribution Q0, defined by a collection of components Q0
i (for

each atom R chosen in Algorithm 9). After every l samples, we update each component Qm
i

using the expression Qm+1
i (j) = Qm

i (j) + α(m)(Pr(j) − Qm
i (j)) where 0 ≤ α(m) ≤ 1 is the

learning rate and Pr(j) is the estimate of the probability of j based on the last l samples.

In our experiments, we set α(m) = 0.1 and l = 103.

4.2.4 Experiments

In this section, we compare the performance of LIS (based purely on PTP shown in Algorithm

8) with two advanced versions: (i) LIS augmented with the new lifting rule and (ii) LIS

augmented with the new lifting rule and the adaptive structured method for constructing

the proposal distribution described in the previous section. We will refer to PTP based

LIS as LIS, LIS with isolated variables’ rule as ILIS and adaptive LIS as ALIS respectively.

Note that both LIS and ILIS use the same proposal distribution as the one used in (Gogate

and Domingos, 2011a) while ALIS uses the structured, adaptive approach described in the

previous section. We experimented with three MLNs: the example R,S,T MLN shown

in Figure 4.7, the WEBKB MLN used in (Lowd and Domingos, 2007a) and the Entity

resolution MLN used in (Singla and Domingos, 2006). The last two MLNs are publicly

available from www.alchemy.cs.washington.edu. We set the weights of each formula in

each MLN arbitrarily by sampling a value from the range (−1, 1). For each MLN, we set

10% randomly selected ground atoms as evidence. We varied the number of objects in the

domain from 100 to 300.

Because computing the partition function of the MLNs used is not feasible, evaluating

the accuracy of this inference task is a hard problem. We use the following approach for

evaluating the algorithms that is quite often employed in practice. Specifically, we use

the sampling algorithms to compute a probabilistic lower bound on the partition function.

121

The higher the lower bound the better the sampling algorithm. For computing the lower

bound, we combine our sampling algorithms with the Markov inequality based minimum

lower bounding scheme presented in (Gogate et al., 2007). This lower bounding scheme, see

also (Gomes et al., 2007), takes as input a set of unbiased estimates of the partition function

and a real number 0 < α < 1, and outputs a lower bound on the partition function that is

correct with probability greater than α. Formally,

Theorem 11. (Gomes et al., 2007; Gogate et al., 2007) Let Ẑ1, . . . , Ẑm be the unbiased

estimates of Z computed over m independent runs of an importance sampling algorithm. Let

0 < α < 1 be a constant and let β = 1
(1−α)1/m . Then Zlb = 1

β

[
minmi=1(Ẑm)

]
is a lower bound

on Z with probability greater than α.

In our experiments, we set α = 0.99 and m = 7, namely, we run each sampling algorithm

7 times and each lower bound is correct with probability greater than 0.99.

Figure 4.9 shows the impact of varying time and number of objects on the performance

of the three algorithms. Note that the Entity Resolution MLN has no isolated variables and

as a result LIS is equivalent to ILIS. Therefore, for this domain, we only compare LIS with

ALIS. Also, note that we are plotting the log partition function as a function of time and

therefore the Y-axis is in log-scale. From Figure 4.9, it is easy to see that ALIS is superior

to ILIS which in turn is superior to LIS. Moreover, from the error bars in Figure 4.9, we see

that the variance of ALIS and ILIS is typically smaller than that of LIS.

4.3 Summary

In this chapter, we developed two sampling based lifted approximate inference algorithms,

namely, lifted blocked Gibbs (LBG) and lifted importance sampling (LIS). The common

theme underlying both these algorithms was to exploit symmetries to sample from a lifted

state space, i.e., a state space where symmetrical variables are sampled as a group to improve

the scalability, accuracy and convergence of the samplers.

122

 250000

 260000

 270000

 280000

 290000

 300000

 310000

 320000

 330000

 340000

 0 500 1000 1500 2000 2500 3000

L
o
w

er
 B

o
u
n
d
 o

n
 l

o
g
(Z

)

Time in seconds

Example RST domain, #objects =100
LIS

ILIS

ALIS

(a)

 1.25e+06

 1.3e+06

 1.35e+06

 1.4e+06

 1.45e+06

 1.5e+06

 1.55e+06

 0 500 1000 1500 2000 2500 3000

L
o
w

er
 B

o
u
n
d
 o

n
 l

o
g
(Z

)

Time in seconds

Example RST domain, #objects =150
LIS

ILIS

ALIS

(b)

 440

 450

 460

 470

 480

 490

 500

 0 500 1000 1500 2000 2500 3000

L
o
w

er
 B

o
u
n
d
 o

n
 l

o
g
(Z

)

Time in seconds

WEBKB domain, #objects =200
LIS

ILIS

ALIS

(c)

 1140

 1160

 1180

 1200

 1220

 1240

 1260

 1280

 0 500 1000 1500 2000 2500 3000

L
o
w

er
 B

o
u
n
d
 o

n
 l

o
g
(Z

)

Time in seconds

WEBKB domain, #objects =300
LIS

ILIS

ALIS

(d)

 1470

 1480

 1490

 1500

 1510

 1520

 1530

 0 500 1000 1500 2000 2500 3000

L
o
w

er
 B

o
u
n
d
 o

n
 l

o
g
(Z

)

Time in seconds

Entity Resolution domain, #objects =200
LIS

ALIS

(e)

 3580

 3600

 3620

 3640

 3660

 3680

 3700

 3720

 0 500 1000 1500 2000 2500 3000

L
o
w

er
 B

o
u
n
d
 o

n
 l

o
g
(Z

)

Time in seconds

Entity Resolution domain, #objects =300
LIS

ALIS

(f)

Figure 4.9. Lower bound on the partition function computed using LIS, ILIS and ALIS as
a function of time. (a) The example R, S, T domain with 100 objects. (b) The example R, S, T
domain with 150 objects. (c) WEBKB MLN with 200 objects, (d) WEBKB MLN with 300
objects, (e) Entity Resolution MLN with 200 objects and (f) Entity resolution MLN with
300 objects. Note that for each point, we have plotted error bars showing the standard
deviation. When the standard deviation is small, the error bars are not visible in the plots.

123

LBG is a message-passing algorithm over clusters/blocks of first-order atoms carefully

designed such that the MLN projected on each cluster is tractable for exact lifted inference.

In sharp contrast to blocking over propositional variables, we showed that larger first-order

blocks in some cases retain more symmetries and therefore reduces the complexity of LBG

while improving accuracy. Further, we showed how to represent messages in our sampler in

a lifted manner by taking advantage of relational structure in the MLN thereby reducing

variance in our sampler. Our experiments on MLN benchmarks showed that LBG is much

more accurate and scalable than propositional samplers.

In LIS, we constructed an accurate, lifted proposal distribution where each sample con-

stitutes several distinct samples from an equivalent propositional proposal distribution. We

showed that importance sampling using a lifted proposal distribution provably reduces the

variance of estimates derived from the samples. To construct the lifted proposal distribution,

we grouped together symmetric variables in the MLN by applying lifting rules from PTP.

We pushed the boundaries of these rules by identifying a new lifting rule and showed that

it can in some cases reduce the size of the lifted proposal distribution exponentially. We

showed how to construct the lifted proposal distribution by tractably applying the lifting

rules and improved the accuracy of our system by adaptively learning the parameters of the

distribution. Our results on various benchmarks showed that our approach is much more

accurate and scalable than previous approaches.

CHAPTER 5

EXPLOITING APPROXIMATE SYMMETRIES FOR SCALABLE

INFERENCE

Lifted inference is extremely powerful when symmetries in the MLN can be gleaned using

the first-order structure. For example, consider a simple MLN with a single unit-clause,

R(x);w. Here, irrespective of the domain that x can take, the full joint distribution of the

MLN can be reduced to a distribution over a single object of the domain because every

object is symmetrical with every other object of the domain. Using this, any kind of in-

ference task (partition function, marginal inference or MAP inference) can be performed in

constant time since we perform inference over the reduced distribution specific to a single

object and project the same results to every other object. Much more importantly, we know

how to reduce the size of the joint distribution by simply observing the syntax/structure of

the formula. Most existing lifted inference algorithms focus on discovering such first-order

syntax rules that can detect exactly symmetrical structures in the underlying ground rep-

resentation of the MLN. Unfortunately, not all MLNs have first-order structures that allow

the application of such rules. Particularly, since first-order logic is extremely expressive,

application designers often create MLNs with arbitrary structures to model intricate back-

ground knowledge and it turns out that on such structures lifted inference is more or less

as scalable as propositional inference. To address this problem, in this chapter, we present

a much more general, practical framework where we use approximate symmetries to scale

up inference on those MLNs that do not show exploitable exact symmetries in its first-order

structure. We refer to this as approximate lifting. To place this approach into context, the

lifted inference techniques presented in the previous chapter can be regarded as methods

124

125

that did not change the underlying distribution of the MLN. That is, even though they yield

approximate results, they keep the underling MLN distribution invariant. In contrast, using

approximate symmetries modifies the underlying distribution in lieu of scalability.

The rest of this chapter is organized as follows. We first describe common problems with

most existing lifted inference algorithms. We then present our general approach where we

learn approximate symmetries by leveraging standard machine learning algorithms and use

these symmetries to develop a family of approximately lifted, scalable inference algorithms.

Finally, we describe an importance sampler that utilizes approximate symmetries for scala-

bility and its main virtue is that it controls the bias induced by approximate lifting yielding

provable asymptotic guarantees on its inference results.

5.1 Grounding and Evidence Problems

With our current understanding of lifted inference, the types of MLNs from which exact

symmetries can be deciphered is fairly limited. That is, most lifted inference algorithms

impose certain restrictions or rules on the first-order structure of the MLN and only those

MLNs whose structure satisfies these rules can be processed in a lifted manner. For instance,

(i) Singla and Domingos (Singla and Domingos, 2008) lift belief propagation by identifying

indistinguishable messages based on certain structural properties (ii) Jha et al. (Jha et al.,

2010) introduced rules that can perform exact conditioning efficiently on singleton atoms,

(iii) Broeck (Van den Broeck, 2011) proved rules that the class of theories where each formula

has at most 2 logical variables is domain liftable for exact inference and (iv) Sarkhel et

al.(Sarkhel et al., 2014) proved that a non-shared MLN is liftable for MAP inference. In

general, all the aforementioned rules work extremely well in specific cases but on general

MLN structures, where such rules are not applicable, lifted inference ends up grounding a

large part of the MLN and thus has the same scalability problems as propositional inference.

We call this the grounding problem.

126

A second, even more serious problem with lifted inference is the evidence problem, i.e.,

the power of lifted inference diminishes with evidence (Van den Broeck and Darwiche, 2013).

Specifically, unlike propositional inference where evidence helps prune the model, from the

perspective of lifted inference, evidence breaks symmetries and is therefore detrimental to

lifting. Thus, in many cases, even though the MLN is liftable without evidence, upon observ-

ing evidence, the MLN no longer remains liftable due to the absence of exact symmetries.

As a concrete example, consider the MLN in Figure 5.1. The marginal probabilities of the

ground atoms before any evidence is given to the MLN is shown in Figure 5.1 (a). As seen

here, the marginal probabilities are symmetrical to each other. However, when presented

with the evidence shown in (b), the symmetries are broken as shown in (c). Therefore, a

lifted algorithm that could potentially exploit the symmetry in (a) can no longer do so in (c).

In general, in the presence of evidence, lifted inference algorithms often resort to grounding

the MLN affecting their scalability. This is extremely problematic from a practical perspec-

tive because most interesting inference problems are almost always of the form P (Q|E), i.e.,

computing the probability of a query given evidence.

To summarize, for arbitrarily structured MLNs or arbitrarily structured evidence which

are both cases often encountered in practice, typical lifted inference approaches are just as

scalable as propositional inference. In this chapter, we address both these problems. That

is, both MLN as well as evidence structure does not significantly affect the scalability of our

proposed inference methods.

5.2 Approximate Lifting using Evidence-based Clustering

The evidence and grounding problems suggest that existing lifted inference methods are in

some ways overly restrictive and to scale up inference over real-world problems, we need

to generalize the “symmetry-exploiting” idea of lifted inference. Here, we do this by lever-

aging approximate symmetries in the MLN. Specifically, we perform inference over groups

127

Wins(A,A) 0.56
Wins(A,B) 0.56
Wins(A,C) 0.56
Wins(B,A) 0.56
Wins(B,B) 0.56
Wins(B,C) 0.56
Wins(C,A) 0.56
Wins(C,B) 0.56
Wins(C,C) 0.56

(a) Original Marginals

Strong(C)

Wins(A,C)

Wins(B,B)

Wins(B,C)

Wins(C,A)

(b) Evidence

Wins(A,A) 0.6
Wins(A,B) 0.6
Wins(B,A) 0.63
Wins(C,B) 0.85
Wins(C,C) 0.85

(c) New Marginals

Figure 5.1. Effect of evidence on an MLN with one formula, 1.75 Strong(x) ⇒ Wins(x,y).
The marginal probabilities which were equal in (a) become unequal in (c) due to evidence
(b).

of approximately symmetrical objects that we learn using unsupervised machine learning

techniques. In doing so, we approximate the original MLN with a compressed MLN that

approximates the original distribution and thus, results obtained by performing inference

on the smaller MLN are as close as possible to the ones obtained by running an expen-

sive inference algorithm on the original MLN. To achieve this compression, we pre-process

the MLN utilizing standard clustering algorithms such as K-Means to merge approximately

symmetrical objects, namely, objects that are similar to each other from an inference per-

spective. Importantly, this pre-processing step allows us to plug-in any existing inference

algorithm and control the complexity of inference thereby allowing us to develop a family of

approximately lifted algorithms.

In order to learn an accurate domain-reduced approximation of the original MLN, we

specify a novel distance function that measures similarity based on the evidence presented

to the MLN. This distance function helps cluster together objects having similar evidence-

structure. The inherent symmetry in MLN representation makes it more likely that similar

evidence structure translates to approximately similar marginal probabilities. Thus, we com-

pute the marginal probability for a single element of the cluster and project the same results

to all elements in the cluster, thereby significantly reducing the complexity of inference.

128

We evaluate our approach on several benchmark MLNs available on the Alchemy web-

site (Kok et al., 2008). Also, in our experiments, we leverage a number of clustering algo-

rithms from data-mining/machine learning literature implemented in Weka (Hall et al., 2009)

to scale-up inference to very large domain-sizes. To show the generality of our approach,

we experimented with two inference algorithms, a sampling based approach, namely, Gibbs

sampling (Geman and Geman, 1984) and a variational inference approach, namely, belief

propagation (Murphy et al., 1999; Singla and Domingos, 2008). Our results clearly illus-

trate that, using a fraction of the true groundings, we are able to approximate the marginal

probabilities quite consistently on a wide variety of MLN structures with arbitrary evidence.

5.2.1 Input Specification

Recall that PTP and other lifted inference algorithms presented in the previous chapter

assumed that the input MLNs were in a canonical form called the normal form (Jha et al.,

2010) (Section 2.1.4). Normal forms are similar to other canonical forms typically used in

lifted inference in algorithms such as FOVE (de Salvo Braz, 2007) and WFOMC (Van den

Broeck et al., 2011). It turns out that the normal form restriction affects the performance

of lifted inference when evidence is presented to the MLN. In fact, the evidence problem

manifests itself during the process of normalizing the MLN. Specifically, given evidence,

we perform a process referred to as shattering (de Salvo Braz, 2007; Van den Broeck and

Darwiche, 2013) to ensure that we separate the formulas with known evidence atoms from

the rest of the MLN. Unfortunately, shattering can increase the size of the MLN dramatically.

This is illustrated by the following example.

Example 12. Consider the MLN with one formula ¬Friends(x,y) ∨ Related(y,z) ∨

Likes(z,x) ; w. Let us assume that ∆x = ∆y = ∆z = {A,B,C}. Assume that we ob-

tain just two pieces of true evidence, Friends(A,B) and Likes(C,B). The normal form for

this MLN and evidence is given by the following formulas.

129

¬Friends1(A,B) ∨ Related1(B,z) ∨ Likes1(z,A) ; w

¬Friends2(A,y1) ∨ Related2(y1,z) ∨ Likes1(z,A) ; w

¬Friends3(B,B) ∨ Related3(B,C) ∨ Likes2(C,B) ; w

¬Friends3(B,B) ∨ Related4(B,z1) ∨ Likes2(z1,B) ; w

¬Friends4(x1,B) ∨ Related3(B,C) ∨ Likes3(C,x1) ; w

¬Friends5(C,B) ∨ Related4(B,z1) ∨ Likes4(z1,C) ; w

¬Friends6(B,y1) ∨ Related5(y1,C) ∨ Likes2(C,B) ; w

¬Friends7(C,y1) ∨ Related6(y1,z1) ∨ Likes4(z1,C) ; w

¬Friends6(B,y1) ∨ Related6(y1,z1) ∨ Likes2(z1,B) ; w

¬Friends7(C,y1) ∨ Related5(y1,C) ∨ Likes5(C,C) ; w

where ∆x1 = {B,C}, ∆y1 = {A,C} and ∆z1 = {A,B}

Thus as the evidence grows, each predicate is shattered into multiple predicates as shown

in the above example. Therefore, evidence-instantiated MLNs become more and more propo-

sitional as the evidence increases and the power of lifted inference diminishes. To ensure scal-

ability of inference in the presence of arbitrary evidence, here, we introduce a new canonical

form which is a superset of normal MLNs called Σ-normal MLNs that separates evidence

representation from the MLN representation. Specifically,

Definition 14. M is a Σ-normal MLN iff M is a normal MLN in the absence of any

evidence.

The subtle distinction between normal and Σ-normal MLNs has the following important

consequence. As the evidence presented to the MLN is modified, the structure of a normal

MLN changes, i.e., new predicates and formulas are added to the MLN to normalize it, as

illustrated in the Example 12. In contrast, the structure and size of a Σ-normal MLN is

unaffected by any arbitrary evidence on the MLN. Thus, the MLN continues to be processed

in lifted form even with the introduction of arbitrary evidence, thereby allowing us to scale

up to much larger MLNs with evidence.

130

5.2.2 Problem Formulation

LetM denote a Σ-normal MLN with M predicates R1, R2, . . ., RM , and N weighted formulas

f1, f2, . . ., fN . Let GM denote the propositional Markov network obtained by grounding all

the formulas in M. Let E = {Ek}Sk=1 be the set of evidences. Each Ek ∈ E represents a

single ground atom that is known to be either True or False. Let I be a set of indexes of

the form (i, j) such that 1 ≤ i ≤ M , 1 ≤ j ≤ Ai, where Ai is the arity of the i-th predicate.

In other words, (i, j) is an index to the j-th argument of the i-th predicate in M.

Let R be a binary relation on I such that (i, j) R (a, b) iff there exists a formula f ∈

M such that: (1) f contains atoms having predicate symbols indexed by i and a, and (2) a

logical variable x of f appears as the j-th argument and as the b-th argument of atoms having

predicate symbols indexed by i and a respectively. Clearly, R is symmetric and reflexive.

Let R+ be the transitive closure of R on I. R+ is an equivalence relation on I. Let I = {I1

I2 . . . IP} denote the set of equivalence classes of I due to the equivalence relation R+. Let

∆Ik denote the domain (possible groundings) of an element of Ik. Note that since we assume

that the MLN is in Σ-normal form, all elements of ∆Ik have the same domain.

Example 13. Let M contain exactly one formula R1(x,y) ∧ R2(y,z) ⇒ R3(z,x). Let ∆x =

∆y = ∆z = {A,B}. I = {{(1, 1), (3, 2)}, {(1, 2), (2, 1)}, {(2, 2), (3, 1)}}. ∆I1 = {A,B}

and grounding I1 with A, yields the partially ground formula, R1(A,y) ∧ R2(y,z) ⇒ R3(z,A).

To reduce the total number of formulas in GM, we reduce the number of groundings in

each Ik ∈ I independently. Specifically, for each ∆Ik , we learn a new domain, ∆̂Ik and a

surjective mapping ζ : ∆Ik → ∆̂Ik , i.e., ∀ µ ∈ ∆̂Ik , ∃ C ∈ ∆Ik such that ζ(C) = µ. We

formulate this domain-reduction problem (|∆̂Ik | << |∆Ik |) as a standard clustering problem

below.

131

Definition 15. Given a distance measure d between any two groundings of Ik ∈ I and the

number of clusters for Ik equal to rk, we define the clustering problem as,

min
C1...CP

P∑
k=1

rk∑
j=1

∑
Ckj∈Ckj

d(Ckj, µkj) (5.1)

where Ckj corresponds to all groundings of Ik that are placed in cluster j, µkj is the

cluster-center of Ckj, i.e., it represents the “average grounding” for that cluster, ζ−1(µkj) =

Ckj.

Each cluster-center in some sense “compresses” the original domain, and we generate

a new MLN M̂ from M by replacing each ∆Ik with ∆̂Ik = {µkj}rkj=1. Importantly, the

formulation in Eq. (5.1) allows us control the inference-complexity in M̂ even when GM

is extremely large. For example, consider the MLN, R(x, y) ∧ S(y, z) ⇒ T(z, x) w, even

for ∆x = ∆y = ∆z = ∆u = 100, the number of formulas in GM is already one million.

Further, the state space is massive, i.e., exponential in the total number of ground atoms in

the MLN. By clustering, we are essentially lifting this large space approximately and now

any existing inference algorithm implicitly works in the lifted space. The complexity of this

lifted space can be controlled by the number of specified clusters. Specifically, givenM with

M predicates where A is an upper bound on the arity of a predicate, if r is an upper bound

on the number of clusters, i.e., r = max
k
rk, then the approximately lifted state space has a

complexity O(exp(MrA)).

5.2.3 Evidence Approximation

Clearly, the ground atoms in M̂ are different from those inM. Specifically, an atom in M̂ is

ground with cluster-centers rather than constants from the original MLN. Thus, one ground

atom in M̂ implicitly corresponds to multiple ground atoms inM. This also means that in

M̂, the original evidence E needs to be modified because it is specified on the ground atoms

132

of M. Therefore, we approximate E with Ê which specifies the evidence on atoms ground

with cluster-centers instead of the original constants in M as follows.

Definition 16. The expansion of the j-th ground atom corresponding to the i-th predicate

(Ri(µi1j1, . . . µiAijAi)) in M̂ is denoted by πij and consists of all distinct ground atoms of the

form Ri(C1, . . ., CAi) where Ck ∈ ζ−1(µikjk).

Clearly, if we assert in Ê that a ground atom in M̂ is True (or False), this implicitly

asserts that every grounding in its expansion is True (or False). To best approximate E for

M̂, we choose Ê to minimize the following approximation error.

min
Ê
|E4π̄(Ê)| (5.2)

where Ê is a subset of the ground atoms in M̂ and each grounding is assigned a sign

(positive/True or negative/False), π̄(Ê) expands every grounding in Ê and assigns each

grounding in the expansion the same sign as its corresponding grounding in Ê. The 4

operator computes the symmetric difference between E and π̄(Ê). (Note that a grounding

with different signs is treated as distinct elements for our purpose). Ê can be optimally

chosen among all the ground atoms of M̂ as follows.

Proposition 2. Eq. (5.2) is minimized if a) Ê ∈ Ê and Ê is positive implies that n+ ≥ |S|
2

or b) Ê ∈ Ê and Ê is negative implies that
(
n− ≥ |S|

2

)
, where S is the expansion of Ê, n+

is the number of positive evidences in S ∩ E and n− the number if negative-evidences in S

∩ E.

Essentially, Ê that is obtained using Proposition 2 can be viewed as an approximation

that makes E more symmetrical. Thus, it has the effect that minor variations in the true

marginal probabilities are smoothed after evidence approximation. We show this visually

with the following example.

133

 0.495

 0.5

 0.505

 0.51

 0.515

 0.52

 0.525

 0.53

 0 10 20 30 40 50 60 70 80 90 100

P
ro
b
ab
il
it
y

Samples

Exact-Avg-Mars Approx-Avg-Mars

Figure 5.2. Illustrating evidence approximation for ¬Studies(x, y) ∨ Teaches(y, z) ∨
Student (z, x); 0.75. For varying combinations of samples on Student and Studies, the
average true and approximate marginals (after evidence approximation) for all groundings
of Teaches are plotted. As seen here, evidence approximation smooths out the variations in
the true marginals by introducing additional symmetries in the evidence.

Example 14. Let the MLN contain one formula ¬Studies(x, y) ∨ Teaches(y, z) ∨

Student(z, x); 0.75. Let us assume that Teaches is the query atom and let |∆x| = |∆y|

= |∆z| = 3. Figure 5.2 plots the average of the true marginals and the average of the ap-

proximate marginals for Teaches for varying samples of positive and negative evidences on

Studies and Student. As shown, the approximate evidence smooths out variations in the

true marginals by introducing new symmetries in the evidence.

5.2.4 Algorithm Specification

Algorithm 10 shows a schematic illustration of our algorithm to compute the marginal proba-

bilities in an MLN given evidence. Algorithm 10 needs three other algorithms to be specified

namely, the distance function, clustering algorithm and the inference algorithm. The amount

of reduction applied to each domain is specified as the cluster-bound α.

134

Algorithm 10: Compute-Marginals

Input: MLN M, Evidence E, set of query predicates Q, Distance function d,
Clustering function L, Inference algorithm F , cluster-bound α

Output: Marginal probabilities P for each ground atom corresponding to a predicate
in Q

1 Compute the partition I from M
2 M̂ = M
3 for Ik ∈ I do
4 numclusters = α × ∆Ik
5 (∆̂Ik , ζ) = L(numclusters, d)

6 Replace ∆Ik with ∆̂Ik in M̂
7 Construct Ê based on Proposition 2

8 P̂ = F(M̂, Ê,Q)
9 for Each Rk ∈ Q do

10 for Each j, where j indexes the possible groundings of Rk in M̂ do
11 for Each t, where t indexes the possible groundings of Rk in the expansion πkj

do

12 P(Rk, t) = P̂(Rk, j)

13 return P

Algorithm 10 starts by computing the partition I from the term dependencies in M.

Next, to each Ik ∈ I, the clustering algorithm L is applied which outputs the clustered

domain ∆Ik as well as the mapping function ζ. ∆Ik is now replaced by its approximation in

the new MLN M̂. Once all the domains are suitably reduced, the next step is to approximate

the evidence based on the reduced domains. Using Proposition 2, for every grounding of

every atom in M̂, we make a decision as to whether it is to be considered positive evidence,

negative evidence or treated as a grounding whose truth value is unknown. This yields

the approximate evidence set Ê. We then invoke the inference algorithm F to compute the

marginals in M̂. Finally, we project the results obtained on M̂ back to the original domains.

Specifically, if a grounding in M̂ has a marginal probability p, then each grounding in its

expansion is assigned the same probability.

135

5.2.5 Evidence Based Distance Function

The distance function is a key parameter that affects the quality of the generated clusters

in Eq. (5.1) and in turn the inference results computed in Algorithm 10. The advantage

of our formulation is that it is quite easy to plug-in a new distance function and generate

“new” inference algorithms targeted towards specific applications or datasets. Here, we

develop a novel distance measure that uses the evidence presented to the MLN as features

for clustering. We explain the intuition behind this distance function using the following two

examples.

Example 15. Consider an example MLN with one formula, ¬Smokes(x) ∨ ¬Friends(x,y)

∨ Asthma(y); 0.75. Let ∆x = ∆y = {A,B,C}. Figure 5.3 shows several plots where, in each

plot a different set of evidences on Smokes(x) and Asthma(y) is presented to the MLN and

the resulting marginals for every ground atom of Friends(x, y) are plotted. As seen from the

figure, several marginal probabilities turn out the be clustered together. We use the evidence

information to design the distance function such that it helps learn these clusters.

Example 16. For the MLN in Figure 5.3, consider an example evidence instance where

Smokes(A) = False and Smokes(C) = False. Using the evidence, we can assert that

the formula ¬Smokes(A) ∨ ¬Friends(A,y) ∨ Asthma(y) is satisfied in 3 groundings and

the formula ¬Smokes(C) ∨ ¬Friends(C,y) ∨ Asthma(y) is also satisfied in 3 groundings.

The marginal probabilities for Friends(A,y) turn out to be the same as the marginals for

Friends(C,y), equal to 0.5, while the marginal probabilities for Friends(B,y) is equal to

0.46. Thus ideally, the objects A and C should be clustered together since the evidence on

them is “symmetrical” while the the object B should be in a separate cluster since its evidence

structure is different. We formalize this example below.

Let MCkj represent the MLN obtained after grounding Ik with the j-th constant in

∆Ik . Clearly, in the general case, for any two distinct j1, j2, MCkj1
and MCkj2

are not

136

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

A
to

m
 I

n
d
ex

Marginal Probability

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

A
to

m
 I

n
d
ex

Marginal Probability

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

A
to

m
 I

n
d
ex

Marginal Probability

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

A
to

m
 I

n
d
ex

Marginal Probability

Figure 5.3. Illustrating clusters of marginal probabilities when given different evidence
instances. For the MLN with 1 formula, ¬Smokes(x) ∨ ¬Friends(x,y) ∨ Asthma(y); 0.75,
where each logical variable has a domain-size equal to 3. The x-axis specifies the probabilities
and the y-axis shows the index of a ground atom of Friends (0-9). In each figure, we input
different evidences for Smokes(x) and Asthma(y), and plot the resulting marginal probabilities
for every ground atom of Friends(x, y). Our distance function tries to cluster together atoms
with similar marginals.

necessarily independent MLNs as there may be atoms in MCkj1
that are also present in

MCkj2
. However, in our distance function, we relax the constraints/dependencies between

MCkj1
,MCkj2

and assume these to be independent MLNs and compute the distance between

these two MLNs. Specifically, we define a feature vector UCkj = cf1 , . . . cfN , where cfk is

the number of groundings in formula fk of MLN MCkj satisfied due to the evidence E. The

distance is computed as d(Ckj1 , Ckj2) = ||UCkj1
−UCkj2

||.

Even though the above distance function seems like an intuitive and reasonable heuristic,

it turns out that computing the distance function efficiently is infeasible in the general

case because computing the counts in the feature vector, UCkj is a hard problem when E

137

is large. Specifically, the problem of computing the vector in UCkj for a Σ-normal MLN

can be converted to sequence of queries in a database that contains evidence on ground

atoms (details in the next section). The following theorem is a classical result in database

theory (Papadimitriou and Yannakakis, 1999) that has also been revisited in (Domingos and

Lowd, 2009) for MLNs,

Theorem 12. Computing the number of satisfied groundings of a first-order clause in a

database is #P -complete in the length of the clause.

Thus by Theorem 12, computing UCkj exactly is hard. Therefore, we relax the joint-

dependencies on the relations of the formula to keep the distance function computation

feasible in the general case.

Bounded-join Queries on a Relational Database

We formalize the distance function using relational databases. From an implementation

point of view, using databases implicitly gives us all the advanced query optimization and

scalability features that are built into most modern relational databases. Also, relational

databases tie in nicely with our input specification. Recall that we assume the MLN to be

in Σ-normal form. In normal forms, every time the MLN is instantiated with new evidence,

we need to pre-process the evidence and shatter the MLN that typically results in much

larger new MLN with several new predicates. Thus specifying a normal MLN as database

is harder since the MLN itself changes for every new instantiation of evidence. However,

for Σ-normal MLNs, we simply store the evidence associated with each first-order predicate

as the database and let the internal database query engine perform efficient joins using the

stored evidence as needed since the MLN structure is always assumed to be fixed.

We now specify the schema of our database as follows. Each ground atom of the Σ-

normal MLN is stored in the database along with its state. Specifically, the i-th predicate Ri

138

is stored as a relational database table Ri with Ai+1 columns (Ai is the arity), namely, id1,,

id2 . . . idAi and val. The first Ai columns correspond to a specific grounding and the val

column specifies the state of the ground atom, i.e., whether that ground atom is evidence

(True evidence (val = 1), False evidence (val = 0)) or its truth assignment is unknown

(val = −1).

Given the above relational database, it turns out that computing the feature vectors in

the distance function is simply a series of conjunctive queries to the relational database (we

illustrate this in the example below) where each query is a hard problem (#P) as shown in

Theorem 12. To scale up inference to arbitrarily large evidence sets and arbitrarily large

formulas, we adopt the following approach. Instead of computing the exact number of

groundings for a formula satisfied by the evidence, which involves an arbitrary number of

joins over the relations in the formula, we approximate this with a vector of counts, where

each count is computed on a subset of relations and the computation involves a bounded

number of joins over these relations. We illustrate this in the following examples.

Example 17. Let M contain one formula, ¬R(x, y) ∨ ¬S(y,z) ∨ T(z,x), where ∆x =

{A,B,C}. To compute the count of satisfied groundings for x = A, we compute its inverse,

i.e., the number of unsatisfied groundings for x = A. The satisfied count is simply the

difference between the total number of groundings and the number of unsatisfied groundings.

Since the total number of groundings ∆y × ∆z is a constant for all groundings of x, it does

not affect the clustering and we simply ignore it. Computing the unsatisfied groundings for x

= A is in the class of conjunctive queries for databases and can be specified by the following

relational algebra expression

σR.val=1∧S.val=1∧T.val=0((σR.id1=A(R) ./R.id2=S.id1 S)

./S.id2=T.id1∧R.id1=T.id2 T) (5.3)

where σ is the selection operator and ./ is the join operator. Clearly, the above expression

has two joins. However, if we impose a constraint that no joins are allowed during the

139

Algorithm 11: Build-Query

Input: Clausal formula ft
Output: Relational-Algebra expression Q

1 Q = ∅
2 for Ri ∈ ft do
3 Rvalue = 1
4 if Ri is positive then
5 Rvalue = 0

6 if Q = ∅ then
7 Q = Q + σRi.val=Rvalue(Ri)

8 else
9 Q = Q ./θ σRi.val=Rvalue(Ri)

computation of the feature vector, we approximate Eq. (5.3) by implicitly assuming that each

predicate in the formula is independent, i.e., we ignore the joins to obtain a vector of counts

by counting the tuples returned by 3 separate queries, σR.val=1∧R.id1=A(R), σS.val=1(S) and

σT.val=0∧T.id2=A(T). An alternate distance function can be obtained if we only allow exactly

one join in a query. In this case, we can get a better approximation of Eq. (5.3) by considering

two queries,

σR.id1=A∧R.val=1(R) ./R.id2=S.id1 σS.val=1(S)

σS.val=1(S) ./S.id2=T.id1 σT.val=0∧T.id2=A(T)

Algorithm 12 generalizes the idea in the above example and computes the feature vec-

tors for a specific Ik ∈ I. The algorithm generates multiple queries corresponding to each

grounding of Ik such that the number of joins in each query is lesser than J . For this, we

go over each formula ft, and first check if ft is relevant to Ik, i.e., if ft contains at least one

atom corresponding to Ri such that for some p, (i, p) ∈ Ik, then ft is a relevant formula

for clustering Ik, otherwise, we ignore ft. This is because, the features from ft which are

not relevant to Ik remains identical for every grounding of x and therefore never affects the

clustering. For every relevant ft, we first build the complete query which is a sequence of

140

Algorithm 12: Compute-Features

Input: M and its associated relational DB, join-bound J , Ik ∈ I
Output: Feature vector set {UCkj}

∆Ik
j=1

1 U = ∅
2 for Ckj ∈ ∆Ik do
3 UCkj = ∅
4 for ft ∈ F do
5 if ft is not relevant to Ik then
6 continue

7 Q = Build-Query(ft)
8 while Q not empty do
9 Q′ = Select a sub-query containing up to the first J joins in Q

10 for Ri ∈ Q′ do
11 if ∃ p such that (i, p) ∈ Ik then
12 Wrap a select (σRi.idp=Ckj) around Ri

13 UCkj .append(Count(Q′))
14 Let Rs be a table in Q′ whose attribute participates in the θ-join after Q′
15 if Rs = ∅ then
16 Q = (Q−Q′)
17 else
18 Relax the θ-join and include only those constraints involving Rs

19 Q = Rs ./θ (Q−Q′)

20 U.append(UCkj)

21 return U

θ-joins on the tables corresponding to every atom in ft. The query selects the the groundings

of ft that are not satisfied by the evidence. The θ in the join specifies variables shared among

atoms in ft. For example, in a formula ¬R(x) ∨ S(x), the θ-join is specified as σR.val=1(R)

./R.id1=S.id1 σS.val=0(S). Once we build the full query, we simply walk through the query exe-

cuting no more than J joins at a time. For each atom which has a variable that corresponds

to some element of Ik, we ground the variable by enforcing the select condition in line 11 of

the algorithm. We execute the partial query Q′ with a maximum of J joins and store the

result (count) in the feature vector. Next, we remove Q′ from Q and relax the next θ- join

141

condition as follows. Among all the tables mentioned in Q′, we select one table Rs, that

participates in the next join operation in Q−Q′. We only retain the join conditions related

to Rs in the next join in Q − Q′ and remove the rest of the conditions. We continue until

we empty the original query Q. Finally, we return the vector of counts accumulated across

all queries for each grounding of Ik.

5.2.6 Related Work

Several previous approaches have been suggested for improving the scalability of inference

in MLNs. Most of these approaches can be termed as lifted inference algorithms since

they either use rules that can be directly applied on the first-order structure or identify

symmetries in the ground representation to perform efficient inference. Both exact (de Salvo

Braz, 2007; Gogate and Domingos, 2011b; Van den Broeck et al., 2011; Bui et al., 2012) as

well as approximate (Singla and Domingos, 2008; Kersting et al., 2009; Gogate et al., 2012;

Niepert, 2012; Venugopal and Gogate, 2012; Bui et al., 2013) lifted algorithms have been

developed that can greatly improve scalability. However, all these algorithms are efficient

only when given the right MLN structure/evidence. Specifically, (Bui et al., 2012; Van

den Broeck and Davis, 2012) show that efficient inference is possible only when presented

with specific evidence-structures. More recently, (Van den Broeck and Darwiche, 2013) have

proposed to counter the evidence-problem by adding more symmetries that make the MLN

liftable. Specifically, they compute a low-rank boolean matrix factorization of the evidence

matrix which implicitly induces a clustering whereas we explicitly cast it as a clustering

problem thereby allowing us the flexibility to use a range of clustering algorithms and also

better control of the inference-complexity. Further, (Van den Broeck and Darwiche, 2013)

handles only binary evidence while our approach is much more general. Recently, (Beltagy

and Mooney, 2014) have suggested another approach to handle the grounding problem in

MLNs by making some modified assumptions about the world to suit natural language

142

understanding applications. Also, Singla et al. (Singla et al., 2014) developed a method

where they approximated the messages in belief propagation. Finally, our approach of pre-

processing the MLN is related to (Shavlik and Natarajan, 2009) which develops a systematic

grounding procedure that can reduce the ground MLN size in many cases, and our approach

of leveraging the query optimizations in relational databases for MLN inference is inspired

by the Tuffy system (Niu et al., 2011).

5.2.7 Experiments

Setup

We evaluate our approach on 5 benchmark MLNs available in Alchemy (Kok et al., 2008),

namely Entity Resolution (ER), Segmentation (Seg), Web Linkage analysis (WebKB), Hid-

den Markov Models (HMM) and Protein Interaction (Protein). Additionally, we added two

new MLNs that have different structures called Student (Teaches(i, c) ∧ Prereq(c, c1) ⇒

Takes(s, c1)) and Relation (Related(i, j) ∧ Friends(j, k) ⇒ Loves(k, i)).

For our experiments, we implemented our system using MySQL on a quad-core Ubuntu

machine with 6 GB RAM. To speed up query processing, we created n indexes for a table

corresponding to a n-ary predicate, where the column corresponding to each argument of a

predicate is indexed separately. For the distance function, we limit the number of joins (J)

to 1. To show the generality of our approach, we evaluated it using two inference algorithms,

namely, Gibbs sampling (Geman and Geman, 1984) and belief propagation (Singla and

Domingos, 2008). We used the implementation of both these algorithms from Alchemy (Kok

et al., 2008). For clustering, we experimented with four different algorithms available in

Weka (Hall et al., 2009) namely, KMeans++ (KM), Expectation-Maximization (EM), Hier-

archical clustering (HC) and XMeans (XM).

143

Approximation results on benchmarks

Figures 5.4 and 5.5 illustrate the accuracy of our approach on various benchmark MLNs.

Figure 5.4 illustrates the results for approximately-lifted Gibbs sampling and Figure 5.5

illustrates the results for approximately-lifted belief propagation. The x-axis in both figures

plots the inverse compression ratio ICR which is equal to NC
NG

, where NC is the total number

of ground formulas in the compressed MLN and NG is the total number of ground formulas

in the original MLN. The y-axis shows the approximation error calculated as follows. Err

=
∑
g∈GDKL(Pg ||P ′g)

|G| , where DKL is the standard KL-Divergence distance measure, G refers

to all ground atoms of a query predicate, Pg is the marginal distribution of ground atom g

computed from the original MLN and P ′g is computed from the compressed MLN. Both Pg

and P ′g are computed using Gibbs sampling for the results shown in Figure 5.4 and using

belief propagation in Figure 5.5. In each MLN that we used for our experiments, we set 50%

of arbitrary groundings as evidence, where 25% are True and 25% are False.

As seen from our results, as ICR increases, the approximation error reduces. At the

same time, larger ICR increases the complexity of inference since NC is larger. Thus, we can

trade-off accuracy with computational complexity. Further, for MLN structures with more

symmetries to exploit, the approximation error decreases far more rapidly as compared to

asymmetric MLN structures. For instance, the Student MLN (Figures 5.4(a) and 5.5(a)) has

much smaller approximation error than ER (Figures 5.4(f) and 5.5(f)) for comparable values

of ICR. Overall, inference using belief propagation yielded more accurate results than Gibbs

sampling and the clustering produced by KM and HC minimized the approximation error

between the original and compressed MLN much more effectively. Note that determining the

optimal number of clusters automatically for any given MLN is an interesting and challenging

problem by itself. A possible extension of our work is to apply more advanced non-parametric

techniques to systematically trade-off accuracy with number of clusters.

144

 0.1

 0.2

 0.3

 0.4

 0 0.05 0.1 0.15 0.2 0.25

E
rr

o
r

ICR

KM

XM

EM

HC

(a) Student

 0.2

 0.25

 0.3

 0.35

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

E
rr

o
r

ICR

KM

XM

EM

HC

(b) Relation

 0.1

 0.15

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

E
rr

o
r

ICR

KM

XM

EM

HC

(c) Seg

 0.2

 0.3

 0.4

 0 0.05 0.1 0.15 0.2 0.25

E
rr

o
r

ICR

KM

XM

EM

HC

(d) Webkb

 0.2

 0.25

 0.3

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

E
rr

o
r

ICR

KM

XM

EM

HC

(e) Protein

 0.2

 0.3

 0 0.05 0.1 0.15 0.2 0.25

E
rr

o
r

ICR

KM

XM

EM

HC

(f) ER

Figure 5.4. Approximation-error vs ICR. The y-axis shows the average KL-Divergence of
the marginals computed on the clustered MLN from the marginals computed on the original
MLN (smaller is better). The inference algorithm used is Gibbs sampling.

145

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

E
rr

o
r

ICR

KM

XM

EM

HC

(a) Student

 0.2

 0.3

 0.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

E
rr

o
r

ICR

KM

XM

EM

HC

(b) Relation

 0.1

 0.15

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

E
rr

o
r

ICR

KM

XM

EM

HC

(c) Seg

 0.1

 0.2

 0.3

 0.4

 0 0.05 0.1 0.15 0.2 0.25

E
rr

o
r

ICR

KM

XM

EM

HC

(d) Webkb

 0.1

 0.2

 0.3

 0.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

E
rr

o
r

ICR

KM

XM

EM

HC

(e) Protein

 0.2

 0.3

 0.4

 0 0.05 0.1 0.15 0.2 0.25

E
rr

o
r

ICR

KM

XM

EM

HC

(f) ER

Figure 5.5. Approximation-error vs ICR. The y-axis shows the average KL-Divergence of
the marginals computed on the clustered MLN from the marginals computed on the original
MLN (smaller is better). The inference algorithm used is Belief Propagation.

146

Effect of Evidence

Figure 5.6 illustrates the error for different values of cluster-bounds (α) and varying amount

of evidence. The results shown Figure 5.6 use K-Means++ for clustering and belief prop-

agation for inference. As expected, using a larger value of α in most cases leads to lower

errors due to a better approximation of the original MLN. Also, it can be seen that in

most of the cases illustrated in Figure 5.6, for very small or very large amounts of evidence,

the errors seem to go down. This is quite consistent with the effect that evidence has on

MLNs. Evidence breaks symmetries in the MLN and thus if very few groundings or nearly

all groundings are evidence, as there are more symmetries, the inference algorithms tend to

give us better approximations (for all α values) than the cases shown in middle portion of

the graphs where more random evidence makes inference more challenging.

Scalability

Figure 5.7 illustrates the scalability of our approach when handling large domain-sizes. For

different domain-sizes, we show the time in seconds it takes to compute the compressed MLN.

We used an α value of 0.25 for these experiments and introduced 50% random evidence with

half of them True and the other half False. As expected, the time taken to compute

the approximate MLN increases as the domain-size grows. However, it should be noted

that none of the MLNs in Figure 5.7 could be processed by existing ground/lifted inference

algorithms in Alchemy before running out of memory as the number of ground formulas is

extremely large. For example, one instance of the Relation MLN in Figure 5.7 (a) has one

billion groundings. Thus, without approximating the MLN, there is no feasible approach to

inference in such large models. As shown by our results, we were able to complete processing

the MLN in a reasonable amount of time even when the groundings reached a trillion as

in Figure 5.7 (e). Also, the number of first-order formulas and their structure play a role

in determining the complexity due to the distance function computation. Recall that we

147

 0.1

 0.2

 0.3

 0.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
rr

o
r

Evidence %

a=0.1

a=0.25

a=0.5

a=0.75

(a) Relation

 0.1

 0.15

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
rr

o
r

Evidence %

a=0.1

a=0.25

a=0.5

a=0.75

(b) Seg

 0.2

 0.3

 0.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
rr

o
r

Evidence %

a=0.1

a=0.25

a=0.5

a=0.75

(c) WebKB

 0.1

 0.2

 0.3

 0.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
rr

o
r

Evidence %

a=0.1

a=0.25

a=0.5

a=0.75

(d) ER

Figure 5.6. Illustrating the effect of evidence. The x-axis varies the amount of evidence on
the atoms in the MLN. The y-axis plots the approximation error for varying cluster-bounds.
The experiment is run using K-Means for clustering and belief propagation for inference.

compute a vector for every formula in the MLN. Therefore, a larger number of formulas

mean more computations on the database. For instance, Figure 5.7 (e) has just one formula

while (f) has 8 formulas which have more complex structure. Therefore, even though the

number of ground formulas in (e) is a trillion while in (f) it is a billion, we took more time to

process (f). Further, it can be seen that for each of the benchmarks, the third instance (the

largest MLN) takes a visibly longer time when compared to the first two instances. This is

expected because, when the size of the database grows really large as is the case for very

large domain-sizes, it typically requires many more hard disk accesses for query processing

148

 0

 50

 100

 150

 200

 250

[2E+07,
2E+05]

[1E+08,
8E+05]

[1E+09,
3E+06]

T
im

e
(s

e
c
s)

KM

XM

EM

HC

(a) Relation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

[4E+07,
8E+04]

[2E+08,
3E+05]

[7E+08,
1E+06]

T
im

e
(s

e
c
s)

KM

XM

EM

HC

(b) Webkb

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

[5E+06,
8E+04]

[2E+07,
3E+05]

[8E+07,
1E+06]

T
im

e
(s

e
c
s)

KM

XM

EM

HC

(c) Protein

 0

 200

 400

 600

 800

 1000

 1200

[4E+06,
2E+05]

[2E+07,
7E+05]

[2E+08,
3E+06]

T
im

e
(s

e
c
s)

KM

XM

EM

HC

(d) ER

 0

 100

 200

 300

 400

 500

 600

 700

 800

[4E+09,
2E+05]

[6E+10,
8E+05]

[1E+12,
3E+06]

T
im

e
(s

e
c
s)

KM

XM

EM

HC

(e) Student

 0

 500

 1000

 1500

 2000

 2500

 3000

[3E+07,
7E+04]

[3E+08,
4E+05]

[1E+09,
2E+06]

T
im

e
(s

e
c
s)

KM

XM

EM

HC

(f) Seg

Figure 5.7. Scalability experiments. The y-axis shows the time taken to form the approxi-
mate MLN and the x-axis shows [Nf , Na], where Nf is the number of ground formulas and
Na is the number of ground atoms.

149

which causes it to slow down. Finally, as seen in the results, the type of clustering has

minimal impact on the time taken to process the MLN, i.e., nearly all clustering methods

took approximately the same amount of time.

5.3 Application: Scalable Importance Sampling

As seen from the experiments in the previous section, in practice, the compressed MLN

obtained though our evidence-based clustering approximates the distribution of the original

MLN quite well. However, it is hard to analytically bound the quality of the approximations

induced by the compression. That is, it may turn out that for some cases, the compressed

MLN represents a distribution that is quite far off from the true distribution of the MLN.

To address this problem, we present a new, more scalable importance sampling algorithm

that uses approximate lifting for scalability but also provides guarantees.

In this section, we show how to significantly scale up the two main steps in importance

sampling, namely, (a) constructing and sampling from an accurate proposal distribution

and (b) computing the sample weight. Importantly, we carefully design each step, ensuring

that we never incur the grounding or evidence problems. As a result, the computational

complexity of our method is much smaller than existing lifted importance sampling ap-

proaches (Gogate et al., 2012). For step (a), we use the compressed MLN to design an

informed proposal distribution. We then sample this proposal in an approximately lifted

manner using Gibbs sampling. Each sample from our proposal corresponds to several approx-

imately symmetric propositional samples. In step (b), we compute the importance weight of

each lifted sample. However, computing the weight of a sample for MLNs is a computation-

ally hard problem. In fact, for computing each sample weight, we need to enumerate over

all possible ground formulas in the MLN, which is equivalent to the grounding problem that

was discussed previously. Therefore, to ensure scalability of the sampler, we develop a novel,

150

tractable weighting scheme. Specifically, for each approximately lifted sample, we use a sec-

ond sampler to sample a bounded number of ground formulas in the MLN. We then approx-

imate the weight of the sample based on the sampled formulas. We show that our weighting

method yields an importance sampler with asymptotic guarantees. Further, by combining

the sampler with principles from exact lifting, we perform Rao-Blackwellisation (Casella and

Robert, 1996) on our importance sampler thereby reducing variance in many cases.

5.3.1 Constructing and Sampling the Proposal Distribution

Recall that, in importance sampling (Geweke, 1989), we draw samples from a proposal

distribution H that is easier to sample compared to sampling from the true distribution

P . Each sample is then weighted with its importance weight to correct for the fact that

it is drawn from the wrong distribution. To compute the marginal probabilities from the

weighted samples, we use the following Monte-Carlo estimator.

P ′(Q̄) =

∑T
t=1 IQ̄(s̄(t))w(s̄(t))∑T

t=1 w(s̄(t))
(5.4)

where s̄(t) is the tth sample drawn from H, IQ̄(s̄(t)) = 1 iff the query atom Q is assigned Q̄ in

s̄(t) and 0 otherwise, w(s̄(t)) is the importance weight of the sample given by P (s̄(t))

H(s̄(t))
. Eq. (5.4)

is called as a ratio estimate or a normalized estimate because we only need to know each

sample’s importance weight up to a normalizing constant. We utilize this key fact to design

our sampler in a scalable manner.

Constructing a good proposal distribution that in some way mirrors the true distribution

is arguably the most important task in importance sampling. Unfortunately, this is also a

highly challenging problem since we do not really know what the true distribution looks like.

However, recall that we in fact designed our compressed MLN (in the previous section) such

that it tries to approximate the true distribution as closely as possible. We now leverage this

compressed MLN and present a systematic approach to construct a highly accurate proposal

distribution.

151

Formulas:
R(x) ∨ S(x, y), w
Domains:
∆x =
{A1, B1, C1, D1}
∆y =
{A2, B2, C2, D2}

(a)

Formulas:
R1(µ1) ∨ S1(µ1, µ3), w; R2(µ2) ∨ S2(µ2, µ3), w
R1(µ1) ∨ S3(µ1, µ4), w; R2(µ2) ∨ S4(µ2, µ4), w
Domains:
g(µ1) = {A1, B1}; g(µ2) = {C1, D1}
g(µ3) = {A2, B2}; and g(µ4) = {C2, D2}

(b)

Figure 5.8. (a) an example MLNM and (b) MLN M̂ obtained fromM by grounding each
logical variable in M by the cluster centers µ1, . . ., µ4.

Given a MLN M in Σ-normal form, let D denote the set of all domains in M and let

D ∈ D be a set of objects that belong to the same domain. We compress M as described

in the previous section. That is, we consider each D ∈ D independently and learn a new

domain D′ where |D′| � D and ζ : D → D′ is a surjective mapping, i.e., ∀ µ ∈ D′, ∃ C

∈ D such that ζ(C) = µ. In other words, each cluster of objects is replaced by its cluster

center in the reduced domain.

Let M̂ be the network obtained by grounding M with its reduced domains (which cor-

responds to the cluster centers) and let MG be the ground Markov network of M using

the original domains. M̂ and MG are related as follows. We can think of M̂ as an MLN,

in which the logical variables are the cluster centers. If we set the domain of each logical

variable corresponding to cluster center µ ∈ D′ to g(µ) where g(µ) = {C ∈ D|ζ(C) = µ},

then the ground Markov network of M̂ isMG. Figure 5.8 shows an example MLNM and its

corresponding compressed MLN M̂. Notice that the Markov network obtained by grounding

M is the same as the one obtained by grounding M̂.

In M̂ we assume that for each predicate, all its groundings are approximately symmetric

to each other and obtain approximately lifted samples from M̂. The degree of this approx-

imation can be controlled by the number of clusters used to compress M. As we increase

the number of clusters, each sample from M̂ becomes “more approximately lifted”, i.e., it

represents a greater number of approximately symmetric samples of M.

152

Next, we describe how to generate samples from M̂. To keep the equations more readable,

we assume that we only have positive evidence (i.e., an assertion that the ground atom is

known to be true). Note that it is straightforward to extend the following equations to the

general case in which we have both positive and negative evidences.

Let M̂ contain K̂ predicates, for which we assume some ordering. Let E and U be

two sets defined as follows. Ei ∈ E represents the number of (true) evidence ground atoms

corresponding to the i-th predicate in M̂ and Ui ∈ U represents the number of ground atoms

of the i-th predicate whose truth value is unknown.

Without loss of generality, let the j-th formula in M̂, denoted by fj, contain the atoms

p1, . . . pk where pi is an instance of the pi-th predicate and if i ≤ m, it has a positive sign

else it has a negative sign. The task is to now count the total number of satisfied groundings

in fj symbolically without actually going over the ground formulas. Unfortunately, this

task is in #P . Therefore, we make the following approximation. Let N(p1, . . . pk) denote the

number of satisfied groundings of fj based on the assignments to all groundings of predicates

indexed by p1, . . . pk. Then, we will approximate N(p1, . . . pk) using
∑k

i=1 N(pi), thereby

independently counting the number of satisfied groundings for each predicate. Clearly, our

approximation overestimates the number of satisfied formulas because it ignores the joint

dependencies between atoms in f . To compensate for this, we scale-down each count by a

scaling factor (γ) which is the ratio of the actual number of ground formulas in f to the

assumed number of ground formulas. Next, we define these counting equations formally.

Given the j-th formula fj and a set of indexes I, where i ∈ I corresponds to the i-th atom

in fj, let #Gfj(I) denote the number of ground formulas in fj if all the terms in all atoms

specified by I are replaced by constants. For instance, in the example shown in Figure 5.8,

let f be R1(µ1) ∨ S1(µ1, µ3), then, #Gf (∅) = 4, #Gf ({1}) = 2 and #Gf ({2}) = 1. We now

count fj’s satisfied groundings symbolically as follows.

S ′j = γ

m∑
i=1

Epi#Gfj({i}) (5.5)

153

where γ =
#Gfj (∅)
m#Gfj (∅) = 1

m
and S ′j is rounded to the nearest integer.

Sj = γ

(
m∑
i=1

Ŝpi#Gfj({i}) +
k∑

i=m+1

(Upi − Ŝpi)#Gfj({i})
)

(5.6)

where γ =
max(#Gfj (∅)−S′j ,0)

k#Gfj (∅) , Ŝpi is a lifted symbol representing the total number of true ground

atoms (among the unknown atoms) of the pi-th predicate and Sj is rounded to the nearest

integer.

The symbolic (un-normalized) proposal probability is given by the following equation.

H(Ŝ,E) = exp

(
C∑
j=1

wjSj
)

(5.7)

where C is the number of formulas in M̂ and wj is the weight of the j-th formula.

Given the symbolic equation Eq. (5.7), we sample the set of lifted symbols, Ŝ, using

Gibbs sampling. For this, we initialize all symbols to a random value. We then choose a

random symbol Ŝi and substitute it in Eq. (5.7) for each value between 0 to Ui. This yields a

conditional distribution on Ŝi given assignments to Ŝ−i, where Ŝ−i refers to all symbols other

than the i-th one. We then sample from this conditional distribution by taking into account

that there are
(
Ui
v

)
distinct assignments corresponding to the v-th value in the distribution,

which corresponds to setting any v groundings of the i-th predicate to True. After the

Markov chain has mixed, to reduce the dependency between successive Gibbs samples, we

thin the samples and only use every p-th sample for estimation.

Note that during the process of sampling from the proposal, we only had to compute

M̂, namely, we only ground the original MLN with the cluster-centers. Therefore, the

representation is lifted because we do not ground M̂. This helps us scale up the sampling

step to large domains-sizes (since we can control the number of clusters used to define M̂).

5.3.2 Computing the Importance Weight

In order to compute the marginal probabilities as in Eq. (5.4), given a sample, we need

to compute (up to a normalization constant) the weight of that sample. It is easy to see

154

that each sample from our proposal (assignments on all symbols) is a lifted sample, i.e., it

has multiple possible assignments in the state space corresponding to the original MLN.

For instance, suppose in our running example in Figure 5.8, the symbol corresponding to

R(µ1) has a value equal to 1, this corresponds to two different assignments in M, either

R(A1) is true or R(B1) is true. Formally, a sample from the proposal has
∏K̂

i=1

(
Ui
Ŝi

)
different

assignments in the original distribution. Further, as we increase the amount of compression

in the MLN, samples from the proposal become more lifted, i.e., K̂ becomes smaller while Ui

becomes larger. Thus the number of assignments of the original MLN that each lifted sample

represents increases as we increase the amount of compression (or decrease the number of

clusters). From the construction of our proposal, for any lifted sample, all its corresponding

assignments in the state space of the original MLN are approximately symmetric. That

is, we assume that each of these samples have approximately the same probability in the

original MLN’s distribution. Thus, to compute the (un-normalized) probability of a sample

w.r.t M, for any approximately lifted sample, Ŝ(t), we sample one of its corresponding

propositional samples, say, s̄(t) uniformly at random and compute the importance weight

(up to a multiplicative constant) using the following equation.

w(Ŝ(t),E) =
P (s̄(t),E)

H(Ŝ(t),E)
(5.8)

From the theory of importance sampling (cf. (Liu, 2001)), plugging-in the weights com-

puted by Eq. (5.8) into Eq. (5.4) yields an asymptotically unbiased estimate of the query

marginal probabilities, i.e., as T →∞, P̂ (Q) almost surely approaches P (Q).

However, in the case of MLNs, computing w(Ŝ(t),E) turns out to be a computationally

hard problem. Specifically, P (s̄(t),E) ∝ ∑f wfNf (s̄
(t),E), where f is a formula of M with

weight wf and Nf (s̄
(t),E) refers to the number of groundings of f that are satisfied by the

sample (s̄(t),E). Thus, to compute P (s̄(t),E), for every formula in M, we need to go over

each grounding of that formula and check if it is satisfied in (s̄(t),E). The complexity of

155

this step is clearly equivalent to the grounding-problem in MLNs and therefore, exact weight

computation is infeasible for large MLNs. To make this weight-computation step tractable,

we develop a new weighting method that approximates the importance weight as follows.

For each sample from the proposal, we use an additional sampler which samples a bounded

number of groundings of a first-order formula in M. Using only the sampled groundings of

each formula, we approximate the importance weight of the sample drawn from the proposal

distribution.

Formally, let Ui be a proposal distribution defined on the groundings of the i-th formula.

Here, we define this distribution as a product of |Vi| uniform distributions where Vi = Vi1

. . . Vik is the set of distinct variables in the i-th formula. Formally, Ui =
∏|Vi|

j=1 Uij, where Uij

is a uniform distribution over the domain of Vik. A sample from Ui contains a grounding for

every variable in the i-th formula. Using this, we can approximate the importance weight

using the following equation.

ŵ(s̄(t),E, ū
(t)
i) =

exp

(∑M
i=1 wi

N ′i(s̄
(t),E,ū

(t)
i)

β
∏|Vi|
j=1 Uij

)
H(Ŝ(t),E)

(5.9)

where M is the number of formulas in M, wi is the weight of the i-th formula, ū
(t)
i are β

groundings of the i-th formula drawn from Ui and N ′i(s̄
(t),E, ū

(t)
i) is the count of satisfied

groundings in ū
(t)
i groundings of the i-th formula.

Theorem 13. Using the importance weights shown in Eq. (5.9) in Eq. (5.4) yields an asymp-

totically unbiased estimate of the query marginals, i.e., as the number of samples, T → ∞,

the estimated marginal probabilities almost surely converge to the true marginal probabilities.

Proof. For brevity, let S(t) = (s̄(t),E, ū
(t)
i) and let H(t) = H(Ŝ(t),E) and assume that each

formula has G groundings. The exact weight for each sample is equal to,

w(S(t)) =
exp(

∑M
i=1 wiNi(S

(t)))

H(t)
(5.10)

156

where Ni(S
(t)) =

∑G
g=1Nig(S

(t)); Nig(S
(t)) = 1 if the g-th grounding of the i-th formula is

true in sample S(t) and Nig(S
(t)) = 0 if the g-th grounding of the i-th formula is false in

sample S(t)

The normalized estimator for a query atom Q is given by,

P ′(Q̄) =

∑T
t=1 IQ̄(s̄(t))w(s̄(t))∑T

t=1 w(s̄(t))
(5.11)

Let us now replace each exact weight w(S(t)) by ŵ(S(t)), where we approximate the summa-

tion Ni(S
(t)) with a sampling based estimate. We now compute the marginal probabilities

using the following new estimator.

P ′′(Q̄) =

∑T
t=1 IQ̄(s̄(t))ŵ(s̄(t))∑T

t=1 ŵ(s̄(t))
(5.12)

As T → ∞, the estimates for Ni(S
(t)) converge to their true values. Thus, ŵ(S(t)) almost

surely converges to w(S(t)) and both the numerator and denominator in Eq. (5.12) converge

to the values specified in Eq. (5.11). Therefore, as T →∞, P ′′(Q̄) → P ′(Q̄) → P (Q̄).

5.3.3 Rao-Blackwellisation

We now show how to perform Rao-Blackwellisation in our importance sampler to reduce its

variance. Our main idea is to integrate principles from exact lifting when computing the

sample weight. We illustrate this with the following example.

Example 18. Consider an MLN with a single formula ¬R(x, y) ∨ S(y, z); w, where each

variable has domain-size equal to d. Given a sample, the complexity of computing the sample

weight, specifically the numerator in Eq. (5.8) is O(d3). However, for any specific value of

y, say y = A, observe that the satisfied groundings in the MLN formula can be computed in

closed form as, n1d+n2d−n1n2, where n1 is the number of false groundings of R(x, A) and

n2 is the number of true groundings in S(A, z). Therefore, we can reduce the computational

complexity of computing the exact same sample weight to O(d2) time.

157

To generalize the above example, consider an MLN which has no shared variables. That

is, in each formula, each logical variable occurs exactly once in that formula. Sarkhel et

al. (Sarkhel et al., 2014) in their lifted algorithm show that in an MLN with no shared

variables, the (un-normalized) probability of any sample can be computed efficiently since

we can express the satisfied groundings for any formula in closed form as given below.

Let A+
1 . . . A

+
n be the positive-signed atoms and A−1 . . . A

−
n be the negative-signed atoms

in f . Let Ā+
i be the number of true groundings of A+

i in the sample and similarly, let Ā−i be

the number of true groundings of A−i . Let d+
i be the total number of groundings of A+

i and

d−i the number of groundings of Ā−i . The total number of groundings of f that are satisfied

by the sample can be computed using the following equation.

Nf =
n∏
i=1

d+
i

m∏
i=1

d−i −
n∏
i=1

(d+
i − Ā+

i)
m∏
i=1

Ā−i (5.13)

Using Eq. (5.13) to compute the satisfied groundings for each formula, we can express the

probability of a sample in closed form for a non-shared MLN. We utilize this result and per-

form Rao-Blackwellisation in our importance sampler as follows. We partition the variables

in each formula into two sets, V1 being the set of shared variables in the formula and V2

being the rest of the variables. Recall that when computing the sample weight, we sampled

V1 ∪V2 to approximate the numerator in Eq. (5.8). Instead, we now only sample V1 and

conditioned on this sample, we compute Eq. (5.8) exactly.

Algorithm 13 illustrates our complete sampler. It assumes M̂ and ζ are provided as

input. First, we construct the symbolic equation Eq. (5.7) that computes the weight of

the proposal. In the outer sampler, we sample the symbols from Eq. (5.7) using Gibbs

sampling. After the chain has mixed, for each sample from the outer sampler, for every

formula inM, we construct an inner sampler that uses Rao-Blackwellisation to approximate

the sample weight. Specifically, for a formula f , we sample an assignment to each non-shared

variable to create a partially ground formula, f ′ and compute the exact number of satisfied

158

Algorithm 13: Compute-Marginals

Input: M̂, ζ, Evidence E, Query Q, sampling threshold β, thinning parameter p,
iterations T

Output: Marginal probabilities P for Q
begin

Construct the symbolic counting formula Eq. (5.7)
// Outer Sampler

for t = 1 to T do

Sample Ŝ(t) using Gibbs sampling on Eq. (5.7)
After burn-in, for every p-th sample, generate s̄(t) from Ŝ(t)

for each formula fi do
// Inner Sampler

for c = 1 to β do
// Rao-Blackwellisation

f ′i = Partially ground formula created by sampling assignments to
shared variables in fi
Compute the satisfied groundings in f ′i

Compute the sample weight using Eq. (5.9)

Update the marginal probability estimates using Eq. (5.12)

groundings in f ′. Finally, we compute the sample weight as in Eq. (5.9) and update the

normalized estimator in Eq. (5.12).

5.3.4 Experiments

We run two sets of experiments. First, to illustrate the trade-off between accuracy and

complexity, we experiment with MLNs which can be solved exactly. Our test MLNs include

Smokers and HMM (with few states) from the Alchemy website (Kok et al., 2008) and

two additional MLNs, Relation (R(x, y) ⇒ S(y, z)), LogReq (randomly generated formulas

with singletons). Next, to illustrate scalability, we use two Alchemy benchmarks that are far

larger, namely Hypertext classification with 1 million ground formulas and Entity Resolution

(ER) with 8 million ground formulas. For all MLNs, we randomly set 25% groundings as true

and 25% as false. For clustering, we used the scheme in (Venugopal and Gogate, 2014a) with

KMeans++ as the clustering method. For Gibbs sampling, we set the thinning parameter

159

to 5 and use a burn-in of 50 samples. We ran all experiments on a quad-core, 6GB RAM,

Ubuntu laptop.

Figure 5.9 shows our results on the first set of experiments, where the y-axis plots the

average KL-divergence between the true marginals for the query atoms and the marginals

generated by our algorithm. The values are shown for varying values of Ns = #Groundings(M)

#Formulas(M̂)
.

Intuitively, Ns indicates the amount by whichM has been compressed to form the proposal.

As illustrated in Figure 5.9, as Ns increases, the accuracy becomes lower in all cases because

the proposal is a weaker approximation of the true distribution. However, at the same time,

the computational complexity of the sampler decreases allowing us to trade-off accuracy

with efficiency. Further, the MLN structure also determines the proposal accuracy. For

example, LogReg that contains singletons yields an accurate estimate even for high values

of Ns, while, for Relation, a smaller Ns yields such accuracy. This is because, singletons

have symmetries (Gogate and Domingos, 2011b; Van den Broeck, 2011) which are in turn

exploited by our clustering method when building the proposal distribution.

In the second set of experiments, we illustrate the scalability of our approach. Figure 5.10

shows our results. Here, we plot the sampling rate (number of samples generated in a minute),

against Ns for different values of the sampling bound (b) which controls the percentage of

total ground formulas that we visit to approximate the weight of each sample. Note that,

for both the MLNs used here, we tried to compare the results with Alchemy but were unable

to do so since Alchemy quickly runs out of memory while grounding the MLN. As expected,

decreasing Ns, or increasing b increases complexity and therefore reduces the sampling rate.

At the same time, we also expect the quality of the samples to be better because the proposal

is of a better quality (see Figure 5.9) and also the weights are better approximations of the

true weights. Thus, we can trade-off complexity with accuracy of our sampler. Importantly,

these results show that by addressing the evidence/grounding problems, we can process large,

arbitrarily structured MLNs/evidence which was not possible using existing approaches.

160

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 20 30 40 50 60 70 80 90 100

E
rr
o
r

Time

Ns=40

Ns=10

Ns=5

(a) Smokers

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 10 20 30 40 50 60 70 80 90 100

E
rr
o
r

Time

Ns=32

Ns=16

Ns=10

(b) Relation

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50 60 70 80 90 100

E
rr
o
r

Time

Ns=400

Ns=56

Ns=16

(c) HMM

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 10 20 30 40 50 60 70 80 90 100

E
rr
o
r

Time

Ns=150

Ns=60

(d) LogReq

Figure 5.9. Tradeoff between computational efficiency and accuracy. The y-axis plots the
average KL-divergence between the true marginals and the approximated ones for different
values of Ns. Larger Ns implies weaker proposal, faster sampling. For this experiment, we set
β (sampling bound) to 0.2. Note that changing β did not affect our results very significantly.

5.4 Summary

In this chapter, we presented techniques to scale up inference in MLNs that a) may not have

explicit symmetries and/or b) have evidence that break symmetries. For this, we formulated

a clustering problem to learn groups of approximately symmetrical objects and compressed

the MLN based on these symmetries. To effectively learn these clusters, we defined a novel

distance function that is sensitive to the evidence presented to the MLN and used it to

replace groups of similar objects in the MLN by their cluster centers. Importantly, our

161

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

3e+01 6e+01 1e+02 3e+02 5e+02 1e+03 2e+03 4e+03 8e+03

S
am

p
li

n
g
 R

at
e

Ns

b=0.0001

b=0.001

b=0.01

b=0.1

(a) Hyper

 0

 20

 40

 60

 80

 100

 120

3e+04 1e+06 3e+07 1e+09 3e+10 1e+12 4e+13 1e+15 4e+16

S
am

p
li

n
g
 R

at
e

Ns

b=0.0001

b=0.001

b=0.01

b=0.1

(b) ER

Figure 5.10. Illustrating scalability. Sampling rate is plotted againstNs that controls quality
of the proposal distribution. We show the results for different sampling bounds (b) that
controls quality of weight approximation. (a) shows the results for Hypertext classification
and (b) shows the results for ER. As seen in the plots, the sampling rate can be controlled
by either introducing more approximations in the proposal (larger values of Ns) and/or by
introducing approximations in the weighting method (larger values of b).

approach can be used as a pre-processing step by existing inference algorithms where the

complexity of these algorithms can be controlled even for very large MLNs. However, utilizing

approximate symmetries for lifted inference modifies the MLN distribution and it is complex

to analytically bound this bias. To address this problem, we applied our approximate lifting

idea to develop a new importance sampler that is not only scalable but also has asymptotic

guarantees on its estimates. To scale up the sampling step of importance sampling, we used

the compressed MLN to design the proposal distribution from which we obtained samples

that are approximately lifted using Gibbs sampling. To scale up the weight estimation step,

we developed a new weight estimation method that approximates the importance weight

tractably. We showed that our new sampler yields asymptotically unbiased estimates and

reduced variance of these estimates through Rao-Blackwellisation. Our experimental results

on several benchmark MLNs clearly illustrated the high accuracy and scalability of our

approximate approaches.

CHAPTER 6

EXPLOITING EFFICIENT COUNTING STRATEGIES FOR SCALABLE

INFERENCE

Acknowledgements

I wish to acknowledge the contributions of Somdeb Sarkhel in the work presented here.

Somdeb helped in the design of the MaxWalkSAT algorithm and running its experiments

presented in this chapter.

6.1 Introduction

The previous two chapters presented various symmetry-exploiting approaches to scale up

inference in MLNs. That is, we aim to perform inference over groups rather than over indi-

vidual objects and the main challenge is to find these groups of objects that have symmetrical

or exchangeable properties. Majority of the research in lifted inference has focused on de-

tecting these symmetries efficiently, ideally, directly from first-order structure (cf. (Kimmig

et al., 2014; Kersting, 2012)). In this chapter, we focus on an alternative, relatively un-

explored direction that turns out to be equally important for scalability in MLN inference

and augments research in lifted inference. Specifically, to compute the probability (up to

a normalization constant) for any world ω of the MLN, we need to count the number of

groundings of each formula in the MLN that are satisfied by the world ω. Most graphical

model inference algorithms do not consider this to be a hard task. For instance, in the

case of Markov networks, computing the un-normalized probability of an assignment to all

random variables is simply the product of all potentials projected on the assignments, which

in general is not considered computationally hard. However, for MLNs, ω can be extremely

162

163

large. For instance, a complete relational database corresponds to a single world of the MLN.

Therefore, counting the satisfied groundings of each formula in ω is a non-trivial task (Pa-

padimitriou and Yannakakis, 1999; Domingos and Lowd, 2009). However, even though this

problem is a major bottleneck in several inference algorithms, it has not been considered

in a sufficiently rigorous manner by existing MLN inference systems. For instance, we ob-

served that existing state-of-the-art MLN systems such as Alchemy (Kok et al., 2006) and

Tuffy (Niu et al., 2011) solve this counting problem either by storing the ground MLN or by

using the following naive generate-and-test approach: generate a grounding and test whether

it is true in ω. Both approaches are problematic since their space/time complexity is ex-

tremely large. Therefore, existing MLN inference systems fail to scale up when presented

with large, real-world domains.

Solving the aforementioned counting problem efficiently is particularly important in the

context of approximate inference algorithms such as Gibbs sampling (Geman and Geman,

1984; Venugopal and Gogate, 2012), MaxWalksat (Kautz et al., 1997) and MCSAT (Poon

and Domingos, 2006). This is because, it turns out that in each of these algorithms, the

counting problem manifests itself in different forms during every iteration of the algorithm

and typically, these algorithms require several thousand iterations to converge. Thus, in-

ference is extremely slow and non-scalable if we use naive solutions to solve the counting

problem. In this chapter, we exploit advanced counting strategies to address this problem

and show how these strategies can scale up inference algorithms remarkably in several cases

by orders of magnitude.

Our main idea is to solve the aforementioned counting problem efficiently without ground-

ing the full MLN and in most cases our approach is orders of magnitude better than the

“generate-and-test” approach. Specifically, we encode each formula (f) as an instance of a

Constraint Satisfaction Problem (CSP) (C) such that the number of solutions to C can be

directly used to count the satisfied groundings of f (a CSP is a special case of a Markov net-

work). The main advantage of this encoding is its generality. That is, we can now leverage

164

several years of research advances in CSPs and graphical models and use virtually any ex-

act/approximate inference algorithm along with its associated guarantees to efficiently solve

the counting problem.

We demonstrate the power and generality of our approach by applying it to two widely

used approximate inference algorithms: Gibbs sampling which is typically used for the

marginal inference task and MaxWalkSAT which is used for the MAP inference task. We

show that in both these algorithms, the main computational steps involve solving the encoded

CSPs where the constraints change over time (dynamic CSP). To solve this dynamic CSP, we

compile an exact junction tree for each CSP and then account for the changing constraints

by modifying the junction tree messages efficiently. We evaluated both our algorithms on

a wide variety of MLN benchmarks and compared them with algorithms implemented in

two existing state-of-the-art MLN systems, Alchemy (Kok et al., 2006) and Tuffy (Niu et al.,

2011). Our experiments clearly show that our new algorithms are several orders of magnitude

more scalable than existing systems.

The rest of this chapter is organized as follows. We first describe our encoding from

formulas to CSPs, then we describe the application of our technique to Gibbs sampling

followed by its application to MaxWalkSAT.

6.2 Encoding the Counting Problem

An MLN represents a Markov network, defined as follows:

• We have one binary random variable in the Markov network for each possible ground

atom.

• We have one propositional feature for each possible grounding of each first-order for-

mula. The weight associated with the feature is the weight attached to the correspond-

ing formula. A propositional feature having weight w represents the following function:

φ(y) = exp(w) if y evaluates the feature to true and φ(y) = 1 otherwise.

165

The Markov network represents the following probability distribution:

Pr(ω) =
1

Z
exp

(∑
i

wiNfi(ω)

)
(6.1)

=
1

Z

∏
i

[
φi(ωS(φi))

]Nfi (ω)
(6.2)

where wi is the weight of formula fi, Nfi(ω) is the number of groundings of fi that evaluate

to True given a world ω. The main computational bottleneck in several inference algorithms

for MLNs, in particular Gibbs sampling and MaxWalksat, is computing Nfi(ω). We call this

counting problem the #SATGround problem. Next, we describe our approach for formulating

#SATGround as a standard problem in constraint satisfaction. We then leverage advanced

techniques in graphical model inference to solve this problem efficiently. As in the previous

chapter, we require our input MLN to be in Σ-normal form (Section 5.2.1). That is, the MLN

alone is in normal form and is not normalized/shattered with the evidence. This ensures

that our approach is not affected by the evidence problem (Section 5.1).

6.2.1 CSP Formulation

A constraint network is a graphical model (Markov network) which contains a set of functions

Φ = {φ1, . . . , φm}, each defined over a subset of variables, denoted by S(φ). Each variable

in S(φ) is a binary random variable and the range of all functions in Φ is {0, 1}. A 0/1

function φ, can also be thought of as a constraint or a relation in which all assignments y

such that φ(y) = 1 are allowed while the ones having φ(y) = 0 are not allowed. A constraint

satisfaction problem (CSP) is to find an assignment of values to all variables such that all

constraints are satisfied (namely a solution). An important problem over constraint networks

is computing the number of solutions to a CSP. This problem is equivalent to computing the

partition function in a Markov network.

166

We first demonstrate our proposed CSP encoding for solving #SATGround with a simple

example.1 Consider an MLN with just one clause: f = ∀x,∀y,∀z R(x, y) ∨ S(y, z). We will

focus on counting the number of false groundings of f given a world ω because it is easier

to compute. Moreover, we can easily compute the number of true groundings Nf (ω) from

it; Nf (ω) is equal to the number of all possible groundings (which is simply a product of the

domain sizes) minus the number of false groundings.

Let us assume that the domain of each logical variable in f is {A,B}. Each triple (x, y, z)

where each x, y and z can take values from the domain {A,B} uniquely identifies each

grounding of the formula. Consider a world ω shown in Figure 6.1(a). Let us associate two

0/1 functions φ1(x, y) and φ2(y, z) with R(x, y) and S(y, z) respectively. The 0/1 function

has a value 1 iff the corresponding grounding is False in the world and 0 otherwise (see

Figure 6.1(b)).

Given this set up, notice that if we take a product of the two functions φ1(x, y) and

φ2(y, z), then the resulting function φ3(x, y, z) will have a 1 associated with an entry (x, y, z)

iff both R(x, y) and S(y, z) are False. Since the ground formula (x, y, z) evaluates to False

iff both R(x, y) and S(y, z) are False, by extension φ3(x, y, z) = 1 implies that the ground

formula (x, y, z) is False. Therefore, we can count the number of groundings of f that

evaluate to False, by simply counting the number of ones in φ3(x, y, z), which is the same as

counting the number of solutions to the CSP having two functions φ1(x, y) and φ2(y, z).

Next, we will formalize this intuition and precisely define how to encode the #SATGround

problem as a CSP solution counting problem.

Encoding f-to-CSP. Given a first-order clause f and a world ω, the corresponding CSP C

has a variable for each (universally quantified) logical variable in f . The domain of each

variable in C is the set of constants in the domain of the corresponding logical variable. For

1Note that #SATGround can also be reduced to the conjunctive query problem in relational databases
and we can then use query optimization techniques (Vardi, 1982) to solve #SATGround.

167

R(A,A) 1
R(A,B) 0
R(B,A) 0
R(B,B) 1

S(A,A) 0
S(A,B) 1
S(B,A) 0
S(B,B) 1

(a) world ω

x y φ1(x, y)
A A 0
A B 1
B A 1
B B 0

y z φ2(y, z)
A A 1
A B 0
B A 1
B B 0

(b) Functions φ1 and φ2

x y z φ3(x, y, z)
A A A 0
A A B 0
A B A 1
A B B 0

x y z φ3(x, y, z)
B A A 1
B A B 0
B B A 0
B B B 0

(c) Function φ3 = φ1 × φ2

Figure 6.1. (a) A possible world of an MLN having only one formula: f = ∀x, ∀y,∀z R(x, y)∨
S(y, z). The domain of each logical variable is {A,B}; (b) Functions φ1 and φ2 corresponding
to R(x, y) and S(y, z) respectively; and (c) Function φ3 which is equal to the product of the
two functions given in (b). The number of 1s in φ3 equals the number of groundings of f
that evaluate to False.

each atom R(x1, . . . , xu) in f , we have a relation φ in C defined as follows:

φ(xu) =

 ωR(X1,...,Xu) if R is negated in f

¬ωR(X1,...,Xu) Otherwise

where xu = (x1 = X1, . . . , xu = Xu) denotes an assignment to the CSP variables and

ωR(X1,...,Xu) is the projection of the world ω on the ground atom R(X1, . . . , Xu), namely the

truth-value of the ground atom R(X1, . . . , Xu) in ω.

By generalizing the arguments presented for the example MLN formula given above, we

can show that:

Theorem 14. Let f be a first-order clause, x1, . . . , xu be the (universally quantified) logical

variables in f , ω be a world and let #Sol(C) denote the number of solutions of the CSP

C obtained from (f, ω) using the f-to-CSP encoding. Then, Nf (ω) =
∏u

j=1 |∆xj | −#Sol(C)
where ∆xj is the set of constants in the domain of xj.

Proof. Let φ1 . . . φK be the functions in C. Let x be a solution to C. This means that∏K
j=1 φj(x) = 1 where φj(x) is the projection of x on φj. Since the variables in C correspond

168

Table 6.1. #SATGround complexities using various strategies. M is the number of formulas,
Vi is the set of variables in the CSP encoded for the ith formula, d is the domain-size of each
variable and w∗i is the treewidth of the CSP encoded for the ith formula.

Algorithm Space Complexity Time complexity

Pre-Ground O(
∑M

i=1 d
|Vi|) O(

∑M
i=1 d

|Vi|)

Lazy-Ground O(1) O(
∑M

i=1 d
|Vi|)

And-OR Tree O(M) O(
∑M

i=1 d
w∗i log(|Vi|)+1)

Junction Tree O(
∑M

i=1 d
w∗i) O(

∑M
i=1 d

w∗i +1)

to the universally quantified logical variables in f , we can directly obtain a ground formula

f̄ from x by grounding each logical variable in f with the constant specified for it in x. Let

f̄1 . . . f̄k be the ground atoms in f̄ . By our construction of C,

φj(x) =

1 if f̄j is a negative-signed literal and ω assigns 1 to f̄j

1 if f̄j is a positive-signed literal and ω assigns 0 to f̄j

0 Otherwise

Clearly, f̄ is false in ω iff
∏K

j=1 φj(x) = 1. Therefore, the total number of unsatisfied/false

groundings of f due to assignment ω is equal to #Sol(C). Also, the total number of possible

groundings of f is equal to
∏u

j=1 |∆xj |. Therefore, Nf (ω) =
∏u

j=1 |∆xj | −#Sol(C).

6.2.2 Counting the Number of Solutions of the CSP

Since we have reduced the #SATGround problem to the CSP solution counting problem,

it is clear that we can use any CSP/graphical model inference algorithm and leverage its

advances and guarantees to efficiently compute the former. Table 6.1 shows the complexity

bounds for various strategies and algorithms for solving the #SATGround problem.

Alchemy (Kok et al., 2006) uses the pre-ground strategy, namely it grounds all clauses

that it is unable to lift. Thus, its worst case time and space complexity bounds are expo-

nential in the maximum number of variables in the MLN formulas. The pre-ground strategy

169

is useful when there is large amount of evidence. In presence of evidence, one can use unit

propagation to remove all clauses that are either True or False. This reduces the space

complexity as well as the time complexity of subsequent counting problems.

An alternative strategy is to do lazy grounding, which reduces to solving the CSP using

the generate and test approach. In this approach, we count the solutions by generating

each tuple and testing whether it is a solution or not. Although this approach has constant

space complexity, its worst case time complexity is the same as the pre-ground approach.

Moreover, unlike the pre-ground approach, this approach is unable to take advantage of unit

propagation and the worst-case results apply to all subsequent operations.

A better, more powerful approach is to use advanced search and elimination techniques

such as AND/OR search (Dechter and Mateescu, 2007), recursive conditioning (Darwiche,

2001), junction tree propagation (Lauritzen and Spiegelhalter, 1988), as well as knowledge

compilation techniques such as arithmetic circuits (Darwiche, 2003) and AND/OR multi-

valued decision diagrams (Mateescu et al., 2008). Here, we focus on using the junction tree

algorithm for computing the solution counts exactly. However, a key feature of our approach

is that our formulation can easily leverage other advanced approximate inference methods

from graphical models. To do this, we simply replace exact solution counting using junc-

tion trees with advanced approximate inference techniques such as SampleSearch (Gogate

and Dechter, 2007a), Generalized BP (Yedidia et al., 2005), IJGP (Mateescu et al., 2010),

WISH (Ermon et al., 2013), etc. Thus, our approach yields a novel way to apply inference

techniques from graphical models to MLNs. That is, instead of using graphical model in-

ference methods directly for solving inference problems in MLNs, here, we apply it to solve

the counting problem in the CSPs encoded from MLN formulas. The distinction between

the two is important because, the former is clearly not likely to be scalable since the Markov

network underlying the MLN is always extremely large, however, the latter solves a simpler

problem which is embedded within other inference algorithms, and using approximations

here is likely to yield much more promising and scalable results.

170

6.2.3 Junction Trees for Solution Counting

We now briefly review the junction tree algorithm used to compute the number of solutions

#Sol(C) of C.

Definition 17. Given the CSP C, a junction tree is a tree T (V,E) in which each vertex

V ∈ V (also called a cluster) and edge E ∈ E are labeled with a subset of variables, denoted

by L(V) and L(E) such that: (i) for every function φ defined in C, there exists a vertex L(V)

such that S(φ) ⊆ L(V) and (ii) for every variable x in C, the set of vertexes and edges in T

that mention x form a connected sub-tree in T (called the running intersection property).

Given a junction tree T of C, we can compute the solution counts as well as the marginal

probability of each CSP variable (the fraction of solutions that the variable participates in)

by calibrating T . We calibrate T by selecting a cluster as the root and performing sum-

product message passing in two passes: from the leaves to the root (collect pass) and then

from the root to the leaves (distribute pass). Formally, the message sent from cluster i to

cluster j, denoted by mi→j, is given by

mi→j(y) =
∑
z

∏
φ∈Φ(Vi)

φ(y, z)
∏

k∈N(i)\{j}

mk→i(y, z) (6.3)

where Φ(Vi) is the set of functions assigned to vertex Vi, and N(i) is the set of indexes of

the neighbors of Vi in T .

The number of solutions to C can be computed from any vertex Vk using the following

equation:

#Sol(C) =
∑
x

∏
φ∈Φ(Vk)

φ(x)
∏

j∈N(k)

mj→k(x) (6.4)

The complexity of computing the solution counts using a junction tree is exponential in

the maximum cluster size of the tree which equals treewidth plus 1. Next, we describe

efficient implementations of two classical approximate inference algorithms, Gibbs sampling

and MaxWalkSAT, using junction trees.

171

6.3 Application I: Gibbs Sampling

In Gibbs sampling, we start with a random world ω(0) which is consistent with the state of

the evidence atoms (atoms whose truth values are known). That is, if the given evidence

assigns 0 (or 1) to an atom, ω(0) assigns 0 (or 1) to that same atom. For all other atoms, the

starting state is chosen randomly. Then, at each iteration i > 0, we compute the conditional

distribution over a randomly chosen non-evidence ground atom R given ω
(i−1)
−R where ω

(i−1)
−R

is the projection of ω(i−1) on all ground atoms of the MLN except R. Then, we sample a new

value for R, denoted by R, from this conditional distribution and set ω(i) = (ω
(i−1)
−R , R). Note

that for brevity, we have abused notation and denoted the ground atom R(X1, . . . , Xr) as

R. Also, note that we never sample an evidence atom and therefore each subsequent world

that is generated by our Gibbs sampler is consistent with the evidence and thus the sampler

converges to the correct distribution.

The main computational bottleneck in Gibbs sampling is computing the conditional

distribution over the ground atom ω(i). It is given by:

Pr(R = j|ω(i)
−R) ∝

∑
fk∈F (R)

wkNfk(ω
(i)
−R, R = j) (6.5)

where j ∈ {0, 1} and F (R) is the set of first-order formulas in the MLN that contain R (or

more specifically the set of first order formulas that contain at least one ground atom that

is in the Markov Blanket of at least one grounding of R).

Given a formula fk and a world ω, let Ck denote the constraint network obtained from

(fk, ω) using the f-to-CSP encoding. Let Tk denote the junction tree obtained from Ck. If

we calibrate the junction tree Tk, then we can easily compute Nfk(ω) from it (see Eq.6.4).

However, technically, for Gibbs sampling, we need not calibrate the junction trees. That

is, we can implement Gibbs sampling more efficiently using un-calibrated junction trees.

Specifically, we designate a node in Tk to be the root and pass messages from the leaves to

this designated root. The number of solutions to the CSP can be directly computed at the

172

root node. Thus, using un-calibrated junction trees is approximately twice as efficient as

compared to using calibrated junction trees. However, calibration is needed when we require

the correct distributions at each node (this is the case in the MaxWalkSAT algorithm that we

present in the next section). Assuming that we compute Nfk(ω) from Tk, the main challenge

is computing Nfk(ω
′) where ω′ = (ω−R,¬ωR). We describe how to compute it next.

Consider the two CSPs Ck and C ′k obtained from (fk, ω) and (fk, ω
′) respectively using

the f-to-CSP encoding. Since fk defines the scope of the functions in the CSP, both CSPs

have functions defined over the same scope. Moreover, since ω and ω′ differ only in a truth

assignment to one ground atom, the corresponding functions in Ck and C ′k differ only in at

most one entry. Thus, we can efficiently construct a calibrated junction tree T ′k from Tk by

appropriately propagating only the changed entries. In most cases, the update operation

is much more efficient because only a fraction of each message may change. For example,

consider a simple junction tree with two clusters C1 and C2. Let C1 contain φ1(X, Y) and

C2 contain φ2(Y, Z), where the message m12 is defined on Y . If φ1(X, Y) changes exactly

for one entry say X = 0 and Y = 1, then, out of the ∆Y entries in m12, exactly 1 entry

corresponding to Y = 1 is modified. Multiplying m12 with φ2(Y, Z) results in a change in ∆Z

out of ∆Y ∆Z entries. In general, assuming that all functions that have changed are present

in a cluster V in Tk, we propagate the changed messages away from V towards the designated

root stopping propagation if the old and new messages are identical to each other. We then

compute the changed solution counts at the root.

6.4 Application II: MaxWalkSAT

The MAP task in MLNs is the task of finding the world with the maximum probability in

the joint distribution represented by the MLN. It can be cast as an optimization problem

173

Algorithm 14: MaxWalkSAT(M, p, maxFlips)

Initialize: ω = a randomly generated possible world of M.
ωBest = ω
for flip = 1 to maxFlips do

if ω satisfies all clauses in M then
return ω

// Clause selection step

fk = a random unsatisfied ground clause in M
With probability p
// Random step

Flip a randomly selected ground atom of fk
Else
// Greedy step

Flip the ground atom of fk that yields a world with the maximum weight
if
∑

fi
Nfi(ω) >

∑
fi
Nfi(ωBest) then

ωBest = ω

return ωBest

where we find a possible world that maximizes the sum of weights of satisfied clauses as

follows.

max
ω

∑
f

Nf (ω)wf (6.6)

Any weighted satisfiability solver can be used to solve Eq. (6.6). However the most com-

monly used solver is MaxWalkSAT (Kautz et al., 1997). The latter is a weighted variant

of WalkSAT, a local-search algorithm that was successfully applied for satisfiability test-

ing (Selman et al., 1996).

Algorithm 14 illustrates the MaxWalkSAT algorithm. It takes as input an MLNM and a

probability p. The algorithm begins by randomly generating a possible world. Then, at each

iteration, it selects a false ground clause uniformly at random and flips the value assigned

to one of its atoms as follows. With probability p, the atom (literal) to be flipped is selected

uniformly at random and with probability (1− p), the atom which when flipped maximizes

174

the number of satisfied ground clauses is selected (greedy hill-climbing step which selects the

best atom).

Unlike Gibbs sampling, for the MaxWalkSAT algorithm, we use calibrated junction trees

since the clause selection step requires access to the probability distribution at each cluster.

Assuming that we can perform this step (we describe how to do it later), the last two steps

of flipping a random atom or the best atom in that clause can be accomplished by using

a similar approach to what was described for Gibbs sampling. Specifically, we compute

Nfk(ω) from the calibrated junction tree Tk and to compute Nfk(ω
′), where ω′ is obtained

from ω by flipping a single ground atom, we propagate the changed messages in Tk. That is,

assuming that all the changed functions are in cluster V in Tk, we designate V as the root

and distribute the changed parts of the messages away from it, stopping propagation beyond

a cluster if the new message and the old message to the cluster are the same. Clearly, to find

the best atom to flip in a clause with k atoms, we need to re-propagate the changed messages

k times for k different worlds, where each world differs from the other worlds in exactly one

potential entree. The challenging step in MaxWalkSAT is selecting a false ground clause

uniformly at random. Next, we describe a procedure for accomplishing this.

Selecting a False Clause uniformly at random: We solve this problem using a two

step procedure. In the first step, we select a first order formula fi such that the probability

of selecting fi is proportional to the number of its false groundings. In the second step, we

select a false ground clause of fi uniformly at random.

To select a first-order formula, we first compute the number of false ground clauses for

all first-order formulas (using the calibrated junction tree) and normalize them to yield a

distribution over the formulas. We then sample a first-order formula from this distribution.

Let fi be the sampled first-order formula. To select a false ground clause of fi uniformly

at random, we sample the calibrated junction tree of fi using the junction tree solution

sampling method described in (Dechter et al., 2002; Gogate, 2009). Sampling the junction

175

tree yields a solution to the corresponding CSP Ci. Based on our encoding, each solution of

Ci corresponds to a false clause of fi.

Selecting a False Clause in Presence of Evidence: In presence of evidence, the solution

sampling method described above cannot be used directly because the sampled ground clause

may be trivially false. That is, suppose our solution sampler over Ci selects an unsatisfied

ground clause yields a solution to the CSP where each ground atom corresponding to the

solution is an evidence atom, none of the atoms can be flipped because their truth values

are fixed. Thus, the solution sampling method must be modified so that it never selects a

trivially false ground clause.

Before describing our method to solve this problem, we introduce some notation. Let E ,

Eu and Et denote the set of ground clauses, false ground clauses and trivially false ground

clauses of f respectively. From the definition, it is obvious that Et ⊆ Eu ⊆ E and any method

that samples an element of the set (Eu \ Et) will not sample a trivially false clause. A simple

way of ensuring this is to use rejection sampling to find such a clause. That is, whenever

our solution sampler samples an element from Et, we reject that solution. However, this

approach will be quite slow, especially when there is a large amount of evidence since it will

lead to several rejected solutions.

A more clever approach to solve the above problem is to use two constraint networks.

Formally, given a formula f and the constraint network C obtained from it, we define another

constraint network (referred to as evidence network) Cε as follows. Cε is defined over same

set of variables as C. Corresponding to each function φ(xu) in C, we define a function φε(xu)

in Cε as follows: let R(x1, . . . , xu) denote the atom corresponding to φ(xu) in C

φε(xu) =

 φ(xu) if R(x1, . . . , xu) is evidence

0 Otherwise

where xu = (x1 = X1, . . . , xu = Xu). From construction of Cε it follows that #Sol(Cε) = |Et|.

We can therefore select a first order formula from the MLN as follows. We select a formula f

176

with probability proportional to the total number of its non-trivial false groundings which is

clearly equal to
∏u

j=1 |∆xj | − #Sol(Cε), where x1 . . . xu are the universally quantified logical

variables in f . Once f is selected, selecting a non-trivially false ground clause of f is slightly

more tricky. We do this as follows. We maintain two calibrated junction trees T ε and T

constructed from the two constraint networks Cε and C respectively. We then dynamically

obtain a distribution over non-trivially false ground clauses from T ε and T as given below.

Each entry in a message mi→j in T corresponding to formula f can be mapped into a

partially ground formula, where for every variable specified in the message, we ground those

variables (in f) with values specified in the message entry. We refer to the set of all possible

partially ground formulas that can be obtained from mi→j as the projection of the ground

formulas of f on mi→j.

Theorem 15. For any message mi→j in T corresponding to formula f , and its corresponding

message mε
i→j in T ε, subtracting each entry in mi→j with its corresponding entry in mε

i→j

yields a (un-normalized) distribution over non-trivially false ground formulas of f projected

on mi→j.

Proof. Let x1 . . . xu be the variables in mi→j of T . Since T is calibrated, mi→j yields a

(un-normalized) distribution over the elements of Eu projected on mi→j. That is, let the set

of unsatisfied ground clauses corresponding to partially grounding the variables of f with

x1 = x̄1 . . . xu = x̄u be the set Ēu, then, the value corresponding to x1 = x̄1 . . . xu = x̄u

in mi→j is equal to |Ēu|. Similarly, let the trivially unsatisfied ground clauses corresponding

to grounding the variables of f with x1 = x̄1 . . . xu = x̄u be the set Ēt, then, the value

corresponding to x1 = x̄1 . . . xu = x̄u in mε
i→j is equal to |Ēt|.

For the distribution over Eu \ Et, the value corresponding to x1 = x̄1 . . . xu = x̄u is equal

to |Ēu \ Ēt|. However, by definition, Ēt ⊆ Ēu. Therefore, |Ēu \ Ēt| = |Ēu| − |Ēt|. Thus, mi→j

− mε
i→j yields the required distribution over Eu \ Et projected on mi→j.

177

Using Theorem 15, we can compute a new junction tree T ′k which encodes the required

distribution over non-trivially false ground clauses dynamically by subtracting the messages

in Tk from the messages in T εk . Note that, we can do this efficiently because the junction tree

T εk needs to be calibrated only once as the evidence does not change. We then sample from

T ′k using the solution sampling techniques detailed in (Dechter et al., 2002; Gogate, 2009) to

obtain a non-trivially false ground clause uniformly at random.

6.5 Extensions

6.5.1 Existential Quantifiers

In this subsection, we describe how our approach, specifically the f-to-CSP encoding, can be

extended to handle existential quantifiers. We consider two cases.

Case 1: If no universal quantifier is nested inside an existential one then each first-order

formula is just a compact representation of a disjunction over the groundings of the existen-

tially quantified variables. For example, if the domain is {A,B}, then the first-order formula

∀x,∀z ∃y R(x, y) ∨ S(z, y) represents the clause ∀x,∀z R(x,A) ∨ R(x,B) ∨ S(z, A) ∨ S(z,B).

Given a world ω, we can encode this clause as a CSP having two variables x and z, and four

unary constraints φ1(x), φ2(x), φ3(z) and φ4(z) corresponding to the truth assignments to

R(x,A), R(x,B), S(z, A) and S(z, B) respectively in the world ω. In general, the variables

in the CSP encoding are the universally quantified variables in the clause and we have a

constraint over the universally quantified variables for each atom and each possible value as-

signment to the existentially quantified variables. Thus, an existentially quantified variable

increases the number of constraints but does not factor in determining the complexity of the

junction tree computations.

Case 2: If a universal quantifier is nested within an existential one, then the first-order

clause corresponds to a disjunction of conjunctions of propositional clauses. This case is

178

much harder than the previous case and whether our approach can be extended to such

cases is an open problem.

6.5.2 Lifted Inference

Our approach can be extended with several advances from research in lifted inference (cf. (Poole,

2003; de Salvo Braz, 2007; Gogate and Domingos, 2011b; Van den Broeck et al., 2011; Venu-

gopal and Gogate, 2012; Bui et al., 2013)). For example, consider the lifted MaxWalkSAT

algorithm described in (Sarkhel et al., 2014). Sarkhel et al.’s algorithm works as follows. It

first converts a normal MLN to a non-shared (normal) MLN by grounding all the shared

terms in each formula. Then, it reduces the domain-size of all non-shared terms to 1 and

computes the MAP value over this new MLN using MaxWalkSAT. Sarkhel et al.’s approach

works because the MAP value for each atom in a non-shared MLN lies at the extreme:

ground atoms in a non-shared MLN are either all true or all false in the MAP tuple. Thus,

unlike propositional MaxWalkSAT where the search space is exponential in the number of

ground atoms in the MLN, using Sarkhel et al.’s result, we can reduce this search space by

orders of magnitude in several cases resulting in a much more accurate and scalable MAP

solver. However, Sarkhel et al.’s approach uses a pre-ground strategy to solve #SATGround

which is computationally inefficient(see Table 6.1). To combine Sarkhel et al.’s algorithm

with our approach, we can reduce the domains of the CSP variables that correspond to

non-shared logical variables of the MLN. Effectively, this removes the variable from all the

junction tree computations, possibly decreasing its treewidth.

6.6 Experiments

6.6.1 Setup

We used 10 benchmark MLNs with varied structures and random evidence (< 25%) to

evaluate the performance of our Gibbs sampling and MaxWalkSAT algorithms. We compared

179

our system with two state-of-the-art MLN systems: Alchemy and Tuffy. Alchemy implements

both Gibbs sampling as well as MaxWalkSAT whereas Tuffy only implements MaxWalkSAT.

Of the 10 benchmarks, 5 were from Alchemy as follows.

(i) WebKB (webkb)

(ii) Entity Resolution (er)

(iii) Citation Segmentation (seg)

(iv) Protein Interaction (protein)

(v) Coreference Resolution (coref)

We added 5 synthetic benchmarks with varied structures as follows:

(i) student: ¬Student(x, p) ∨ ¬Publish(x, z) ∨Cited(z, u)

(ii) relation: ¬Friends(x, y) ∨ ¬Related (y, z) ∨Likes (z, x)

(iii) longchain: ¬R1(x1,x2) ∨ ¬R2(x2,x3) . . . R6(x6,x7)

(iv) transitive1: ¬Likes(x, y) ∨ ¬Likes(y, z) ∨Likes(y, x)

(v) transitive2: ¬Friends (x, y) ∨ ¬Friends(y, z) ∨ Friends(z, x)

.

Each synthetic benchmark was designed to illustrate the influence of MLN structure

on scalability. Specifically, though similar-looking, student has a smaller treewidth (for its

encoded CSP) compared to relation. Longchain illustrates an extremely large formula, but

the encoded CSP has a small treewidth. Finally, though transitive1 and transitive2 appear

similar, it turns out that in each step of Gibbs/MaxWalkSAT, very few messages of the

junction tree underlying transitive1 need to be updated while for transitive2, nearly all

messages need to be updated.

180

Tables 6.2 and 6.3 show our results for Gibbs sampling and MaxWalkSAT respectively.

For our evaluation, we compute two metrics: the compilation time (CTime) in seconds and

the sampling/flip rate (SRate/FRate). CTime is the time taken to initialize our junction

trees. SRate is the number of samples generated in a second for Gibbs sampling and FRate

is the number of flips per second in MaxWalkSAT.

6.6.2 Results for Gibbs Sampling

Both CTime as well as SRate depends upon the structure as well as the #groundings in

the MLN. We can see from Table 6.2 that CTime was quite negligible for almost all the

MLNs (at most 21 seconds). SRate depends upon the efficiency of updating the junc-

tion tree messages during Gibbs sampling. For example, in transitive1, we could generate

88,000 samples/second because each update operation is very efficient, while for transitive2

which has the same #groundings, we could generate only 73 samples/second. Similarly, the

MLNs, student-100 and relation-500 have approximately the same #groundings, however,

their SRates are vastly different due to the treewidth of their encoded CSPs. Student has

treewidth 1 whereas relation has treewidth 2, therefore, while we could collect more than

11,000 samples in a second for student-100, we could only collect about 275 samples for

relation-500. On the other hand, for the same treewidth, #groundings affects SRate. For

example, longchain-1000 is almost 10 million times larger than longchain-100. Therefore,

FRate on longchain-1000 is just 10% of the FRate on longchain-1000. As seen from the

results, none of these large benchmarks could be processed by Alchemy.

6.6.3 Results for MaxWalkSAT

Table 6.3 shows our results for MaxWalkSAT. CTime is very similar to the Gibbs sampler.

Again, FRate depends upon the MLN structure and the number of groundings because both

affect the efficiency of the junction tree operations. For instance, since student has lower

181

Table 6.2. Results on benchmarks for Gibbs sampling using our approach. SRate is the
sampling rate (#samples/second) and CTime is the compilation time in seconds. X denotes
that the system ran out of time or memory.

MLN #Groundings Our System Alchemy
CTime SRate

student-100 100 million 0 11397 X
student-500 10 billion 0 496 X
student-1000 100 billion 0 117 X
relation-100 1 million 0 7047 X
relation-500 100 million 1 274 X
relation-1000 1 billion 10 68 X
longchain-100 1014 0 3235 X
longchain-500 1018 0 126 X
longchain-1000 1021 1 31 X
transitive1-100 1 million 0 88739 X
transitive1-500 100 million 0 24568 X
transitive1-1000 1 billion 0 8879 X
transitive2-100 1 million 1 73 X
transitive2-500 100 million 1 0.6 X

webkb 10 billion 1 183 X
seg 1 billion 0 32 X
er 1 billion 21 5 X

protein 100 million 1 116 X
coref 100 million 2 180 X

treewidth than relation, the FRate for student is much higher. Transitive2 has the lowest

FRate because each update involves recomputing the junction tree messages from scratch.

When these updates are efficient as in transitive1, FRate is several orders of magnitude

higher. Both Alchemy and Tuffy did not work on most of the benchmarks except on three

of the smallest-sized ones; our approach was slightly worse than Tuffy and Alchemy only on

transitive2-100.

To summarize, our results clearly demonstrate the superior scalability of our approach

over the pre-grounding approaches used by Tuffy and Alchemy.

6.7 Summary

For large MLNs a sub-step, which is typically a bottleneck, in several inference algorithms is

“counting the true groundings of a first-order formula in a possible world”. In this chapter, we

182

Table 6.3. Results on benchmarks for MaxWalkSAT. For each system, we show
CTime;FRate, where CTime is the compilation time (in seconds) for our system or the
grounding time in Alchemy/Tuffy. FRate is the flip rate (#Flips/second). “X” denotes that
the system ran out of time or memory.

MLN #Groundings Our System Alchemy Tuffy
CTime FRate CTime FRate CTime FRate

student-100 100 million 0 31629 X X X X
student-500 10 billion 0 252 X X X X
student-1000 100 billion 0 72 X X X X
relation-100 1 million 0 2455 95 1000 75 300
relation-500 100 million 1 142 X X X X
relation-1000 1 billion 13 36 X X X X
longchain-100 1014 0 928 X X X X
longchain-500 1018 0 50 X X X X
longchain-1000 1021 1 12 X X X X
transitive1-100 1 million 0 32082 75 350 65 100
transitive1-500 100 million 0 1032 X X X X
transitive1-1000 1 billion 0 284 X X X X
transitive2-100 1 million 0 30 75 200 65 150
transitive2-500 100 million 1 0.2 X X X X

webkb 10 billion 1 48 X X X X
seg 1 billion 0 8 X X X X
er 1 billion 26 1.2 X X X X

protein 100 million 1 6.8 X X X X
coref 100 million 3 6 X X X X

proposed a novel approach to solve this counting problem efficiently by encoding it a CSP

solution counting problem. The main strength of our approach is its generality, i.e., our

encoding allows us to exploit numerous advances, guarantees, principles and techniques in

the active research area of CSP and probabilistic graphical models. Further, to demonstrate

the power of our approach, we developed a junction tree based exact CSP solution counting

algorithm and applied it to two widely used MLN inference techniques, Gibbs sampling

and MaxWalkSAT, both of which require an answer to a dynamic version of the counting

problem at each iteration. Our experiments with these algorithms on a wide variety of

MLN benchmarks with large domain-sizes clearly showed that our approach was orders of

magnitude more scalable than existing state-of-the-art inference systems.

CHAPTER 7

JOINT INFERENCE FOR EXTRACTING BIOMEDICAL EVENTS

Acknowledgements

The work presented in this chapter is based on a joint project that we executed with the

NLP research group at UT-Dallas. We deeply acknowledge Chen Chen and Dr. Vincent

Ng’s contribution to the work presented in this chapter. Specifically, they provided us with

the NLP expertise and domain knowledge that was essential for this task. Further, Chen

Chen and Dr. Ng developed the essential linguistic features and designed the SVM based

pipeline event extractor used in this chapter. Chen Chen worked closely with me on the

experiments and I acknowledge his contribution towards helping our systems reach state-of-

the-art performance.

7.1 Introduction

Event extraction is the task of extracting and labeling all instances in a text document that

correspond to a pre-defined event type. This task is quite challenging for a multitude of

reasons: events are often nested, recursive and have several arguments; there is no clear

distinction between arguments and events; etc. For instance, consider the BioNLP Genia

event extraction shared task (Nédellec et al., 2013). In this task, participants are asked to

extract instances of a pre-defined set of biomedical events from text. An event is identified by

a keyword called the trigger and can have an arbitrary number of arguments that correspond

to pre-defined argument types. The task is complicated by the fact that an event may serve as

an argument of another event (nested events). An example of the task is shown in Figure 7.1.

183

184

As we can see, event E13 takes as arguments two events, E14 and E12, which in turn has

E11 as one of its arguments.

A standard method that has been frequently employed to perform this shared task uses

a pipeline architecture with three steps: (1) detect if a token is a trigger and assign a trigger

type label to it; (2) for every detected trigger, determine all its arguments and assign types

to each detected argument; and (3) combine the extracted triggers and arguments to obtain

events. Though adopted by the top-performing systems such as the highest scoring system

on the BioNLP’13 Genia shared task (Kim et al., 2013), this approach is problematic for at

least two reasons. First, as is typical in pipeline architectures, errors may propagate from

one stage to the next. Second, since each event/argument is identified and assigned a type

independently of the others, it fails to capture the relationship between a trigger and its

neighboring triggers, an argument and its neighboring arguments, etc.

More recently, researchers have investigated joint inference techniques for event extrac-

tion using Markov Logic Networks (MLNs) (e.g., (Poon and Domingos, 2007), (Poon and

Vanderwende, 2010), (Riedel and McCallum, 2011a)), a statistical relational model that en-

ables us to model the dependencies between different instances of a data sample. However, it

is extremely challenging to make joint inference using MLNs work well in practice (Poon and

Domingos, 2007). One reason is that it is generally difficult to model sophisticated linguistic

features using MLNs. The difficulty stems from the fact that some of these features are ex-

tremely high dimensional (e.g., (Chen and Ng, 2012), (Huang and Riloff, 2012b), (Li et al.,

2012), (Li et al., 2013), (Li et al., 2013)), and to reliably learn weights of formulas that en-

code such features, one would require an enormous number of data samples. Moreover, even

the complexity of approximate inference on such models is quite high, often prohibitively so.

For example, a trigram can be encoded as an MLN formula, Word(w1, p− 1) ∧ Word(w2, p)

∧ Word(w3, p + 1) ⇒ Type(p, T). For any given position (p), this formula has W 3 ground-

ings, where W is the number of possible words, making it too large for learning/inference.

185

. . . demonstrated that HOIL-1L interacting protein (HOIP), a ubiquitin ligase that can catalyze the assembly of linear
polyubiquitin chains, is recruited to DC40 in a TRAF2-dependent manner following engagement of CD40 . . .

(a) Sentence fragment

ID Event Type Trigger Arguments
E11 Binding recruited Theme={HOIL-1L interacting protein,CD40}
E12 Regulation dependent Theme=E11, Cause=TRAF2
E13 +ve Regulation following Theme=E12, Cause=E14
E14 Binding engagement Theme=CD40

(b) Events

Figure 7.1. Example of event extraction in the BioNLP Genia task. (b) shows all the events
extracted from sentence (a). Note that successful extraction of E13 depends on E12 and
E14.

Therefore, current MLN-based systems tend to include a highly simplified model ignoring

powerful linguistic features. This is problematic because such features are essential for event

extraction.

We describe two contributions in this chapter. First, we propose a novel model for

biomedical event extraction based on MLNs that addresses the aforementioned limitations by

leveraging the power of Support Vector Machines (SVMs) (Vapnik, 1995; Joachims, 1999) to

handle high-dimensional features. Specifically, we (1) learn SVM models using rich linguistic

features for trigger and argument detection and type labeling; (2) design an MLN composed

of soft formulas (each of which encodes a soft constraint whose associated weight indicates

how important it is to satisfy the constraint) and hard formulas (constraints that always

need to be satisfied, thus having a weight of ∞) to capture the relational dependencies

between triggers and arguments; and (3) encode the SVM output as prior knowledge in the

MLN in the form of soft formulas, whose weights are computed using the confidence values

generated by the SVMs. Note that in the ideal case, encoding (1) and (2) together in the

MLN would yield a more powerful joint model. However, to do this, we would require more

robust MLN learning software/tools that can handle sparse, high-dimensional features than

those currently available (Kok et al., 2008). Our formulation though quite naturally allows

SVMs and MLNs to complement each other’s strengths and weaknesses: learning in a large

186

and sparse feature space is much easier with SVMs than with MLNs, whereas modeling

relational dependencies is much easier with MLNs than with SVMs.

Our second contribution concerns making inference with this MLN feasible. Recall that

inference involves detecting and assigning the type label to all the triggers and arguments. We

show that existing Maximum-a-posteriori (MAP) inference methods, even the most advanced

approximate ones (e.g., (Selman et al., 1996), (Marinescu and Dechter, 2009), (Sontag and

Globerson, 2011)), are infeasible on our proposed MLN because of their high memory cost.

Consequently, we identify decompositions of the MLN into disconnected components and

solve each independently, thereby drastically reducing the memory requirements.

We evaluate our approach on the BioNLP 2009, 2011 and 2013 Genia shared task datasets.

On the BioNLP’13 dataset, our model significantly outperforms state-of-the-art pipeline

approaches and achieves the best F1 score to date. On the BioNLP’11 and BioNLP’09

datasets, our scores are slightly better and slightly worse respectively than the best reported

results. However, they are significantly better than state-of-the-art MLN-based systems.

7.2 Background

7.2.1 Related Work

As a core task in information extraction, event extraction has received significant attention

in the natural language processing (NLP) community. The development and evaluation of

large-scale learning-based event extraction systems was propelled in part by the availability

of annotated corpora produced as part of the Message Understanding Conferences (MUCs),

the Automatic Content Extraction (ACE) evaluations, and the BioNLP shared tasks on event

extraction. Previous work on event extraction can be broadly divided into two categories,

one focusing on the development of features (henceforth feature-based approaches) and the

other focusing on the development of models (henceforth model-based approaches).

187

Feature-based approaches. Early work on feature-based approaches has primarily fo-

cused on designing local sentence-level features such as token and syntactic features (Grish-

man et al., 2005; Ahn, 2006). Later, it was realized that local features were insufficient to

reliably and accurately perform event extraction in complex domains and therefore several

researchers proposed using high-level features. For instance, (Ji and Grishman, 2008) used

global information from related documents; (Gupta and Ji, 2009) extracted implicit time

information; (Patwardhan and Riloff, 2009) used broader sentential context; Liao and Gr-

ishman (Liao and Grishman, 2010, 2011) leveraged document-level cross-event information

and topic-based features; and (Huang and Riloff, 2012b) explored discourse properties.

Model-based approaches. The model-based approaches developed to date have focused

on modeling global properties and seldom use rich, high-dimensional features. To capture

global event structure properties, (McClosky et al., 2011a) proposed a dependency parsing

model. To extract event arguments, (Li et al., 2013) proposed an Integer Linear Program-

ming (ILP) model to encode the relationship between event mentions. To overcome the

error propagation problem associated with the pipeline architecture, several joint models

have been proposed, including those that are based on MLNs (e.g., (Poon and Domingos,

2007), (Riedel et al., 2009), (Poon and Vanderwende, 2010)), structured perceptrons (e.g.,

(Li et al., 2013)), and dual decomposition with minimal domain adaptation (e.g., Riedel and

McCallum (Riedel and McCallum, 2011a,b)).

In light of the high annotation cost required by supervised learning-based event extraction

systems, several semi-supervised, unsupervised, and rule-based systems have been proposed.

For instance, (Huang and Riloff, 2012a) proposed a bootstrapping method to extract event

arguments using only a small amount of annotated data; (Lu and Roth, 2012) developed

a novel unsupervised sequence labeling model; (Bui et al., 2013) implemented a rule-based

approach to extract biomedical events; and (Ritter et al., 2012) used unsupervised learning

to extract events from Twitter data.

188

Our work extends prior work by developing a rich framework that leverages sophisticated

feature-based approaches as well as joint inference using MLNs. This combination gives us

the best of both worlds because on one hand, it is challenging to model sophisticated lin-

guistic features using MLNs while on the other hand, feature-based approaches employing

sophisticated high-dimensional features suffer from error propagation as the model is gener-

ally not rich enough for joint inference.

7.2.2 The Genia Event Extraction Task

The BioNLP Shared Task (BioNLP-ST) series ((Kim et al., 2009), (Kim et al., 2011) and

(Nédellec et al., 2013)) is designed to tackle the problem of extracting structured information

from the biomedical literature. The Genia Event Extraction task is arguably the most

important of all the tasks proposed in BioNLP-ST and is also the only task organized in all

three events in the series.

The 2009 edition of the Genia task (Kim et al., 2009) was conducted on the Genia

event corpus (Kim et al., 2008), which only contains abstracts of the articles that represent

domain knowledge around NFκB proteins. The 2011 edition (Kim et al., 2011) augmented

the dataset to include full text articles, resulting in two collections, the abstract collection

and the full text collection. The 2013 edition (Kim et al., 2013) further augmented the

dataset with recent full text articles but removed the abstract collection entirely.

The targeted event types have also changed slightly over the years. Both the 2009 and

2011 editions are concerned with nine fine-grained event sub-types that can be categorized

into three main types, namely simple, binding and regulation events. These three main event

types can be distinguished by the kinds of arguments they take. A simple event can take

exactly one protein as its Theme argument. A binding event can take one or more proteins as

its Theme arguments, and is therefore slightly more difficult to extract than a simple event.

A regulation event takes exactly one protein or event as its Theme argument and optionally

189

one protein or event as its Cause argument. If a regulation event takes another event as its

Theme or Cause argument, it will lead to a nested event. Regulation events are considered

the most difficult-to-extract among the three event types owing in part to the presence of

an optional Cause argument and their recursive structure. The 2013 edition introduced a

new event type, protein-mod, and its three sub-types. Theoretically, a protein-mod event

takes exactly one protein as its Theme argument and optionally one protein or event as

its Cause argument. In practice, however, it rarely occurs: there are only six protein-mod

events having Cause arguments in the training data for the 2013 edition. Consequently, our

model makes the simplifying assumption that a protein-mod event can only take one Theme

argument, meaning that we are effectively processing protein-mod events in the same way

as simple events.

7.3 Pipeline Model

We implement a pipeline event extraction system using SVMs. This pipeline model serves

two important functions: (1) providing a baseline for evaluation and (2) producing prior

knowledge for the joint model.

Our pipeline model consists of two steps: trigger labeling and argument labeling. In the

trigger labeling step, we determine whether a candidate trigger is a true trigger and label

each true trigger with its trigger type. Then, in the argument labeling step, we identify the

arguments for each true trigger discovered in the trigger labeling step and assign a role to

each argument.

We recast each of the two steps as a classification task and employ SVMmulticlass (Tsochan-

taridis et al., 2004) to train the two classifiers. We describe each step in detail below.

190

Table 7.1. Features for trigger labeling and argument labeling.

(a) Features for trigger labeling

Token fea-
tures

The basic token features (see Table 1(c)) computed from (1) the candidate
trigger word and (2) the surrounding tokens in a window of two; character
bigrams and trigrams of the candidate trigger word; word n-grams (n=1,2,3)
of the candidate trigger word and its context words in a window of three;
whether the candidate trigger word contains a digit; whether the candidate
trigger word contains an upper case letter; whether the candidate trigger word
contains a symbol.

Dependency
features

The basic dependency path features (see Table 1(c)) computed using the short-
est paths from the candidate trigger to (1) the nearest protein word, (2) the
nearest protein word to its left, and (3) the nearest protein word to its right.

Other
features

The distances from the candidate trigger word to (1) the nearest protein word,
(2) the nearest protein word to its left, and (3) the nearest protein word to its
right; the number of protein words in the sentence.

(b) Features for argument labeling

Token fea-
tures

Word n-grams (n=1,2,3) of (1) the candidate trigger word and its context in
a window of three and (2) the candidate argument word and its context in a
window of three; the basic token features (see Table 1(c)) computed from (1)
the candidate trigger word and (2) the candidate argument word; the trigger
type of the candidate trigger word.

Dependency
features

The basic dependency features (see Table 1(c)) computed using the shortest
path from the candidate trigger word to the candidate argument word.

Other
features

The distance between the candidate trigger word and the candidate argument
word; the number of proteins between the candidate trigger word and the
candidate argument word; the concatenation of the candidate trigger word
and the candidate argument word; the concatenation of the candidate trigger
type and the candidate argument word.

(c) Basic token and dependency features

Basic token
features

Six features are computed given a token t, including: (a) the lexical string of
t, (b) the lemma of t, (c) the stem of t obtained using the Porter stemmer
(Porter, 1980), (d) the part-of-speech tag of t, (e) whether t appears as a true
trigger in the training data, and (f) whether t is a protein name.

Basic
dependency
features

Six features are computed given a dependency path p, including: (a) the vertex
walk in p, (b) the edge walk in p, (c) the n-grams (n=2,3,4) of the (stemmed)
words associated with the vertices in p, (d) the n-grams (n=2,3,4) of the part-
of-speech tags of the words associated with the vertices in p, (e) the n-grams
(n=2,3,4) of the dependency types associated with the edges in p, and (f) the
length of p.

191

7.3.1 Trigger Labeling

A preliminary study of the BioNLP’13 training data suggests that 98.7% of the true triggers’

head words1 are either verbs, nouns or adjectives. Therefore, we consider only those words

whose part-of-speech tags belong to the above three categories as candidate triggers. To

train the trigger classifier, we create one training instance for each candidate trigger in the

training data. If the candidate trigger is not a trigger, the class label of the corresponding

instance is None; otherwise, the label is the type of the trigger. Thus, the number of class

labels equals the number of trigger types plus one. Each training instance is represented

by the features described in Table 1(a). These features closely mirror those used in state-

of-the-art trigger labeling systems such as (Miwa et al., 2010) and (Björne and Salakoski,

2013).

After training, we apply the resulting trigger classifier to classify the test instances, which

are created in the same way as the training instances. If a test instance is predicted as None

by the classifier, the corresponding candidate trigger is labeled as a non-trigger; otherwise,

the corresponding candidate trigger is posited as a true trigger whose type is the class value

assigned by the classifier.

7.3.2 Argument Labeling

The argument classifier is trained as follows. Each training instance corresponds to a can-

didate trigger and one of its candidate arguments.2 A candidate argument for a candidate

trigger ct is either a protein or a candidate trigger that appears in the same sentence as ct. If

ct is not a true trigger, the label of the associated instance is set to None. On the other hand,

if ct is a true trigger, we check whether the candidate argument in the associated instance

1Head words are found using Collins’ (Collins, 1999) rules.

2Following the definition of the GENIA event extraction task, the protein names are provided as part of
the input.

192

is indeed one of ct’s arguments. If so, the class label of the instance is the argument’s role;

otherwise, the class label is None. The features used for representing each training instance,

which are modeled after those used in (Miwa et al., 2010) and (Björne and Salakoski, 2013),

are shown in Table 1(b).

After training, we can apply the resulting classifier to classify the test instances, which

are created in the same way as the training instances. If a test instance is assigned the

class None by the classifier, the corresponding candidate argument is classified as not an

argument of the trigger. Otherwise, the candidate argument is a true argument of the trigger

whose role is the class value assigned by the classifier.

7.4 Joint Model

In this section, we describe our Markov logic model that encodes the relational dependencies

in the shared task and uses the output of the pipeline model as prior knowledge (soft evi-

dence). We begin by describing the structure of our Markov logic model, and then describe

the parameter learning and inference algorithms for it.

7.4.1 MLN Structure

Figure 7.2 shows our proposed MLN for BioNLP event extraction, which we refer to as

BioMLN. The MLN contains six predicates.

The query predicates in Figure 7.2(a) are those whose assignments are not given during

inference and thus need to be predicted. Predicate TriggerType(sid, tid, ttype!) is true

when the token located in sentence sid at position tid has type ttype. ∆ttype, which denotes

the set of constants (or objects) that the logical variable ttype can be instantiated to, includes

all possible trigger types in the dataset plus None (which indicates that the token is not

a trigger). The “!” symbol models commonsense knowledge that only one of the types in

the domain ∆ttype of ttype is true for every unique combination of sid and tid. Similarly,

193

TriggerType(sid,tid,ttype!)
ArgumentRole(sid,aid,tid,arole!)

(a) Query

Simple(sid,tid)
Regulation(sid,tid)

(b) Hidden

Word(sid,tid,word)
DepType(sid,aid,tid,dtype)

(c) Evidence

1. ∃t TriggerType(i,j,t).

2. ∃a ArgumentRole(i,k,j,a).

3. ¬TriggerType(i,j,None) ⇒ ∃k ArgumentRole(i,k,j,Theme).

4. Simple(i,j) ⇒¬ ∃k ArgumentRole(i,k,j,Cause).

5. TriggerType(i,j,None) ⇔ ArgumentRole(i,k,j,None).

6. ¬ArgumentRole(i,k,j,None) ∧¬TriggerType(i,k,None) ⇒ Regulation(i,j).

7. Simple(i,j) ⇔ TriggerType(i,j,Simple1) ∨ . . .∨ TriggerType(i,j,Binding).

8. Regulation(i,j) ⇔ TriggerType(i,j,Reg) ∨ TriggerType(i,j,PosReg)
∨ TriggerType(i,j,NegReg).

9. Word(i,j,+w) ∧ TriggerType(i,j,+t) ∧ DepType(i,k,j,+d) ∧ ArgumentRole(i,k,j,+a)

(d) Joint Formulas

Figure 7.2. The BioMLN structure.

predicate ArgumentRole(sid, aid, tid, arole!) asserts that a token in sentence sid at position

aid plays exactly one argument role, denoted by arole, with respect to the token at position

tid. ∆arole includes the two argument types, namely, Theme and Cause plus the additional

None that indicates that the token is not an argument.

The hidden predicates in Figure 7.2(b) are “clusters” of trigger types. Predicate Simple

(sid ,tid) is true when the token in sentence sid at position tid corresponds to one of the

Simple event trigger types (BioNLP’13 has 9 simple events, BioNLP’09/’11 have 5) or a

binding event trigger type. Similarly, Regulation(sid, tid) asserts that the token in sentence

sid at position tid corresponds to any of the three regulation event trigger types.

The evidence predicates in Figure 7.2(c) are those that are always assumed to be known

during inference. We define two evidence predicates based on dependency structures. Word

(sid, tid, word) is true when the word in sentence sid at position tid is equal to word.

194

DepType(sid, aid, tid, dtype) asserts that dtype is the dependency type in the dependency

parse tree that connects the token at position tid to the token at position aid in sentence

sid. If the word at tid and the word at aid are directly connected in the dependency tree,

then dtype is the label of dependency edge with direction; otherwise dtype is None.

The MLN formulas, expressing commonsense, prior knowledge in the domain (Poon and

Vanderwende, 2010; Riedel and McCallum, 2011a), are shown in Figure 7.2(d). All formulas,

except Formula (9), are hard formulas, meaning that they have infinite weights. Note that

during weight learning, we only learn the weights of soft formulas.

Formulas (1) and (2) along with the “!” constraint in the predicate definition ensure

that the token types are mutually exclusive and exhaustive. Formula (3) asserts that every

trigger should have an argument of type Theme, since a Theme argument is mandatory

for any event. Formula (4) models the constraint that a Simple or Binding trigger has no

arguments of type Cause since only regulation events have a Cause. Formula (5) asserts that

non-triggers have no arguments and vice-versa. Formula (6) models the constraint that if a

token is both an argument of t and a trigger by itself, then t must belong to one of the three

regulation trigger types. This formula captures the recursive relationship between triggers.

Formulas (7) and (8) connect the hidden predicates with the query predicates. Formula (9)

is a soft formula encoding the relationship between triggers and arguments in a dependency

parse tree. It joins a word and the dependency type label that connects the word token to

the argument token in the dependency parse tree with the trigger types and argument types

of the two tokens. The “+” symbol indicates that each grounding of Formula (9) may have

a different weight.

7.4.2 Weight Learning

We can learn BioMLN from data either discriminatively or generatively. Since discriminative

learning is much faster than generative learning, we use the former. In discriminative train-

ing, we maximize the conditional log-likelihood (CLL) of the query and the hidden variables

195

given an assignment to the evidence variables. In principle, we can use the standard gradient

descent algorithm for maximizing the CLL. In each iteration of gradient descent, we update

the weights using the following equation (cf. (Singla and Domingos, 2005) and (Domingos

and Lowd, 2009)):

wt+1
j = wtj − α(Ew(nj)− nj) (7.1)

where wtj represents the weight of the jth formula in the tth iteration, nj is the number of

groundings in which the jth formula is satisfied in the training data, Ew(nj) is the expected

number of groundings in which the jth formula is satisfied given the current weight vector

w, and α is the learning rate.

As such, the update rule given in Equation (7.1) is likely to yield poor accuracy because

the number of training examples of some types (e.g., None) far outnumber other types.

To rectify this ill-conditioning problem (Singla and Domingos, 2005; Lowd and Domingos,

2007a), we divide the gradient with the number of true groundings in the data, namely, we

compute the gradient using
(Ew(nj)−nj)

nj
.

Another key issue with using Equation (7.1) is that computing Ew(nj) requires perform-

ing inference over the MLN. This step is intractable, #P-complete in the worst case. To

circumvent this problem and for fast, scalable training, we instead propose to use the voted

perceptron algorithm (Collins, 2002; Singla and Domingos, 2005). This algorithm approxi-

mates Ew(nj) by counting the number of satisfied groundings of each formula in the MAP

assignment. Computing the MAP assignment is much easier (although still NP-hard in the

worst case) than computing Ew(nj), and as a result the voted perceptron algorithm is more

scalable than the standard gradient descent algorithm. In addition, it converges much faster.

7.4.3 Testing

In the testing phase, we combine BioMLN with the output of the pipeline model (see Sec-

tion 7.3) to obtain a new MLN, which we refer to as BioMLN+. For every candidate trigger,

196

the SVM trigger classifier outputs a vector of signed confidence values (which is proportional

to the distance from the separating hyperplane) of dimension ∆ttype with one entry for each

trigger type. Similarly, for every candidate argument, the SVM argument classifier outputs

a vector of signed confidence values of dimension ∆arole with one entry for each argument

role. In BioMLN+, we model the SVM output as soft evidence, using two soft unit clauses,

TriggerType(i,+j,+t) and ArgumentRole(i,+k,+j,+a). We use the confidence values to

determine the weights of these clauses. Intuitively, higher (smaller) the confidence, higher

(smaller) the weight.

Specifically, the weights of the soft unit clauses are set as follows. If the SVM trigger

classifier determines that the trigger in sentence i at position j belongs to type t with

confidence Ci,j, then we attach a weight of
Ci,j
αni

to the clause TriggerType(i,j,t). Here, ni

denotes the number of trigger candidates in sentence i. Similarly, if the SVM argument

classifier determines that the token at position k in sentence i belongs to the argument role

a with respect to the token at position j, with confidence C ′i,k,j, then we attach a weight of

C′i,k,j
β
∑ni
j=1mij

to the clause ArgumentRole(i, k, j,a). Here, mij denotes the number of argument

candidates for the jth trigger candidate in sentence i. α and β act as scale parameters for

the confidence values ensuring that the weights don’t get too large (or too small).

7.4.4 Inference

As we need to perform MAP inference, both at training time and at test time, in this

subsection we will describe how to do it efficiently by exploiting unique properties of our

proposed BioMLN.

Naively, we can perform MAP inference by grounding BioMLN to a Markov network and

then reducing the Markov network by removing from it all (grounded propositional) formulas

that are inconsistent with the evidence. On the reduced Markov network, we can then

197

compute the MAP solution using standard MAP solvers such as MaxWalkSAT (a state-of-

the-art local search based MAP solver) (Selman et al., 1996) and Gurobi3 (a state-of-the-art,

parallelized ILP solver).

The problem with the above approach is that grounding the MLN is infeasible in practice;

even the reduced Markov network is just too large. For example, assuming a total of |∆sid|

sentences and a maximum of N tokens in a sentence, Formula (3) alone has O(|∆sid|N3)

groundings. Concretely, at training time, assuming 1000 sentences with 10 tokens per sen-

tence, Formula (3) itself yields one million groundings. Clearly, this approach is not scalable.

It turns out, however, that the (ground) Markov network can be decomposed into several

disconnected components, each of which can be solved independently. This greatly reduces

the memory requirement of the inference step. Specifically, for every grounding of sid, we

get a set of nodes in the Markov network that are disconnected from the rest of the Markov

network and therefore independent of the rest of the network. Formally,

Proposition 3. For any world ω of the BioMLN,

PM(ω) = PMi
(ωi)PM\Mi

(ω \ ωi) (7.2)

where ωi is the world ω projected on the groundings of sentence i andMi is BioMLN grounded

only using sentence i.

Using Equation (7.2), it is easy to see that the MLN M can be decomposed into

|∆sid| disjoint MLNs, {Mk}|∆sid|
k=1 . The MAP assignment to M can be computed using,

|∆sid|⋃
i=1

(
arg max

ωi
PMi

(ωi)

)
. This result ensures that to approximate the expected counts

Ew(nj), it is sufficient to keep exactly one sentence’s groundings in memory. Specifically,

Ew(nj) can be written as
∑|∆sid|

k=1 Ew(nkj), where Ew(nkj) indicates the expected number of

satisfied groundings of the jth formula in the kth sentence. Since the MAP computation is

decomposable, we can estimate Ew(nkj) using MAP inference on just the kth sentence.

3http://www.gurobi.com/

198

Table 7.2. Statistics on the BioNLP datasets, which consist of annotated papers/abstracts
from PubMed. (x, y, z): x in training, y in development and z in test. #TT indicates the
total number of trigger types. The total number of argument types is 2.

Dataset #Papers #Abstracts #TT #Events
BioNLP’13 (10,10,14) (0,0,0) 13 (2817,3199,3348)
BioNLP’11 (5,5,4) (800,150,260) 9 (10310,4690,5301)
BioNLP’09 (0,0,0) (800,150,260) 9 (8597,1809,3182)

7.5 Evaluation

7.5.1 Experimental Setup

We evaluate our system on the BioNLP’13 (Kim et al., 2013), ’11 (Kim et al., 2011) and

’09 (Kim et al., 2009) Genia datasets for the main event extraction shared task. Note that

this task is the most important one for Genia and therefore has the most active participation.

Statistics on the datasets are shown in Table 7.2. All our evaluations use the online tool

provided by the shared task organizers. We report scores obtained using the approximate

span, recursive evaluation.

To generate features, we employ the supporting resources provided by the organizers.

Specifically, sentence split and tokenization are done using the GENIA tools, while part-of-

speech information is provided by the BLLIP parser that uses the self-trained biomedical

model (McClosky, 2010). Also, we create dependency features from the parse trees provided

by two dependency parsers, the Enju parser (Miyao and Tsujii, 2008) and the aforemen-

tioned BLLIP parser that uses the self-trained biomedical model, which results in two sets

of dependency features.

For MAP inference, we use Gurobi, a parallelized ILP solver. After inference, a post-

processing step is required to generate biomedical events from the extracted triggers and

arguments. Specifically, for binding events, we employ a learning-based method similar to

(Björne and Salakoski, 2011), while for the other events, we employ a rule-based approach

199

Table 7.3. Recall (Rec.), Precision (Prec.) and F1 score on the BioNLP’13 test data.

System Rec. Prec. F1
Our System 48.95 59.24 53.61
EVEX (Hakala et al., 2013) 45.44 58.03 50.97
TEES-2.1 (Björne and Salakoski, 2013) 46.17 56.32 50.74
BIOSEM (Bui et al., 2013) 42.47 62.83 50.68
NCBI (Liu et al., 2013) 40.53 61.72 48.93
DLUTNLP (Li et al., 2013) 40.81 57.00 47.56

similar to (Björne et al., 2009). Both the SVM baseline system and the combined MLN+SVM

system employ the same post-processing strategy.

During weight learning, in order to combat the problem of different initializations yielding

radically different parameter estimates, we start at several different initialization points and

average the weights obtained after 100 iterations of gradient descent. However, we noticed

that if we simply choose random initialization points, the variance of the weights was quite

high and some initialization points were much worse than others. To counter this, we use

the following method to systematically initialize the weights. Let ni be the number of

satisfied groundings of formula fi in the training data and mi be the total number of possible

groundings of fi. We use a threshold γ to determine whether we wish to make the initial

weight positive or negative. If ni
mi
≤ γ, then we choose the initial weight uniformly at random

from the range [−0.1, 0]. Otherwise, we chose it from the range [0, 0.1]. These steps ensure

that the weights generated from different initialization points have smaller variance. Also,

in the testing phase, we set the scale parameters for the soft evidence as α = β = max
c∈C
|c|,

where C is the set of SVM confidence values.

7.5.2 Results on the BioNLP’13 Dataset

Among the three datasets, the BioNLP’13 dataset is most “realistic” one because it is the

only one that contains full papers and no abstracts. As a result, it is also the most challenging

dataset among the three. Table 7.3 shows the results of our system along with the results of

other top systems published in the official evaluation of BioNLP’13. Our system achieves the

200

SVM MLN+SVM
Type Rec. Prec. F1 Rec. Prec. F1
Simple 64.47 87.89 74.38 73.11 78.99 75.94
Protein-Mod 66.49 79.87 72.57 72.25 69.70 70.95
Binding 39.04 50.00 43.84 48.05 43.84 45.85
Regulation 23.51 56.21 33.15 36.47 50.86 42.48
Overall 37.90 67.88 48.64 48.95 59.24 53.61

(a) Test

SVM MLN+SVM
Type Rec. Prec. F1 Rec. Prec. F1
Simple 55.79 81.63 66.28 63.21 75.10 68.64
Protein-Mod 64.47 87.89 74.38 71.14 85.63 77.72
Binding 31.90 48.77 38.57 47.99 50.00 48.97
Regulation 20.13 52.46 29.10 28.57 43.41 34.46
Overall 34.42 66.14 45.28 43.50 57.45 49.51

(b) Development

Figure 7.3. Comparison of the combined model (MLN+SVM) with the pipeline model on
the BioNLP’13 test and development data.

best F1-score (an improvement of 2.64 points over the top-performing system) and has a much

higher recall (mainly because our system detects more regulation events which outnumber

other event types in the dataset) and a slightly higher precision than the winning system. Of

the top five teams, NCBI is the only other joint inference system, which adopts joint pattern

matching to predict triggers and arguments at the same time. These results illustrate the

challenge in using joint inference effectively. NCBI performed much worse than the SVM-

based pipeline systems, EVEX and TEES2.1. It was also worse than BIOSEM, a rule-based

system that uses considerable domain expertise. Nevertheless, it was better than DLUTNLP,

another SVM-based system.

Figure 7.3 compares our baseline pipeline model with our combined model. We can

clearly see that the combined model has a significantly better F1 score than the pipeline

model on most event types. The regulation events are considered the most complex events

to detect because they have a recursive structure. At the same time, this structure yields

a large number of joint dependencies. The advantage of using a rich model such as MLNs

201

Table 7.4. Results on the BioNLP’11 test data.

System Rec. Prec. F1
Our System 53.42 63.61 58.07
Miwa12 (Miwa et al., 2012) 53.35 63.48 57.98
Riedel11 (Riedel et al., 2011) − − 56
UTurku (Björne and Salakoski, 2011) 49.56 57.65 53.30
MSR-NLP (Quirk et al., 2011) 48.64 54.71 51.50

can be clearly seen in this case; the combined model yields a 10 point and 6 point increase

in F1-score on the test data and development data respectively compared to the pipeline

model.

7.5.3 Results on the BioNLP’11 Dataset

Table 7.4 shows the results on the BioNLP’11 dataset. We can see that our system is

marginally better than Miwa12, which is a pipeline-based system. It is also more than two

points better than Riedel11, a state-of-the-art structured prediction-based joint inference

system. Reidel11 incorporates the Stanford predictions (McClosky et al., 2011b) as features

in the model. On the two hardest, most complex tasks, detecting regulation events (which

have recursive structures and more joint dependencies than other event types) and detecting

binding events (which may have multiple arguments), our system performs better than both

Miwa12 and Riedel11.

Specifically, our system’s F1 score for regulation events is 46.84, while those of Miwa12

and Riedel11 are 45.46 and 44.94 respectively. Our system’s F1 score for the binding event

is 58.79, while those of Miwa12 and Riedel11 are 56.64 and 48.49 respectively. These re-

sults clearly demonstrate the effectiveness of enforcing joint dependencies along with high-

dimensional features.

7.5.4 Results on the BioNLP’09 Dataset

Table 7.5 shows the results on the BioNLP’09 dataset. Our system has a marginally lower

score (by 0.11 points) than Miwa12, which is the best performing system on this dataset.

202

Table 7.5. Results on the BioNLP’09 test data. “−” indicates that the corresponding values
are not known.

System Rec. Prec. F1
Miwa12 (Miwa et al., 2012) 52.67 65.19 58.27
Our System 53.96 63.08 58.16
Riedel11 (Riedel et al., 2011) − − 57.4
Miwa10 (Miwa et al., 2010) 50.13 64.16 56.28
Bjorne (Björne et al., 2009) 46.73 58.48 51.95
PoonMLN (Poon&Vanderwende,2010) 43.7 58.6 50.0
RiedelMLN (Riedel et al., 2009) 36.9 55.6 44.4

Specifically, our system achieves a higher recall but a lower precision than Miwa12. However,

note that Miwa12 used co-reference features while we are able to achieve similar accuracy

without the use of co-reference data. The F1 score of Miwa10, which does not use co-reference

features, is nearly 2 points lower than that of our system. Our system also has a higher F1

score than Reidel11, which is the best joint inference-based system for this task.

On the regulation events, our system (47.55) outperforms both Miwa12 (45.99) and

Riedel11 (46.9), while on the binding event, our system (59.88) is marginally worse than

Miwa12 (59.91) and significantly better than Riedel11 (52.6). As mentioned earlier, these

are the hardest events to extract. Also, existing MLN-based joint inference systems such

as RiedelMLN and PoonMLN do not achieve state-of-the-art results because they do not

leverage complex, high-dimensional features.

7.6 Summary

Markov logic networks (MLNs) are a powerful representation that can compactly encode

rich relational structures and ambiguities (uncertainty). As a result, they are an ideal

representation for complex NLP tasks that require joint inference, such as event extrac-

tion. Unfortunately, the superior representational power greatly complicates inference and

learning over MLN models. Even the most advanced methods for inference and learning

in MLNs (Gogate and Domingos, 2011b) are unable to handle complex, high-dimensional

203

features, and therefore existing MLN systems primarily use low-dimensional features. This

limitation severely affects the accuracy of MLN-based NLP systems, and as a result, in some

cases their performance is inferior to pipeline methods that do not employ joint inference.

In this chapter, we presented a general approach for exploiting the power of high-

dimensional linguistic features in MLNs. Our approach involves reliably processing and

learning high-dimensional features using SVMs and encoding their output as low-dimensional

features in MLNs. We showed that we could achieve scalable learning and inference in our

proposed MLN model by exploiting MLN structure. Our results on the BioNLP shared

tasks from ’13, ’11, and ’09 clearly show that our proposed combination is extremely effec-

tive, achieving the best or second best published score on all three datasets.

CHAPTER 8

FUTURE WORK

Digital data is being generated at an incredibly fast rate. Utilizing this large-scale data

(or big data) effectively is a key challenge facing researchers and practitioners in Machine

Learning (ML) and Artificial Intelligence (AI). Since real-world data is quite often relational

and noisy, in principle, the field of statistical relational learning is well-suited to leverage big

data for the next generation of AI/ML applications. In this dissertation, we have focused

upon several fundamental challenges and ideas that aim to push statistical relational models

towards processing large-scale data. Next, we discus some promising ways in which we can

extend the ideas presented in this dissertation.

8.1 Advancing Approximate Lifting

Leveraging approximate symmetries (presented in Chapter 5) seems to be the right approach

for scalable inference (or learning) in large, real-world domains. There are several possible

extensions to this framework that would be extremely useful. For instance, (i) defining ad-

vanced heuristics (e.g., graph-theory based heuristics) for detecting approximate symmetries

in lifted inference, (ii) approximation guarantees, (iii) connecting approximate lifting with

variational inference approximations (Jordan et al., 1999) in graphical models and utiliz-

ing theory/algorithms from this area and (iv) improving the power of approximately lifted

models by leveraging kernel-based methods (Vapnik, 1995; Shawe-Taylor and Cristianini,

2004) and ensemble methods in machine learning such as boosting (Schapire, 2003) and

bootstrapping.

204

205

8.2 Large Scale Weight Learning

Weight learning assumes that the formulas of the MLN are encoded from background knowl-

edge and we need to learn the weights of these formulas from data. The standard approach

is to learn weights by maximizing the likelihood of the data, and this is typically done using

gradient based methods. However, in MLNs, it turns out that computing the gradient each

time involves solving an inference problem. Therefore, inference is the most important sub-

step in weight learning. Algorithms such as contrastive divergence (Hinton, 2002) use Gibbs

sampling while voted perceptron (Collins, 2002; Singla and Domingos, 2005) uses MAP in-

ference for approximating the gradient during learning. However, the current state-of-the-art

weight learning algorithms for MLNs are far from scalable. Most of them use background

knowledge and ad-hoc domain-specific heuristics to perform weight learning in real-world

domains (Singla and Domingos, 2005; Lowd and Domingos, 2007a). Therefore, it takes a lot

of expertise to apply MLNs to completely new applications as compared to standard Machine

learning algorithms such as SVMs. The inference techniques presented in this dissertation

can be utilized to address this problem and perform weight learning more effectively on large

scale data. Particularly, the novel encoding of formulas as Markov networks presented in

Chapter 6 can yield potentially exciting future research in weight-learning. For instance, we

can utilize this encoding to develop new types of gradient approximations in MLNs where we

leverage techniques with complexity and/or approximation guarantees from graphical mod-

els such as Bethe approximations (Yedidia et al., 2005), variational inference (Wainwright

and Jordan, 2008), generalized BP (Yedidia et al., 2000; Mateescu et al., 2010), Sample-

Search (Gogate and Dechter, 2007a) and WISH (Ermon et al., 2013, 2014). Importantly,

this can spawn a completely new family of weight learning methods that, unlike existing

approaches can scale up to large scale domains and successfully leverage the power of MLNs

in practical applications.

206

8.3 Learning Feasible Structures

Structure learning is a much harder problem than weight learning. Here, the task is to

learn both the formulas and its associated weights from data. One possible approach that is

to learn structures where exact (lifted) inference is tractable (Domingos and Webb, 2012).

However, the main problem with this approach is that the expressiveness of learned structures

would be fairly limited. For instance, with our current knowledge of lifted inference, the types

of structures where exact inference is tractable is quite small. Also, as mentioned several

times in this dissertation, with evidence, the subset of tractable structures further shrinks,

which makes it even more difficult to represent sufficiently complex distributions. Further,

the notion of domain liftability (complexity of exact inference is polynomial in domain-

size) is still too expensive when we consider very large datasets (e.g., the domain of users

on facebook). In fact, as we have shown in this dissertation, even approximate inference is

computationally infeasible for real-world, large-scale domains. An interesting future research

direction is to learn structures which though not tractable for exact lifting are feasible for

approximate inference even when presented with large domains (e.g., web-scale data). In

other words, inference on learned structures should have domain independent complexity

guarantees. This can yield much more expressive structures since we are not restricting

structures to be exactly solvable and at the same time, from a practical standpoint, the

learned structures will admit feasible inference. One idea to achieve define this feasibility

is to use our results which connect (approximate) inference complexity with treewidth of

formulas (cf. Chapter 6). Using this, we can impose a new bias on structure learning such

that we only learn bounded treewidth formulas (Note that the Markov network underlying

the full MLN can still have large treewidths due to which we can express more complex

distributions) which in turn makes approximate inference computationally feasible even over

very large datasets.

207

8.4 Systems Engineering

Advances in parallel/distributed computing and data management have been successfully

incorporated in several systems. For instance, GraphLab (Low et al., 2010) uses parallel

architectures to scale up inference in graphical models. Tuffy (Niu et al., 2011) uses advanced

database management and optimization strategies to store and process MLNs efficiently.

However, most of these systems inherently work in the propositional space, i.e., on the

ground Markov network. The challenge is to successfully leverage these system-level advances

with the symmetry-exploiting as well as the advanced counting strategies described in this

dissertation. Doing so is likely to yield the required scalability for big data applications.

8.5 Joint Inference Applications

A natural application for MLNs is in structured prediction tasks (e.g., collective classifica-

tion, semantic parsing, sequence labeling, information extraction, etc.), namely tasks that

are much harder than classification based tasks. For many of these tasks, considering rela-

tional dependencies in the data, i.e., performing joint inference is vital. However, currently

traditional Machine Learning models such as SVMs are routinely applied to these problems

since they tend to work “out-of-the-box” even though these models are fundamentally not

expressive enough for these tasks. Consequently, we need to apply richer models to solve

these structured prediction problems more effectively. However, as seen in this dissertation

(Chapter 7), applying rich models to real-world problems is a non-trivial task because of

the complexity of these models. Adapting and applying lifted techniques for joint inference

in other challenging problems in natural language understanding such as web information

extraction as well as in other domains where joint inference is likely to be useful such as

Bioinformatics, cyber-security and computer vision is yet another possible research direc-

tion.

208

8.6 Lifted Inference in High-level Languages

Probabilistic programs such as Church (Goodman et al., 2008) and Infer.net (Minka et al.,

2014) represent probability distributions using high-level programming languages. Proba-

bilistic programs have several attractive features. First, they are extremely powerful repre-

sentations (Turing complete languages) and thus can represent complex distributions (e.g.,

distributions induced by recursive programs). Further, being high-level programs, they are

also in human-readable format. This makes it easy for non-experts to compose machine

learning algorithms through probabilistic programs since the complexity of underlying infer-

ence/learning is abstracted from the user. However, as is the case with statistical relational

models, inference and learning in these languages is highly challenging and in many ways even

harder. Therefore, incorporating advances from lifted inference into probabilistic program-

ming languages is a topic of great interest. One possible direction is to develop an interface

layer to automatically “compile” programs into a Markov logic (or equivalent) specification

using which we can leverage a vast amount of research from the SRL community.

CHAPTER 9

CONCLUSION

The past couple of decades has seen a surge in Artificial Intelligence (AI) and Machine

learning (ML) applications aided by the development of tools and techniques such as deci-

sion trees, support vector machines and ensemble-based learning. Most of these techniques

though primarily solve classification problems where the desired output is simple. With an

unprecedented growth in data and computational power, application designers are envision-

ing far more sophisticated tasks that go well beyond classification. Such tasks require much

richer models and algorithms.

In this dissertation, we focused on one such rich model called Markov Logic Networks

(MLNs) that combine first-order logic with probabilistic graphical models, and developed ad-

vanced algorithms for probabilistic inference in them. We utilized the logical and statistical

structure in MLNs to scale up inference to much harder and larger problems than what was

possible using existing systems. By leveraging advanced techniques from sampling theory,

machine learning, CSPs, databases, SAT and discrete optimization, we developed (i) infer-

ence techniques for models with logical constraints, (ii) symmetry-exploiting lifted inference

methods and (iii) fast-counting based scalable inference methods. Further, we were able to

show the utility of our approaches on Biomedical event extraction, a challenging real-world

application in natural language understanding, on which we were able to obtain state-of-the-

art results.

In conclusion, the synergy between large-scale data, rich modeling languages, powerful

computing architectures and scalable algorithms is likely to play a key role in the next

generation of AI/ML applications. We hope that the concepts, ideas and algorithms from

this dissertation and its extensions is a step forward in the design of such systems.

209

REFERENCES

Ahmadi, B., K. Kersting, M. Mladenov, and S. Natarajan (2013). Exploiting Symmetries
for Scaling Loopy Belief Propagation and Relational Training. Machine Learning 92 (1),
91–132.

Ahn, D. (2006). The Stages of Event Extraction. In Proceedings of the Workshop on Anno-
tating and Reasoning About Time and Events, pp. 1–8.

Arnborg, S., D. G. Corneil, and A. Proskurowski (1987, April). Complexity of Finding
Embeddings in a k-tree. SIAM Journal of Algebraic Discrete Methods 8 (2), 277–284.

Beltagy, I. and R. J. Mooney (2014). Efficient Markov Logic Inference for Natural Language
Semantics. In Proceedings of the Fourth International Workshop on Statistical Relational
AI at AAAI (StarAI-2014), pp. 9–14.

Bidyuk, B. and R. Dechter (2007). Cutset Sampling for Bayesian Networks. Journal of
Artificial Intelligence Research 28, 1–48.

Björne, J., J. Heimonen, F. Ginter, A. Airola, T. Pahikkala, and T. Salakoski (2009). Ex-
tracting Complex Biological Events with Rich Graph-Based Feature Sets. In Proceedings
of the BioNLP 2009 Workshop Companion Volume for Shared Task, pp. 10–18.

Björne, J. and T. Salakoski (2011). Generalizing Biomedical Event Extraction. In Proceedings
of the BioNLP Shared Task 2011 Workshop, pp. 183–191.

Björne, J. and T. Salakoski (2013). TEES 2.1: Automated Annotation Scheme Learning in
the BioNLP 2013 Shared Task. In Proceedings of the BioNLP Shared Task 2013 Workshop,
pp. 16–25.

Broecheler, M., L. Mihalkova, and L. Getoor (2010). Probabilistic Similarity Logic. In
Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, pp.
73–82.

Bui, H., T. Huynh, and R. de Salvo Braz (2012). Exact Lifted Inference with Distinct
Soft Evidence on Every Object. In Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, pp. 1875–1881. AAAI Press.

Bui, H., T. Huynh, and S. Riedel (2013). Automorphism Groups of Graphical Models
and Lifted Variational Inference. In Proceedings of the Twenty-Nineth Conference on
Uncertainty in Artificial Intelligence, pp. 132–141. AUAI Press.

210

211

Carnap, R. (1950). Logical Foundations of Probability. Chicago: University of Chicago Press.

Casella, G. and C. P. Robert (1996, March). Rao-Blackwellisation of Sampling Schemes.
Biometrika 83 (1), 81–94.

Chen, C. and V. Ng (2012). Joint Modeling for Chinese Event Extraction with Rich Lin-
guistic Features. In Proceedings of the 24th International Conference on Computational
Linguistics, pp. 529–544.

Cheng, J. and M. J. Druzdzel (2000). AIS-BN: An Adaptive Importance Sampling Algorithm
for Evidential Reasoning in Large Bayesian Networks. Journal of Artificial Intelligence
Research 13, 155–188.

Chib, S. (1995). Marginal Likelihood from the Gibbs Output. Journal of the American
Statistical Association 90, 1313–1321.

Collins, M. (1999). Head-Driven Statistical Models for Natural Language Parsing. Ph. D.
thesis, University of Pennsylvania, Philadelphia, PA.

Collins, M. (2002). Discriminative Training Methods for Hidden Markov Models: Theory
and Experiments with Perceptron Algorithms. In Proceedings of the 2002 Conference on
Empirical Methods in Natural Language Processing, Philadelphia, PA, pp. 1–8. ACL.

Darwiche, A. (2001, February). Recursive Conditioning. Artificial Intelligence 126, 5–41.

Darwiche, A. (2003). A Differential Approach to Inference in Bayesian Networks. Journal
of the ACM 50, 280–305.

Darwiche, A. (2009). Modeling and Reasoning with Bayesian Networks. Cambridge Univer-
sity Press.

Davis, M. and H. Putnam (1960). A Computing Procedure for Quantification Theory.
Journal of the Association of Computing Machinery 7 (3), 201–215.

De Raedt, L., A. Kimmig, and H. Toivonen (2007). ProbLog: A Probabilistic Prolog and
Its Application in Link Discovery. In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence, pp. 2462–2467.

de Salvo Braz, R. (2007). Lifted First-Order Probabilistic Inference. Ph. D. thesis, University
of Illinois, Urbana-Champaign, IL.

Dechter, R. (1999). Bucket elimination: A Unifying Framework for Reasoning. Artificial
Intelligence 113, 41–85.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.

212

Dechter, R., K. Kask, E. Bin, and R. Emek (2002). Generating Random Solutions for
Constraint Satisfaction Problems. In Proceedings of the Eighteenth National Conference
on Artificial Intelligence, pp. 15–21.

Dechter, R. and R. Mateescu (2007). AND/OR Search Spaces for Graphical Models. Artificial
Intelligence 171 (2-3), 73–106.

Diaconis, P. and D. Freedman (1980). Finite Exchangeable Sequences. The Annals of
Probability 8 (4), 745–764.

Domingos, P. and D. Lowd (2009). Markov Logic: An Interface Layer for Artificial Intelli-
gence. San Rafael, CA: Morgan & Claypool.

Domingos, P. and W. Webb (2012). A Tractable First-Order Probabilistic Logic. In Pro-
ceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, pp. 1902–2909.

Eén, N. and N. Sörensson (2003). An Extensible SAT-Solver. In SAT Competition 2003,
Volume 2919 of Lecture Notes in Computer Science, pp. 502–518. Springer.

Ermon, S., C. P. Gomes, A. Sabharwal, and B. Selman (2013). Taming the Curse of Dimen-
sionality: Discrete Integration by Hashing and Optimization. In Proceedings of the 30th
International Conference on Machine Learning, pp. 334–342.

Ermon, S., C. P. Gomes, A. Sabharwal, and B. Selman (2014). Low-density Parity Con-
straints for Hashing-Based Discrete Integration. In Proceedings of the 31st International
Conference on Machine Learning, pp. 271–279.

Fishelson, M. and D. Geiger (2004). Optimizing Exact Genetic Linkage Computations.
Journal of Computational Biology 11 (2/3), 263–275.

Gaifman, H. (1964). Concerning Measures on Boolean Algebras. Pacific Journal of Mathe-
matics 14(1), 61–73.

Gelman, A. and D. B. Rubin (1992). Inference from Iterative Simulation using Multiple
Sequences. Statistical Science 7 (4), 457–472.

Geman, S. and D. Geman (1984). Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine
Intelligence 6, 721–741.

Genesereth, M. R. and E. Kao (2013). Introduction to Logic, Second Edition. Morgan &
Claypool Publishers.

Getoor, L. and B. Taskar (Eds.) (2007). Introduction to Statistical Relational Learning. MIT
Press.

213

Geweke, J. (1989). Bayesian Inference in Econometric Models using Monte Carlo Integration.
Econometrica 57 (6), 1317–39.

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (1996). Markov Chain Monte Carlo in
Practice. London, UK: Chapman and Hall.

Gogate, V. (2009). Sampling Algorithms for Probabilistic Graphical Models with Determin-
ism. Ph. D. thesis, University of California, Irvine.

Gogate, V., B. Bidyuk, and R. Dechter (2007). Studies in Lower Bounding Probabilities of
Evidence using the Markov Inequality. In Proceedings of the Twenty-Third Conference on
Uncertainty in Artificial Intelligence, pp. 141–148.

Gogate, V. and R. Dechter (2007a). Approximate Counting by Sampling the Backtrack-
free Search Space. In Proceedings of the Twenty-Second National Conference on Artificial
Intelligence, pp. 198–203. AAAI Press.

Gogate, V. and R. Dechter (2007b). SampleSearch: A Scheme that Searches for Consistent
Samples. In Proceedings of the Eleventh Conference on Artificial Intelligence and Statistics
(AISTATS), pp. 147–154.

Gogate, V. and R. Dechter (2011). SampleSearch: Importance sampling in Presence of
Determinism. Artificial Intelligence 175 (2), 694–729.

Gogate, V. and P. Domingos (2011a). Approximation by Quantization. In Proceedings of the
Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, pp. 247–255. AUAI
Press.

Gogate, V. and P. Domingos (2011b). Probabilistic Theorem Proving. In Proceedings of the
Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, pp. 256–265. AUAI
Press.

Gogate, V., A. Jha, and D. Venugopal (2012). Advances in Lifted Importance Sampling. In
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. AAAI Press.

Gomes, C. P., J. Hoffmann, A. Sabharwal, and B. Selman (2007). From Sampling to Model
Counting. In Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence, pp. 2293–2299.

Gonzalez, J., Y. Low, A. Gretton, and C. Guestrin (2011). Parallel Gibbs Sampling: From
Colored Fields to Thin Junction Trees. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics (AISTATS), pp. 324–332.

Goodman, N. D., V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum (2008).
Church: A Language for Generative Models. In Proceedings of the Twenty-Fourth Con-
ference on Uncertainty in Artificial Intelligence, pp. 220–229.

214

Gries, O. (2011). Gibbs Sampling with Deterministic Dependencies. In Proceedings of the
5th international conference on Multi-Disciplinary Trends in Artificial Intelligence, pp.
418–427.

Grishman, R., D. Westbrook, and A. Meyers (2005). NYU’s English ACE 2005 system
description. In Proceedings of the ACE 2005 Evaluation Workshop. Washington.

Gupta, P. and H. Ji (2009). Predicting unknown Time Arguments based on Cross-Event
Propagation. In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pp. 369–
372.

Hajishirzi, H. and E. Amir (2008). Sampling First Order Logical Particles. In Proceedings
of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence, pp. 248–255.

Hakala, K., S. Van Landeghem, T. Salakoski, Y. Van de Peer, and F. Ginter (2013). EVEX
in ST’13: Application of a large-scale text mining resource to event extraction and network
construction. In Proceedings of the BioNLP Shared Task 2013 Workshop, pp. 26–34.

Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten (2009). The
WEKA Data Mining Software: An Update. SIGKDD Explor. Newsl. 11 (1), 10–18.

Hamze, F. and N. de Freitas (2004). From Fields to Trees. In Proceedings of the Twentieth
Conference on Uncertainty in Artificial Intelligence, pp. 243–250.

Hastings, W. K. (1970, April). Monte Carlo Sampling Methods Using Markov Chains and
their Applications. Biometrika 57 (1), 97–109.

Hinton, G. E. (2002). Training Products of Experts by Minimizing Contrastive Divergence.
Neural Computation 14 (8), 1771–1800.

Huang, R. and E. Riloff (2012a). Bootstrapped Training of Event Extraction Classifiers.
In Proceedings of the 13th Conference of the European Chapter of the Association for
Computational Linguistics, pp. 286–295.

Huang, R. and E. Riloff (2012b). Modeling Textual Cohesion for Event Extraction. In
Proceedings of the 26th AAAI Conference on Artificial Intelligence, pp. 1664–1670.

Huynh, T. N. and R. J. Mooney (2009). Max-Margin Weight Learning for Markov Logic
Networks. In Machine Learning and Knowledge Discovery in Databases, European Con-
ference, ECML PKDD, pp. 564–579.

Hwang, C. and M. A. S. (1979). Multiple objective decision making, methods and applications:
a state-of-the-art survey. Springer-Verlag.

Jaeger, M. (1997). Relational Bayesian Networks. In Proceedings of the Thirteenth Confer-
ence on Uncertainty in Artificial Intelligence, pp. 266–273.

215

Jaeger, M. (2015, 3). Lower Complexity Bounds for Lifted Inference. Theory and Practice
of Logic Programming 15, 246–263.

Jensen, C. S., U. Kjaerulff, and A. Kong (1993). Blocking Gibbs Sampling in Very Large
Probabilistic Expert Systems. International Journal of Human Computer Studies. Special
Issue on Real-World Applications of Uncertain Reasoning 42, 647–666.

Jerrum, M., L. Valiant, and V. Vazirani (1986). Random Generation of Combinatorial
Structures from a Uniform. Theoretical Computer Science 43, 169–188.

Jha, A., V. Gogate, A. Meliou, and D. Suciu (2010). Lifted Inference from the Other Side:
The tractable Features. In Proceedings of the Twenty-Fourth Annual Conference on Neural
Information Processing Systems (NIPS), pp. 973–981.

Ji, H. and R. Grishman (2008). Refining Event Extraction through Cross-Document Infer-
ence. In Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pp. 254–262.

Joachims, T. (1999). Making Large-Scale SVM Learning Practical. In B. Schlkopf, C. Burges,
and A. Smola (Eds.), Advances in Kernel Methods - Support Vector Learning. MIT Press,
Cambridge, MA, USA.

Jordan, M. I., Z. Ghahramani, T. Jaakkola, and L. K. Saul (1999). An Introduction to
Variational Methods for Graphical Models. Machine Learning 37 (2), 183–233.

Kautz, H., B. Selman, and Y. Jiang (1997). A General Stochastic Approach to Solving
Problems with Hard and Soft Constraints. In D. Gu, J. Du, and P. Pardalos (Eds.), The
Satisfiability Problem: Theory and Applications, pp. 573–586. New York, NY: American
Mathematical Society.

Kautz, H., B. Selman, and M. Shah (1997). ReferralWeb: Combining Social Networks and
Collaborative Filtering. Communications of the ACM 40 (3), 63–66.

Kersting, K. (2012). Lifted Probabilistic Inference. In Proceedings of 20th European Confer-
ence on Artificial Intelligence (ECAI), pp. 33–38.

Kersting, K., B. Ahmadi, and S. Natarajan (2009). Counting Belief Propagation. In Proceed-
ings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 277–284.
AUAI Press.

Kim, J.-D., T. Ohta, S. Pyysalo, Y. Kano, and J. Tsujii (2009). Overview of BioNLP’09
Shared Task on Event Extraction. In Proceedings of the BioNLP 2009 Workshop Com-
panion Volume for Shared Task, pp. 1–9.

Kim, J.-D., T. Ohta, and J. Tsujii (2008). Corpus Annotation for Mining Biomedical Events
from Literature. BMC bioinformatics 9 (1), 10.

216

Kim, J.-D., S. Pyysalo, T. Ohta, R. Bossy, N. Nguyen, and J. Tsujii (2011). Overview of
BioNLP Shared Task 2011. In Proceedings of the BioNLP Shared Task 2011 Workshop,
pp. 1–6.

Kim, J.-D., Y. Wang, T. Takagi, and A. Yonezawa (2011). Overview of Genia Event Task
in BioNLP Shared Task 2011. In Proceedings of the BioNLP Shared Task 2011 Workshop,
pp. 7–15.

Kim, J.-D., Y. Wang, and Y. Yasunori (2013). The Genia Event Extraction Shared Task,
2013 Edition - Overview. In Proceedings of the BioNLP Shared Task 2013 Workshop.

Kimmig, A., L. Mihalkova, and L. Getoor (2014). Lifted Graphical Models: A Survey.
Machine Learning 99 (1), 1–45.

Kindermann, R. and J. L. Snell (1980). Markov Random Fields and Their Applications.
AMS.

Kok, S., M. Sumner, M. Richardson, P. Singla, H. Poon, and P. Domingos (2006).
The Alchemy System for Statistical Relational AI. Technical report, Depart-
ment of Computer Science and Engineering, University of Washington, Seattle, WA.
http://alchemy.cs.washington.edu.

Kok, S., M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd, J. Wang, and P. Domin-
gos (2008). The Alchemy System for Statistical Relational AI. Technical report, De-
partment of Computer Science and Engineering, University of Washington, Seattle, WA.
http://alchemy.cs.washington.edu.

Kokolakis, G. and P. Nanopoulos (2001). Bayesian Multivariate Micro-Aggregation under
the Hellinger Distance Criterion. Research in official statistics 4, 117–125.

Koller, D. and N. Friedman (2009). Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press.

Lauritzen, S. L. and D. J. Spiegelhalter (1988). Local Computations with Probabilities on
Graphical Structures and Their Application to Expert Systems. Journal of the Royal
Statistical Society. Series B (Methodological) 50 (2), 157–224.

Li, L., Y. Wang, and D. Huang (2013). Improving Feature-Based Biomedical Event Extrac-
tion System by Integrating Argument Information. In Proceedings of the BioNLP Shared
Task 2013 Workshop, pp. 111–115.

Li, P., G. Zhou, Q. Zhu, and L. Hou (2012). Employing Compositional Semantics and
Discourse Consistency in Chinese Event Extraction. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 1006–1016.

217

Li, P., Q. Zhu, and G. Zhou (2013). Argument Inference from Relevant Event Mentions in
Chinese Argument Extraction. In Proceedings of the Fifty First Annual Meeting of the
Association for Computational Linguistics, pp. 1477–1487.

Li, Q., H. Ji, and L. Huang (2013). Joint Event Extraction via Structured Prediction with
Global Features. In Proceedings of the Fifty First Annual Meeting of the Association for
Computational Linguistics, pp. 73–82.

Liang, P., M. I. Jordan, and D. Klein (2010). Type-Based MCMC. In Human Language Tech-
nologies: Conference of the North American Chapter of the Association of Computational
Linguistics (HLT-NAACL), pp. 573–581.

Liao, S. and R. Grishman (2010). Using Document Level Cross-Event Inference to Improve
Event Extraction. In Proceedings of the Forty Eigth Annual Meeting of the Association
for Computational Linguistics, pp. 789–797.

Liao, S. and R. Grishman (2011). Acquiring Topic Features to Improve Event Extraction:
in Pre-selected and Balanced Collections. In Proceedings of the International Conference
Recent Advances in Natural Language Processing 2011, pp. 9–16.

Liu, H., K. Verspoor, D. C. Comeau, A. MacKinlay, and W. J. Wilbur (2013). Generalizing
an Approximate Subgraph Matching-based System to Extract Events in Molecular Biology
and Cancer Genetics. In Proceedings of the BioNLP Shared Task 2013 Workshop, pp. 76–
84.

Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing. Springer Publishing
Company, Incorporated.

Liu, J. S., W. H. Wong, and A. Kong (1994). Covariance Structure of the Gibbs Sampler with
Applications to the Comparison of Estimators and Augmentation Schemes. Biometrika 81,
27–40.

Low, Y., J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein (2010).
GraphLab: A New Framework For Parallel Machine Learning. In Proceedings of the
Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, pp. 340–349. AUAI
Press.

Lowd, D. and P. Domingos (2007a). Efficient Weight Learning for Markov Logic Networks. In
Principles of Knowledge Discovery in Databases, Warsaw, Poland, pp. 200–211. Springer.

Lowd, D. and P. Domingos (2007b). Recursive Random Fields. In Proceedings of the Twen-
tieth International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 950–
955. AAAI Press.

218

Lu, W. and D. Roth (2012). Automatic Event Extraction with Structured Preference Mod-
eling. In Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics, pp. 835–844.

Marinescu, R. and R. Dechter (2009). AND/OR Branch-and-Bound Search for Combinatorial
Optimization in Graphical Models. Artificial Intelligence 173 (16-17), 1457–1491.

Marler, R. T. and J. S. Arora (2004, April). Survey of Multi-Objective Optimization Methods
for Engineering. Structural and Multidisciplinary Optimization 26 (6), 369–395.

Mateescu, R., R. Dechter, and R. Marinescu (2008). AND/OR Multi-Valued Decision Di-
agrams (AOMDDs) for Graphical Models. Journal of Artificial Intelligence Research 33,
465–519.

Mateescu, R., K. Kask, V. Gogate, and R. Dechter (2010). Iterative Join Graph Propagation
algorithms. Journal of Artificial Intelligence Research 37, 279–328.

McCallum, A. and B. Wellner (2004). Conditional Models of Identity Uncertainty with
Application to Noun Coreference. In Proceedings of the Eighteenth Annual Conference on
Neural Information Processing Systems (NIPS), pp. 905–912.

McClosky, D. (2010). Any Domain Parsing: Automatic Domain Adaptation for Natural
Language Parsing. Ph. D. thesis, Ph.D. thesis, Brown University, Providence, RI.

McClosky, D., M. Surdeanu, and C. Manning (2011a). Event Extraction as Dependency
Parsing. In Proceedings of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 1626–1635.

McClosky, D., M. Surdeanu, and C. Manning (2011b). Event Extraction as Dependency
Parsing for BioNLP 2011. In Proceedings of the BioNLP Shared Task 2011 Workshop, pp.
41–45.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953).
Equation of State Calculations by Fast Computing Machines. Journal of Chemical
Physics 21, 1087–1092.

Mihalkova, L. and R. Mooney (2007). Bottom-Up Learning of Markov Logic Network Struc-
ture. In Proceedings of the Twenty-Fourth International Conference on Machine Learning,
Corvallis, OR, pp. 625–632. IMLS.

Milch, B., B. Marthi, S. J. Russell, D. Sontag, D. L. Ong, and A. Kolobov (2005). BLOG:
Probabilistic Models with Unknown Objects. In Proceedings of the Nineteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pp. 1352–1359.

219

Milch, B. and S. J. Russell (2006). General-Purpose MCMC Inference over Relational Struc-
tures. In Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intel-
ligence, pp. 349–358.

Milch, B., L. S. Zettlemoyer, K. Kersting, M. Haimes, and L. P. Kaelbling (2008). Lifted
Probabilistic Inference with Counting Formulas. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, pp. 1062–1068.

Minka, T., J. Winn, J. Guiver, S. Webster, Y. Zaykov, B. Yangel, A. Spen-
gler, and J. Bronskill (2014). Infer.NET 2.6. Microsoft Research Cambridge.
http://research.microsoft.com/infernet.

Miwa, M., S. Pyysalo, T. Hara, and J. Tsujii (2010). Evaluating Dependency Representation
for Event Extraction. In Proceedings of the 23rd International Conference on Computa-
tional Linguistics, pp. 779–787.

Miwa, M., R. Sætre, J.-D. Kim, and J. Tsujii (2010). Event Extraction with Complex
Event Classification using Rich Features. Journal of Bioinformatics and Computational
Biology 8 (01), 131–146.

Miwa, M., P. Thompson, and S. Ananiadou (2012). Boosting Automatic Event Extraction
from the Literature using Domain Adaptation and Coreference Resolution. Bioinformat-
ics 28 (13), 1759–1765.

Miyao, Y. and J. Tsujii (2008). Feature Forest Models for Probabilistic HPSG Parsing.
Computational Linguistics 34 (1), 35–80.

Murphy, K. P., Y. Weiss, and M. I. Jordan (1999). Loopy Belief Propagation for Approximate
Inference: An Empirical Study. In Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence, pp. 467–475.

Natarajan, S., T. Khot, K. Kersting, B. Gutmann, and J. Shavlik (2012). Gradient-based
Boosting for Statistical Relational Learning: The Relational Dependency Network Case.
Machine Learning 86 (1), 25–56.

Neal, R. (2000). Slice Sampling. Annals of Statistics 31, 705–767.

Neal, R. (2008). The Harmonic Mean of the Likelihood: Worst monte carlo method ever.

Neal, R. M. (1993). Probabilistic Inference Using Markov chain Monte Carlo Methods.
Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto,
Toronto, Canada.

Nédellec, C., R. Bossy, J.-D. Kim, J.-J. Kim, T. Ohta, S. Pyysalo, and P. Zweigenbaum
(2013). Overview of BioNLP Shared Task 2013. In Proceedings of the BioNLP Shared
Task 2013 Workshop, pp. 1–7.

220

Newton, M. and A. Raftery (1994). Approximate Bayesian Inference with the Weighted
Likelihood Bootstrap. Journal of the Royal Statistical Society 56, 3–48.

Niepert, M. (2012). Markov Chains on Orbits of Permutation Groups. In Proceedings of
the Twenty-Eigth Conference on Uncertainty in Artificial Intelligence, pp. 624–633. AUAI
Press.

Niepert, M. and G. Van den Broeck (2014). Tractability through Exchangeability: A New
Perspective on Efficient Probabilistic Inference. In Proceedings of the Twenty-Eigth AAAI
Conference on Artificial Intelligence, pp. 2467–2475.

Niu, F., C. Ré, A. Doan, and J. W. Shavlik (2011). Tuffy: Scaling up Statistical Inference
in Markov Logic Networks using an RDBMS. PVLDB 4 (6), 373–384.

Ortiz, L. E. and L. P. Kaelbling (2000). Adaptive Importance Sampling for Estimation
in Structured Domains. In Proceedings of the Sixteenth Conference on Uncertainty in
Artificial Intelligence, pp. 446–454.

Papadimitriou, C. H. and M. Yannakakis (1999). On the Complexity of Database Queries.
Journal of Computer and System Sciences 58 (3), 407 – 427.

Paskin, M. A. (2003). Sample Propagation. In Advances in Neural Information Processing
Systems, pp. 425–432.

Patwardhan, S. and E. Riloff (2009). A Unified Model of Phrasal and Sentential Evidence
for Information Extraction. In Proceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing, pp. 151–160.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. San Francisco, CA: Morgan Kaufmann.

Pfeffer, A. (2001). IBAL: A Probabilistic Rational Programming Language. In B. Nebel
(Ed.), Proceedings of the Seventeenth International Joint Conference on Artificial Intelli-
gence, pp. 733–740. Morgan Kaufmann.

Poole, D. (2003). First-Order Probabilistic Inference. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence, pp. 985–991.

Poon, H. and P. Domingos (2006). Sound and Efficient Inference with Probabilistic and
Deterministic Dependencies. In Proceedings of the Twenty-First National Conference on
Artificial Intelligence, pp. 458–463. AAAI Press.

Poon, H. and P. Domingos (2007). Joint Inference in Information Extraction. In Proceedings
of the Twenty-Second National Conference on Artificial Intelligence, Vancouver, Canada,
pp. 913–918. AAAI Press.

221

Poon, H., P. Domingos, and M. Sumner (2008). A General Method for Reducing the
Complexity of Relational Inference and its Application to MCMC. In Proceedings of
the Twenty-Third AAAI Conference on Artificial Intelligence, pp. 1075–1080.

Poon, H. and L. Vanderwende (2010). Joint Inference for Knowledge Extraction from
Biomedical Literature. In HLT-NAACL, pp. 813–821.

Porter, M. F. (1980). An Algorithm for Suffix Stripping. Program 14 (3), 130–137.

Quirk, C., P. Choudhury, M. Gamon, and L. Vanderwende (2011). MSR-NLP Entry in
BioNLP Shared Task 2011. In Proceedings of the BioNLP Shared Task 2011 Workshop,
pp. 155–163.

Raghavan, S. and R. J. Mooney (2011, September). Abductive Plan Recognition by Ex-
tending Bayesian Logic Programs. In Proceedings of the European Conference on Machine
Learning/Principles and Practice of Knowledge Discovery in Databases, Volume 2, pp.
629–644.

Richardson, M. and P. Domingos (2006). Markov Logic Networks. Machine Learning 62,
107–136.

Riedel, S., H.-W. Chun, T. Takagi, and J. Tsujii (2009). A Markov Logic Approach to Bio-
Molecular Event Extraction. In Proceedings of the BioNLP 2009 Workshop Companion
Volume for Shared Task, pp. 41–49.

Riedel, S. and A. McCallum (2011a). Fast and Robust Joint Models for Biomedical Event
Extraction. In EMNLP, pp. 1–12.

Riedel, S. and A. McCallum (2011b). Robust Biomedical Event Extraction with Dual De-
composition and Minimal Domain Adaptation. In Proceedings of the BioNLP Shared Task
2011 Workshop, pp. 46–50.

Riedel, S., D. McClosky, M. Surdeanu, A. McCallum, and C. D. Manning (2011). Model
Combination for Event Extraction in BioNLP 2011. In Proceedings of the BioNLP Shared
Task 2011 Workshop, pp. 51–55.

Ritter, A., Mausam, O. Etzioni, and S. Clark (2012). Open Domain Event Extraction from
Twitter. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1104–1112.

Roberts, G. and J. Rosenthal (2007). Coupling and Ergodicity of Adaptive MCMC. Journal
of Applied Probability 44(2), 458–477.

Roberts, G. O. and J. S. Rosenthal (2009). Examples of Adaptive MCMC. Journal of
Computational and Graphical Statistics 18 (2), 349–367.

222

Roth, D. (1996). On the Hardness of Approximate Reasoning. Artificial Intelligence 82,
273–302.

Roth, D. and W. Yih (2005). Integer Linear Programming Inference for Conditional Ran-
dom Fields. In Proceedings of the Twenty-Second International Conference on Machine
Learning, pp. 736–743.

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method. John Wiley & Sons Inc.

Russell, S. J. and P. Norvig (2003). Artificial Intelligence: A Modern Approach (2 ed.).
Pearson Education.

Sang, T., P. Beame, and H. Kautz (2005). Solving Bayesian networks by weighted model
counting. In Proceedings of the Twentieth National Conference on Artificial Intelligence,
pp. 475–482.

Sarkhel, S., D. Venugopal, P. Singla, and V. Gogate (2014). Lifted MAP Inference for Markov
Logic Networks. In Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics, AISTATS, pp. 859–867.

Schapire, R. (2003). The Boosting Approach to Machine Learning: An Overview. In Nonlin-
ear Estimation and Classification, Volume 171 of Lecture Notes in Statistics, pp. 149–171.
Springer New York.

Scharstein, D. and R. Szeliski (2002, April). A Taxonomy and Evaluation of Dense
Two-Frame Stereo Correspondence Algorithms. International Journal on Computer Vi-
sion 47 (1-3), 7–42.

Selman, B., H. Kautz, and B. Cohen (1996). Local Search Strategies for Satisfiability Testing.
In D. S. Johnson and M. A. Trick (Eds.), Cliques, Coloring, and Satisfiability: Second DI-
MACS Implementation Challenge, pp. 521–532. Washington, DC: American Mathematical
Society.

Shavlik, J. W. and S. Natarajan (2009). Speeding Up Inference in Markov Logic Networks
by Preprocessing to Reduce the Size of the Resulting Grounded Network. In Proceedings
of the 21st International Joint Conference on Artificial Intelligence, pp. 1951–1956.

Shawe-Taylor, J. and N. Cristianini (2004). Kernel Methods for Pattern Analysis. New York,
NY, USA: Cambridge University Press.

Shwe, M., B. Middleton, D. Heckerman, M. Henrion, E. Horvitz, H. Lehmann, and G. Cooper
(1991). Probabilistic Diagnosis using a Reformulation of the INTERNIST-1/QMR Knowl-
edge Base. I. The Probabilistic Model and Inference Algorithms. Methods of Information
in Medicine 30 (4), 241–55.

223

Singla, P. and P. Domingos (2005). Discriminative Training of Markov Logic Networks. In
Proceedings of the Twentieth National Conference on Artificial Intelligence, Pittsburgh,
PA, pp. 868–873. AAAI Press.

Singla, P. and P. Domingos (2006). Entity Resolution with Markov Logic. In Proceedings
of the Sixth IEEE International Conference on Data Mining, Hong Kong, pp. 572–582.
IEEE Computer Society Press.

Singla, P. and P. Domingos (2008). Lifted First-Order Belief Propagation. In Proceedings
of the Twenty-Third AAAI Conference on Artificial Intelligence, pp. 1094–1099. AAAI
Press.

Singla, P., A. Nath, and P. Domingos (2014). Approximate Lifting Techniques for Belief
Propagation. In Proceedings of the Twenty-Eigth AAAI Conference on Artificial Intelli-
gence, pp. 2497–2504.

Sontag, D. and A. Globerson (2011). Introduction to Dual Decomposition for Inference, pp.
219–254. MIT Press.

Taghipour, N., D. Fierens, G. Van den Broeck, J. Davis, and H. Blockeel (2013). Complete-
ness Results for Lifted Variable Elimination. In Proceedings of the Sixteenth Conference
on Artificial Intelligence and Statistics, pp. 572–580.

Tsochantaridis, I., T. Hofmann, T. Joachims, and Y. Altun (2004). Support Vector Machine
Learning for Interdependent and Structured Output Spaces. In Proceedings of the 21st
International Conference on Machine Learning, pp. 104–112.

Van den Broeck, G. (2011). On the Completeness of First-Order Knowledge Compilation
for Lifted Probabilistic Inference. In Proceedings of the Twenty-Fifth Annual Conference
on Neural Information Processing Systems (NIPS), pp. 1386–1394.

Van den Broeck, G. (2013). Lifted Inference and Learning in Statistical Relational Models.
Ph. D. thesis, KU Leuven.

Van den Broeck, G. and A. Darwiche (2013). On the Complexity and Approximation of
Binary Evidence in Lifted Inference. In Proceedings of the Twenty-Seventh Annual Con-
ference on Neural Information Processing Systems (NIPS), pp. 2868–2876.

Van den Broeck, G. and J. Davis (2012). Conditioning in First-Order Knowledge Compilation
and Lifted Probabilistic Inference. In Proceedings of the Twenty-Sixth AAAI Conference
on Artificial Intelligence, pp. 1961–1967. AAAI Press.

Van den Broeck, G., N. Taghipour, W. Meert, J. Davis, and L. De Raedt (2011). Lifted
Probabilistic Inference by First-Order Knowledge Compilation. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, pp. 2178–2185.

224

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. New York, NY: Springer.

Vardi, M. Y. (1982). The Complexity of Relational Query Languages (Extended Abstract).
In Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp.
137–146. ACM.

Venugopal, D., C. Chen, V. Gogate, and V. Ng (2014). Relieving the Computational Bottle-
neck: Joint Inference for Event Extraction with High-Dimensional Features. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 831–843. ACL.

Venugopal, D. and V. Gogate (2012). On Lifting the Gibbs Sampling Algorithm. In Proceed-
ings of the Twenty-Sixth Annual Conference on Neural Information Processing Systems
(NIPS), pp. 1664–1672.

Venugopal, D. and V. Gogate (2013a). Dynamic Blocking and Collapsing for Gibbs Sampling.
In Proceedings of the Twenty-Nineth Conference on Uncertainty in Artificial Intelligence.

Venugopal, D. and V. Gogate (2013b). GiSS: Combining Gibbs Sampling and SampleSearch
for Inference in Mixed Probabilistic and Deterministic Graphical Models. In Proceedings
of the Twenty-Seventh AAAI Conference on Artificial Intelligence, pp. 897–904.

Venugopal, D. and V. Gogate (2014a). Evidence-Based Clustering for Scalable Inference in
Markov Logic. In Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD, pp. 258–273.

Venugopal, D. and V. Gogate (2014b). Scaling-up Importance Sampling for Markov Logic
Networks. In Proceedings of the Twenty-Eigth Annual Conference on Neural Information
Processing Systems (NIPS), pp. 2978–2986.

Venugopal, D., S. Sarkhel, and V. Gogate (2015). Just Count the Satisfied Groundings:
Scalable Local-Search and Sampling Based Inference in MLNs. In Proceedings of the
Twenty-Nineth AAAI Conference on Artificial Intelligence, pp. 3606–3612.

Wainwright, M. J., T. S. Jaakkola, and A. S. Willsky (2003). Tree-reweighted Belief Propa-
gation Algorithms and Approximate ML Estimation by Pseudo-Moment Matching. In In
Nineth Workshop on Artificial Intelligence and Statistics.

Wainwright, M. J. and M. I. Jordan (2008). Graphical Models, Exponential Families, and
Variational Inference. Found. Trends Mach. Learn. 1 (1-2), 1–305.

Wei, W., J. Erenrich, and B. Selman (2004). Towards Efficient Sampling: Exploiting Ran-
dom Walk Strategies. In Proceedings of the Nineteenth National Conference on Artificial
Intelligence, pp. 670–676.

225

Wemmenhove, B., J. M. Mooij, W. Wiegerinck, M. A. R. Leisink, H. J. Kappen, and J. P.
Neijt (2007). Inference in the Promedas Medical Expert System. In AIME, pp. 456–460.
Springer.

Wemmenhove, B., J. M. Mooij, W.Wiegerinck, M. A. R. Leisink, H. J. Kappen, and J. P.
Neijt (2007). Inference in the Promedas Medical Expert System. In Eleventh Conference
on Artificial Intelligence in Medicine, pp. 456–460.

Yedidia, J. S., W. T. Freeman, and Y. Weiss (2000). Generalized Belief Propagation. In Pro-
ceedings of the Fourteenth Annual Conference on Neural Information Processing Systems
(NIPS), pp. 689–695.

Yedidia, J. S., W. T. Freeman, and Y. Weiss (2005). Constructing Free-Energy Approxima-
tions and Generalized Belief Propagation Algorithms. IEEE Transactions on Information
Theory 51 (7), 2282–2312.

Yu, H. and R. A. van Engelen (2012). Measuring the Hardness of Stochastic Sampling
on Bayesian Networks with Deterministic Causalities: the k-Test. In Proceedings of the
Twenty-Seventh Conference on Uncertainty in Artificial Intelligence.

Zhang, N. and D. Poole (1994). A Simple Approach to Bayesian Network Computations. In
Proceedings of the Tenth Biennial Canadian Artificial Intelligence Conference, pp. 171–
178.

VITA

Deepak Venugopal was born in Bangalore, India. He obtained his bachelor’s degree in

information science from B.M.S College of Engineering in 2001 and his master’s degree in

computer science from The University of Texas at Dallas in 2004. After this, he worked as

an R&D engineer in the software industry before starting his Ph.D. in computer science at

The University of Texas at Dallas. During his Ph.D., he primarily worked in the fields of

Artificial Intelligence and Machine Learning, and developed several advanced algorithms for

probabilistic reasoning.

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Contributions

	Background
	Representation
	Propositional Logic
	First-Order Logic
	Discrete Graphical Models
	Markov Logic Networks

	Inference
	Exact Inference in Markov Networks
	Sampling Based Approximate Inference
	Lifted Inference

	Learning
	Weight Learning in MLNs

	Handling Logical Dependencies in MCMC based Inference
	GiSS: Sampling in PGMs with determinism
	The GiSS Algorithm
	Computing the Sample Weights
	Related Work and Discussion
	Experiments

	Dynamic Blocking and Collapsing
	Combining Blocking and Collapsing
	Optimally Selecting Blocked and Collapsed Variables
	Dynamic Blocked-Collapsed Gibbs Sampling
	Related Work
	Experiments

	Summary

	Lifting Sampling based Inference Algorithms
	Lifted Blocked Gibbs
	Our Approach
	PTP-Tree
	Lifted Blocked Gibbs
	Lifted Messages
	Clustering
	Experiments

	Lifted Importance Sampling
	PTP-based Importance Sampling
	New Lifting Rule
	Constructing the Proposal Distribution
	Experiments

	Summary

	Exploiting Approximate Symmetries for Scalable Inference
	Grounding and Evidence Problems
	Approximate Lifting using Evidence-based Clustering
	Input Specification
	Problem Formulation
	Evidence Approximation
	Algorithm Specification
	Evidence Based Distance Function
	Related Work
	Experiments

	Application: Scalable Importance Sampling
	Constructing and Sampling the Proposal Distribution
	Computing the Importance Weight
	Rao-Blackwellisation
	Experiments

	Summary

	Exploiting Efficient Counting Strategies for Scalable Inference
	Introduction
	Encoding the Counting Problem
	CSP Formulation
	Counting the Number of Solutions of the CSP
	Junction Trees for Solution Counting

	Application I: Gibbs Sampling
	Application II: MaxWalkSAT
	Extensions
	Existential Quantifiers
	Lifted Inference

	Experiments
	Setup
	Results for Gibbs Sampling
	Results for MaxWalkSAT

	Summary

	Joint Inference for Extracting Biomedical Events
	Introduction
	Background
	Related Work
	The Genia Event Extraction Task

	Pipeline Model
	Trigger Labeling
	Argument Labeling

	Joint Model
	MLN Structure
	Weight Learning
	Testing
	Inference

	Evaluation
	Experimental Setup
	Results on the BioNLP'13 Dataset
	Results on the BioNLP'11 Dataset
	Results on the BioNLP'09 Dataset

	Summary

	Future Work
	Advancing Approximate Lifting
	Large Scale Weight Learning
	Learning Feasible Structures
	Systems Engineering
	Joint Inference Applications
	Lifted Inference in High-level Languages

	Conclusion
	References
	Vita

