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Abstract. In this paper, we present cutset networks, a new tractable
probabilistic model for representing multi-dimensional discrete distri-
butions. Cutset networks are rooted OR search trees, in which each
OR node represents conditioning of a variable in the model, with tree
Bayesian networks (Chow-Liu trees) at the leaves. From an inference
point of view, cutset networks model the mechanics of Pearl’s cutset
conditioning algorithm, a popular exact inference method for probabilis-
tic graphical models. We present efficient algorithms, which leverage and
adopt vast amount of research on decision tree induction for learning cut-
set networks from data. We also present an expectation-maximization
(EM) algorithm for learning mixtures of cutset networks. Our experi-
ments on a wide variety of benchmark datasets clearly demonstrate that
compared to approaches for learning other tractable models such as thin-
junction trees, latent tree models, arithmetic circuits and sum-product
networks, our approach is significantly more scalable, and provides sim-
ilar or better accuracy.

1 INTRODUCTION

Learning tractable probabilistic models from data has been the subject of much
recent research. These models offer a clear advantage over Bayesian networks
and Markov networks: exact inference over them can be performed in polyno-
mial time, obviating the need for unreliable, inaccurate approximate inference,
not only at learning time but also at query time. Interestingly, experimental re-
sults in numerous recent studies [5, 11, 16, 23] have shown that the performance
of approaches that learn tractable models from data is similar or better than
approaches that learn Bayesian and Markov networks from data. These results
suggest that controlling exact inference complexity is the key to superior end-to-
end performance.

In spite of these promising results, a key bottleneck remains: barring a few
exceptions, algorithms that learn tractable models from data are computation-
ally expensive, requiring several hours for even moderately sized problems (e.g.,
approaches presented in [11, 16, 23] need more than “10 hours” of CPU time for
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datasets having 200 variables and 104 examples). There are several reasons for
this, with the main reason being the high computational complexity of condi-
tional independence tests. For example, the LearnSPN algorithm of Gens and
Domingos [11] and the ID-SPN algorithm of Rooshenas and Lowd [23] for learn-
ing tractable sum-product networks, spend a substantial amount of their execu-
tion time on partitioning the given set of variables into conditionally independent
components. Other algorithms with strong theoretical guarantees, such as learn-
ing efficient Markov networks [13], and learning thin junction trees [1, 4, 19] also
suffer from the same problem.

In this paper, we present a tractable class of graphical models, called cutset
networks, which are rooted OR search trees with tree Bayesian networks (Chow-
Liu trees) at the leaves. Each OR node (or sum node) in the OR tree represents
conditioning over a variable in the model. Cutset networks derive their name
from Pearl’s cutset conditioning method [20]. The key idea in cutset condition-
ing is to condition on a subset of variables in the graphical model, called the
cutset, such that the remaining network is a tree. Since, exact probabilistic infer-
ence can be performed in time that is linear in the size of the tree (using Belief
propagation [20] for instance), the complexity of cutset conditioning is exponen-
tial in the cardinality (size) of the cutset. If the cutset is bounded, then cutset
conditioning is tractable. However, note that unlike classic cutset conditioning,
cutset networks can take advantage of determinism [3, 12] and context-specific
independence [2] by allowing different variables to be conditioned on at the same
level in the OR search tree. As a result, they can yield a compact representation
even if the size of the cutset is arbitrarily large.

The key advantage of cutset networks is that only the leaf nodes, which
represent tree Bayesian networks, take advantage of conditional independence,
while the OR search tree does not. As a result, to learn cutset networks from
data, we do not have to run expensive conditional independence tests at any
internal OR node. Moreover, the leaf distributions can be learned in polynomial
time, using the classic Chow-Liu algorithm [6]. As a result, if we assume that
the size of the cutset (or the height of the OR tree) is bounded by k, and given
that the time complexity of the Chow-Liu algorithm is O(n2d), where n is the
number of variables and d is the number of training examples, the optimal cutset
network can be learned in O(nk+2d) time.

Although, the algorithm described above is tractable, it is infeasible for any
reasonable k (e.g., 5) that we would like to use in practice. Therefore, to make
our algorithm practical, we use splitting heuristics and pruning techniques de-
veloped over the last few decades for inducing decision trees from data [21, 18].
The splitting heuristics help us quickly learn a reasonably good cutset network,
without any backtracking, while the pruning techniques such as pre-pruning and
reduced-error (post) pruning help us avoid over-fitting. To improve the accuracy
further, we also consider mixtures of cutset networks, which generalize mixtures
of Chow-Liu trees [17] and develop an expectation-maximization algorithm for
learning them from data.
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We conducted a detailed experimental evaluation comparing our three learn-
ing algorithms: learning cutset networks without pruning (CNet), learning cutset
networks with pruning (CNetP), and learning mixtures of cutset networks (MC-
Net), with six existing algorithms for learning tractable models from data: sum-
product networks with direct and indirect interactions (ID-SPN) [23], learning
tractable Markov networks with Arithmetic Circuits (ACMN) [16], mixtures of
trees (MT) [17], stand alone Chow-Liu trees [6], learning sum-product networks
(LearnSPN) [11] and latent tree models (LTM) [5]. We found that MCNet is the
best performing algorithm in terms of test-set log likelihood score on 11 out of
the 20 benchmarks that we experimented with. ID-SPN has the best test-set log
likelihood score on 8 benchmarks while ACMN and CNetP are closely tied for
the third-best performing algorithm spot. We also measured the time taken to
learn the model for ID-SPN and our algorithms, and found that ID-SPN was
the slowest algorithm. CNet was the fastest algorithm, while CNetP and MCNet
were second and third fastest, respectively. Interestingly, if we look at learning
time and accuracy as a whole, CNetP is the best performing algorithm, provid-
ing reasonably accurate results in a fraction of the time as compared to MCNet,
ACMN and ID-SPN.

The rest of the paper is organized as follows. In section 2, we present back-
ground and notation. Section 3 provides the formal definition of cutset networks.
Section 4 describes algorithms for learning cutset networks. We present experi-
mental results in section 5 and conclude in section 6.

2 Notation and Background

We borrow notation from [17]. Let V be a set of n discrete random variables
where each variable v ∈ V ranges over a finite discrete domain ∆v and let
xv ∈ ∆v denote a value that can be assigned to v. Let A ⊆ V , then xA denotes
an assignment to all the variables in A. For simplicity, we often denote xA as x
and ∆v as ∆. The set of domains is denoted by ∆V = {∆i|i ∈ V }.

A probabilistic graphical model G is denoted by a triple 〈V,∆V , F 〉 where
V and ∆V are the sets of variables and their domains respectively, and F is
a set of real-valued functions. Each function f ∈ F is defined over a subset
V (f) ⊆ V of variables, called its scope. For Bayesian networks (cf. [20, 7]) which
are typically depicted using a directed acyclic graph (DAG), F is the set of
conditional probability tables (CPTs), where each CPT is defined over a variable
given its parents in the DAG. For Markov networks (cf. [14]), F is the set of
potential functions. Markov networks are typically depicted using undirected
graphs (also called the primal graph) in which we have a node in the graph for
each variable in the model and edges connect two variables that appear together
in the scope of a function.

A probabilistic graphical model represents the following joint probability
distribution over V :

P (x) =
1

Z

∏
f∈F

f(xV (f))
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where x is an assignment to all variables in V , xV (f) denotes the projection of x
on V (f) and Z is a normalization constant. For Bayesian networks, Z = 1, while
for Markov networks Z > 0. In Markov networks, Z is also called the partition
function.

The two main inference problems in probabilistic graphical models are (1)
posterior marginal inference: computing the marginal probability of a variable
given evidence, namely computing P (xv|xA) where xA is the evidence and v ∈
V \A; and (2) maximum-a-posteriori (MAP) inference: finding an assignment of
values to all variables that has the maximum probability given evidence, namely
computing arg maxxB∈B P (xB |xA) where xA is the evidence and B = V \ A.
Both problems are known to be NP-hard.

2.1 The Chow-Liu Algorithm for Learning Tree Distributions

A tree Bayesian network is a Bayesian network in which each variable has no
more than one parent while a tree Markov network is a Markov network whose
primal (or interaction) graph is a tree. It is known that both tree Bayesian and
Markov networks have the same representation power and therefore can be used
interchangeably.

The Chow-Liu algorithm [6] is a classic algorithm for learning tree networks
from data. If P (x) is a probability distribution over a set of variables V , then the
Chow-Liu algorithm approximates P (x) by a tree network T (x). If GT = (V,ET )
is an undirected Markov network that induces the distribution T (x), then

T (x) =

∏
(u,v)∈ET

T (xu, xv)∏
v∈V

T (xv)deg(v)−1

where deg(v) is the degree of vertex v or the number of incident edges to v. If
GT is a directed model such as a Bayesian network, then

T (x) =
∏
v∈V

T (xv|xpa(v))

where T (xv|xpa(v)) is an arbitrary conditional probability distribution such that
|pa(v)| ≤ 1. The Kullback-Leibler divergence KL(P, T ) between P (x) and T (x)
is defined as:

KL(P, T ) =
∑
x

P (x)log

(
P (x)

T (x)

)
In order to minimize KL(P, T ), Chow and Liu proved that each selected edge
(u, v) ∈ ET has to maximize the total mutual information,

∑
(u,v)∈ET

I(u, v).

Mutual information, denoted by I(u, v), is a measure of mutual dependence
between two random variables u and v and is given by:

I(u, v) =
∑

xu∈∆u

∑
xv∈∆v

P (xu, xv) log

(
P (xu, xv)

P (xu)P (xv)

)
(1)
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To maximize (1), the Chow-Liu procedure computes the mutual information
I(u, v) for all possible pairs of variables in V and then finds the maximum
weighted spanning treeGT = (V,ET ) such that each edge (u, v) ∈ ET is weighted
by I(u, v). The marginal distribution T (u, v) of a pair of variables (u, v) con-
nected by an edge is the same as P (u, v).

Tree networks are attractive because: (1) learning both the structure and
parameters of the distribution are tractable; (2) several probabilistic inference
tasks can be solved in linear time; and (3) they have intuitive interpretations.

The time complexity of learning the structure and parameters of a tree net-
work using the Chow-Liu algorithm is O(n2d + n2 log(n)) where n is the num-
ber of variables and d is the number of training examples. Since, in practice,
d > log(n), for the rest of the paper, assume that the time complexity of the
Chow-Liu algorithm is O(n2d).

2.2 OR Trees

OR trees are rooted trees which are used to represent the search space explored
during probabilistic inference by conditioning [20, 9]. Each node in an OR tree is
labeled by a variable v in the model. Each edge emanating from a node represents
the conditioning of the variable v at that node by a value xv ∈ ∆v and is labeled
by the marginal probability of the variable-value assignment given the path from
the root to the node. For simplicity, we will focus on binary valued variables.
For binary variables, assume that left edges represent the assignment of variable
v to 0 and right edges represent v = 1. A similar representation can be used for
multi-valued variables.

Any distribution can be represented using a OR Tree. In the worst-case, the
tree will require O(2n+1) parameters to specify the distribution. Figure 1 shows
a probability distribution and a possible OR tree.

The distribution represented by an OR tree O is given by:

P (x) =
∏

(vi,vj)∈pathO(x)

w(vi, vj) (2)

where pathO(x) is the path from the root to the unique leaf node l(x) corre-
sponding to the assignment x and w(vi, vj) is the probability value attached to
the edge between the OR nodes vi and vj .

3 Cutset Networks

Cutset Networks (CNets) are a hybrid of rooted OR trees and tree Bayesian
networks, with an OR tree at the top and a tree Bayesian network attached to
each leaf node of the OR tree. Formally a cutset network is a pair C = (O,T)
where O is a rooted OR tree and T = {T1, . . . , Tl} is a collection of tree networks.
The distribution represented by a cutset network is given by:

P (x) =

 ∏
(vi,vj)∈pathO(x)

w(vi, vj)

(Tl(x)(xV (Tl(x)))
)

(3)
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Fig. 1. (a) A probability distribution, (b) An OR tree representing the distribution
given in (a). The left branch from a node represents conditioning by 0, whereas the
right branch represents conditioning by 1.

where pathO(x) is the path from the root to the unique leaf node l(x) corre-
sponding to the assignment x, w(vi, vj) is the probability value attached to the
edge between the OR nodes vi and vj and Tl(x) is the tree Bayesian network as-
sociated with l(x) and V (Tl(x)) is the set of variables over which Tl(x) is defined.
Fig. 2 shows an example cutset network.
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Fig. 2. A cutset network

Note that unlike classic cutset conditioning, cutset networks can take advan-
tage of determinism [3] and context-specific independence [2] by branching on
different variables at the same level (or depth) [12, 13]. As a result, they can
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Algorithm 1 LearnCNet

Input: Training dataset D = {x1, ..., xd}, Variables V .
Output: A cutset network C

if Termination condition is satisfied then
return ChowLiuTree(D)

end if
Heuristically select a variable v ∈ V for splitting
Create a new node Ov labeled by v.
/*
Each node has a left child Ov.left, a right child Ov.right, a left

probability Ov.lp and a right probability Ov.rp.
*/
Let Dv=0 = {xi ∈ D|xi

v = 0}
Let Dv=1 = {xi ∈ D|xi

v = 1}
Ov.lp← |Dv=0|

|D|

Ov.rp← |Dv=1|
|D|

Ov.left← LearnCNet(Dv=0, V \ v)
Ov.right← LearnCNet(Dv=1, V \ v)
return Ov

yield a compact representation, even if the size of the cutset1 is arbitrarily large.
For example, consider the cutset network given in Fig. 2. The left most leaf node
represents a tree Bayesian network over V \ {a, e, f} while the right most leaf
node represents a tree Bayesian network over V \ {a, b}. Technically, the size of
the cutset can be as large as the union of the variables mentioned at various
levels in the OR tree. Thus, for the cutset network given in Fig. 2, the size of
the cutset can be as large as {a, b, e, f}.

4 Learning Cutset Networks

As mentioned in the introduction, if the size of the cutset is bounded by k,
we can easily come up with a polynomial time algorithm for learning cutset
networks: systematically search over all subsets of size k. Unfortunately, this
naive algorithm is impractical because of its high polynomial complexity; the
time complexity is at least Ω(nk+2d) where n is the number of variables and d
is the number of training examples. Therefore, in this section we will present an
algorithm that uses techniques adopted from the decision tree literature to learn
cutset networks.

Simply put, given training data D = {x1, . . . , xd} defined over a set V of
variables, we can use the following recursive or divide-and-conquer approach to
learn a cutset network from D (see Algorithm 1). Select a variable using the

1 Given a graph G = (V,E), C ⊆ V is a cutset of G if the subgraph over V \ C is a
tree.
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given splitting heuristic, place it at the root and make one branch for each of its
possible values. Repeat the approach at each branch, using only those instances
that reach the branch. If at any time, some pre-defined termination condition is
satisfied, run the Chow-Liu algorithm on the remaining variables. It is easy to
see that the optimal probability value, assuming that we are using the maximum
likelihood estimation principle, attached to each branch in the OR tree is the
fraction of the instances at the parent that actually reach the branch.

The two main choices in the above algorithm are which variable to split on
and the termination condition. We discuss each of them in turn, next, followed
by the algorithm to learn mixtures of cutset networks from data.

4.1 Splitting Heuristics

Intuitively, we should split on a variable that reduces the expected entropy (or
the information content) of the two partitions of the data created by the split.
The hope is that when the expected entropy is small, we will be able to represent
it faithfully using a simple distribution such as a tree Bayesian network. Unfor-
tunately, unlike traditional classification problems, in which we are interested in
(the entropy of) a specific class variable, estimating the joint entropy of the data
when the class variable is not known is a challenging task (we just don’t have
enough data to reliably measure the joint entropy). Therefore, we propose to
approximate the joint entropy by the average entropy over individual variables.
Formally, for our purpose, the entropy of data D defined over a set V of variables
is given by:

Ĥ(D) =
1

|V |
∑
v∈V

HD(v) (4)

where HD(v) is the entropy of variable v relative to D. It is given by:

HD(v) = −
∑

xv∈∆v

P (xv)log(P (xv))

Given a closed-form expression for the entropy of the data, we can calculate
the information gain or the expected reduction in the entropy after conditioning
on a variable v using the following expression:

GainD(v) = Ĥ(D)−
∑

xv∈∆v

|Dxv
|

|D|
Ĥ(Dxv

)

where Dxv = {xi ∈ D|xiv = xv}.
From the discussion above, the splitting heuristic is obvious: select a variable

that has the highest information gain.

4.2 Termination Condition and Post-Pruning

A simple termination condition that we can enforce is stopping when the num-
ber of examples at a node falls below a fixed threshold. Alternatively, we can
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also declare a node as a leaf node if the entropy falls below a threshold. Unfortu-
nately, both of these criteria are highly dependent on the threshold used. A large
threshold will yield shallow OR trees that are likely to underfit the data (high
bias) while a small threshold will yield deep trees that are likely to overfit the
data (high variance). To combat this, inspired by the decision tree literature [21,
22], we propose to use reduced error pruning. In reduced error pruning, we grow
the tree fully and post-prune in a bottom-up fashion. (Alternatively, we can also
prune in a top-down fashion).

The benefits of pruning over using a fixed threshold are that it avoids the
horizon effect (the thresholding method suffers from lack of sufficient look ahead).
Pruning comes at a greater computational expense than threshold based stopped
splitting and therefore for problems with large training sets, the expense can be
prohibitive. For small problems, though, these computational costs are low and
pruning should be preferred over stopped splitting. Moreover, pruning is an
anytime method and as a result we can stop it at any time.

Formally, our proposed reduced error pruning for cutset networks operates
as follows. We divide the data into two sets: training data and validation data.
Then, we build a full OR tree over the training data, declaring a node as a leaf
node using a weak termination condition (e.g., the number of examples at a node
is less than or equal to 5). Then, we recursively visit the tree in a bottom up
fashion, and replace a node and the sub-tree below it by a leaf node (namely, a
Chow-Liu tree) if it increases the log-likelihood on the validation set.

We summarize the time and space complexity of learning (using Algorithm
1) and inference in cutset networks in the following theorem.

Theorem 1. The time complexity of learning cutset networks is O(n2ds) where
s is the number of nodes in the cutset network, d is the number of examples and
n is the number of variables. The space complexity of the algorithm is O(ns),
which also bounds the space required by the cutset networks. The time complexity
of performing marginal and maximum-a-posteriori inference in a cutset network
is O(ns).

Proof. The time complexity of computing the gain at each internal OR node
is O(n2d). Similarly, the time complexity of running the Chow-Liu algorithm
at each leaf node is O(n2d). Since there are s nodes in the cutset network, the
overall time complexity is O(n2ds). The space required to store an OR node is
O(1) while the space required to store a tree Bayesian network is O(n). Thus,
the overall space complexity is O(max(n, 1)s) = O(ns). The time complexity of
performing inference at each leaf Chow-Liu node is O(n) while inference at each
internal OR node can be done in constant time. Since the tree has s nodes, the
overall inference complexity is O(ns).
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4.3 Mixtures of Cutset Networks

Similar to mixtures of trees [17], we define mixtures of cutset networks as dis-
tributions of the form:

P (x) =

k∑
i=1

λiCi(x) (5)

with λi ≥ 0 for i = 1, . . . , k, and
∑k
i=1 λi = 1. Each mixture component Ci(x) is

a cutset network and λi is its mixture co-efficient. At a high level, one can think
of the mixture as containing a latent variable z which takes a value i ∈ {1, . . . , k}
with probability λi.

Next, we present a version of the expectaton-maximization algorithm (EM) [10]
for learning mixtures of cutset networks from data. The EM algorithm oper-
ates as follows. We begin with random parameters. At each iteration t, in the
expectation-step (E-step) of the algorithm, we find the probability of complet-
ing each training example, using the current model. Namely, for each training
example xj and each component i, we compute

P t(z = i|xj) =
λtiC

t
i (x

j)∑k
r=1 λ

t
rC

t
r(x

j)

Then, in the maximization-step (M-step), we learn each mixture component i,
using a weighted training set in which each example j has weight P t(z = i|xj).
This yields a new mixture component Ct+1

i . In the M-step, we also update the
mixture co-efficients using the following expression:

λt+1
i =

∑d
j=1 P

t(z = i|xj)
d

We can run EM until it converges or until a pre-defined bound on the number of
iterations is exceeded. The quality of the local maxima reached by EM is highly
dependent on the initialization used and therefore in practice, we typically run
EM using several different initializations and choose parameter settings having
the highest log-likelihood score. Notice that by varying the number of mixture
components, we can explore interesting bias versus variance tradeoffs. Large k
will yield high variance models and small k will yield high bias models.

We summarize the time and space complexity of learning and inference in
mixtures of cutset networks in the following theorem.

Theorem 2. The time complexity of learning mixtures of cutset networks is
O(n2dsktmax) where s is the number of nodes in the cutset network, d is the
number of examples, k is the number of mixture components, tmax is the maxi-
mum number of iterations for which EM is run and n is the number of variables.
The space complexity of the algorithm is O(nsk), which also bounds the space
required by the mixtures of cutset networks. The time complexity of performing
marginal and maximum-a-posteriori inference in a mixtures of cutset networks
is O(nks).

Proof. Follows from Theorem 1
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Table 2. Runtime Comparison(in seconds). Time-limit for each algorithm: 48 hours.
†indicates that the algorithm did not terminate in 48 hours.

Dataset Var# Train Valid Test CNet CNetP MCNet ID-SPN ACMN

NLTCS 16 16181 2157 3236 0.2 0.4 36.5 307.0 242.4
MSNBC 17 291326 38843 58265 13.0 29.2 2177.7 90354.0 579.9
KDDCup2000 64 180092 19907 34955 95.9 197.8 1988.0 38223.0 645.5
Plants 69 17412 2321 3482 6.5 10.5 135.0 10590.0 119.4
Audio 100 15000 2000 3000 17.2 19.6 187.0 14231.0 1663.9

Jester 100 9000 1000 4116 14.0 11.8 101.2 † 3665.8
Netflix 100 15000 2000 3000 25.2 22.6 224.4 † 1837.4
Accidents 111 12758 1700 2551 15.7 22.1 195.4 † 793.4
Retail 135 22041 2938 4408 18.9 27.6 104.7 2116.0 12.5
Pumsb-star 163 12262 1635 2452 30.1 41.8 233.8 18219.0 374.0

DNA 180 1600 400 1186 13.8 6.9 57.7 150850.0 39.9
Kosarek 190 33375 4450 6675 65.9 102.5 141.2 † 585.4
MSWeb 294 29441 32750 5000 208.6 365.8 642.8 † 286.3
Book 500 8700 1159 1739 129.1 204.2 154.4 125480.0 3035.0
EachMovie 500 4524 1002 591 90.7 133.4 204.8 78982.0 9881.1

WebKB 839 2803 558 838 169.7 228.7 160.4 † 7098.3
Reuters-52 889 6532 1028 1540 397.1 650.4 1177.2 † 2709.6
20Newsgroup 910 11293 3764 3764 695.2 935.8 1525.2 † 16255.3
BBC 1058 1670 225 330 206.7 223.9 70.2 4157.0 1862.2
Ad 1556 2461 327 491 365.8 594.3 155.4 285324.0 6496.4

5 Empirical Evaluation

The aim of our experimental evaluation is two fold: comparing the speed, mea-
sured in terms of CPU time, and accuracy, measured in terms of test-set log like-
lihood scores, of our methods with state-of-the-art methods for learning tractable
models.

5.1 Methodology and Setup

We evaluated our algorithms as well as the competition on 20 benchmark datasets
shown in Table 2. The number of variables in the datasets ranged from 16 to
1556, and the number of training examples varied from 1.6K to 291K examples.
All variables in our datasets are binary-valued for a fair comparison with other
methods, who operate primarily on binary-valued input. These datasets or a
subset of them have also been used by [8, 16, 15, 11, 24].

We implemented three variations of our algorithms: (1) learning CNets with-
out pruning (CNet), (2) learning CNets with pruning (CNetP) and (3) mixtures
of CNets (MCNets). We compared their performance with the following learn-
ing algorithms from literature: learning sum-product networks with direct and
indirect interactions (ID-SPN) [23], learning Markov networks using arithmetic
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Table 3. Head-to-head comparison of the number of wins (in terms of test-set log-
likelihood score) achieved by one algorithm (row) over another (column), for all pairs
of the 6 best performing algorithms used in our experimental study.

CNetP MCNet ID-SPN ACMN MT LearnSPN

CNetP - 1 1 2 2 6

MCNet 19 - 11 13 15 18

ID-SPN 19 8 - 16 16 20

ACMN 18 5 3 - 8 15

MT 18 5 3 12 - 16

LearnSPN 14 2 0 5 4 -

circuits (ACMN) [16], learning mixture of trees (MT) [17], Chow-Liu trees [6],
learning Sum-Product Networks (LearnSPN) [11] and learning latent tree mod-
els (LTM) [5]. Most of the results on the datasets (except the results on learning
Chow-Liu models) were made available to us by [23]. They are part of the Libra
toolkit available on Daniel Lowd’s web page.

We smoothed all parameters using 1-laplace smoothing. For learning CNets
without pruning, we stopped building the OR tree when the number of examples
at the leaf node were fewer than 10 or the total entropy was smaller than 0.01. To
learn MCNets, we varied the number of components from 5 to 40, in increments
of 5 and ran the EM algorithm for 100 iterations or convergence whichever was
earlier. For each iteration of EM, we could update both the structure and the
parameters of the cutset network associated with each component. However,
to speed up the learning algorithm, we chose to update just the parameters,
utilizing the structure learned at the first iteration.

5.2 Accuracy

Table 1 shows the test-set log likelihood scores for the various benchmark net-
works while Table 3 shows head-to-head comparison of the six best performing
algorithms namely CNetP, MCNet, ID-SPN, ACMN, MT and LearnSPN. Ex-
cluding the first two datasets where there are multiple winners, we can see that
MCNet has the best log-likelihood score on 9 out of the remaining 18 bench-
marks, while ID-SPN is the second best performing algorithm, with the best log-
likelihood score on 7 out of the 18 benchmarks. In the head-to-head comparison,
MCNet is better than CNetP on 19 benchmarks, ID-SPN on 11 benchmarks,
ACMN on 13 benchmarks, MT on 15 benchmarks and LearnSPN on 18 bench-
marks. CNetP is better than ID-SPN only on 1 benchmark, ACMN and MT
on 2 benchmarks while it is better than LearnSPN on 6 benchmarks. A careful
look at the datasets reveal that when the number of training examples is large,
MCNet and to some extent CNetP are typically better than the competition.
However, for small training set sizes, ID-SPN is the best performing algorithm.
As expected, Chow-Liu trees and CNet are the worst-performing algorithms, the
former underfits and the latter overfits.
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MCNet is consistently better than CNetP which suggests that whenever pos-
sible it is a good idea to use latent mixtures of simple models. This conclusion
can also be drawn from the performance of MT, which greatly improves the
accuracy of Chow-Liu trees.

5.3 Learning Time

Table 2 shows the time taken by CNet, CNetP, MCNet, ID-SPN and ACMN to
learn a model from data. We gave a time limit of 48 hours to all algorithms and
ran all our timing experiments on a quad-core Intel i7, 2.7 GHz machine with
8GB of RAM. The fastest cutset network learners, in order, are: CNet, CNetP,
and MCNet. On an average, ACMN is slower than MCNet. ID-SPN is the slowest
algorithm. In fact, ID-SPN did not finish on 8 out of the 20 datasets in 48 hours
(note that for the datasets on which ID-SPN did not finish in 48 hours, we report
the test set log-likelihood scores from [23]). The best performing cutset network
algorithm, MCNet, was faster than ID-SPN on all 20 datasets and ACMN on 14
datasets. If we look at the learning time and accuracy as a whole, CNetP is the
best performing algorithm, providing reasonably accurate results in quick time.

6 Summary and Future Work

In this paper we presented cutset networks - a novel, simple and tractable prob-
abilistic graphical model. At a high level, cutset networks are operational rep-
resentation of Pearl’s cutset conditioning method, with an OR tree modeling
conditioning (at the top) and a tree Bayesian network modeling inference over
trees at the leaves. We developed an efficient algorithm for learning cutset net-
works from data. Our new algorithm uses a decision-tree inspired learning algo-
rithm for inducing the structure and parameters of the OR tree and the classic
Chow-Liu algorithm for learning the tree distributions at the leaf nodes. We also
presented an EM-based algorithm for learning mixtures of cutset networks.

Our detailed experimental study on a variety on benchmark datasets clearly
demonstrated the power of cutset networks. In particular, our new algorithm that
learns mixtures of cutset networks from data, was the best performing algorithm
in terms of log-likelihood score on 55% of the benchmarks when compared with
5 other state-of-the-art algorithms from literature. Moreover, our new one-shot
algorithm, which builds a cutset network using the information gain heuristic and
employs reduced-error pruning is not only fast (as expected) but also reasonably
accurate on several benchmark datasets. This gives us a spectrum of algorithms
for future investigations: fast, accurate one-shot algorithms and slow, highly
accurate iterative algorithms based on EM.

Future work includes learning polytrees having at most w parents at the
leaves yielding w-cutset networks; using AND/OR trees or sum-product net-
works instead of OR trees yielding AND/OR cutset networks [9]; introducing
structured latent variables in the mixture model; and merging identical sub-
trees while learning to yield a compact graph-based representation.
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