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Abstract. Markov Logic is a powerful representation that unifies first-order logic
and probabilistic graphical models. However, scaling-up inference in Markov
Logic Networks (MLNs) is extremely challenging. Standard graphical model
inference algorithms operate on the propositional Markov network obtained by
grounding the MLN and do not scale well as the number of objects in the real-
world domain increases. On the other hand, algorithms whichperform inference
directly at the first-order level, namelylifted inference algorithms, although more
scalable than propositional algorithms, require the MLN tohave specific sym-
metric structure. Worse still, evidence breaks symmetries, and the performance
of lifted inference is the same as propositional inference (or sometimes worse,
due to overhead). In this paper, we propose a general method for solving this
“evidence” problem. The main idea in our method is to approximate the given
MLN having, say,n objects by an MLN havingk objects such thatk << n and
the results obtained by running potentially much faster inference on the smaller
MLN are as close as possible to the ones obtained by running inference on the
larger MLN. We achieve this by finding clusters of “similar” groundings using
standard clustering algorithms (e.g., K-means), and replacing all groundings in
the cluster by their cluster center. To this end, we develop anovel distance (or
similarity) function for measuring the similarity betweentwo groundings, based
on the evidence presented to the MLN. We evaluated our approach on many dif-
ferent benchmark MLNs utilizing various clustering and inference algorithms.
Our experiments clearly show the generality and scalability of our approach.

1 Introduction

Markov Logic Networks (MLNs) [18, 4] unify first-order logicand probabilistic models
and are arguably the most popular representation for statistical relational learning. They
have been used in a wide variety of application domains including natural language un-
derstanding [17], computer vision [22] and planning [21]. Just as in conventional prob-
abilistic models such as Bayesian networks and Markov networks, the key challenge
in MLNs is to develop scalable inference algorithms. However, this challenge is more
pronounced in MLNs because MLNs are template models, compactly specified using a
first-order logic representation and as a result even a seemingly simple MLN can yield
an arbitrary large (propositional) probabilistic model asthe number of objects in the
real-world domain increases.
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Existing MLN inference algorithms can be broadly classifiedinto two categories,
propositional algorithms, which operate on the Markov network obtained by grounding
the MLN and lifted algorithms, which operate directly on thefirst-order representation,
grounding only as necessary. Propositional algorithms such as Gibbs Sampling [5] and
Belief Propagation [28] do not scale well as the number of objects gets large, because
they perform inference over the Markov network obtained by grounding the MLN,
which for large domain-sizes can be huge. On the other hand, lifted inference algo-
rithms [15, 3, 6, 26, 20, 10, 7, 2, 27, 13] either directly operate on the first-order structure
or exploit symmetries in the propositional model and can therefore, in principle, scale
significantly better than propositional inference algorithms.

Lifted inference algorithms typically suffer from two problems. First, they require
MLNs to have a specific symmetric structure [3, 9, 23], which is not always the case in
real-world applications. For example, to apply certain inference operations, the MLN
needs to be composed of purely singleton atoms [9]. Second, afar more serious problem
is that, in the presence of evidence most MLNs are not liftable because evidence breaks
symmetries. As a concrete example, the symmetrical marginal probabilities in Fig. 1 (a)
are broken with evidence (b). Therefore, a lifted algorithmthat could potentially exploit
the symmetry in (a) can no longer do so in (c). Thus, in the presence of evidence, lifted
inference algorithms often resort to grounding the MLN. This is problematic because
most interesting inference problems are almost always of the formP (Q|E), i.e., com-
puting the probability of a query given evidence. Therefore, there is a pressing need for
inference algorithms that work without restrictions on theMLN structure or evidence.
The main contribution of this paper is presenting one such method.

Our main idea is to reduce the number of objects in the domain of the MLN, thereby
approximating it by a much smaller MLN such that the results obtained by performing
inference on the smaller MLN are as close as possible to the ones obtained by running an
expensive inference algorithm on the original MLN. To achieve this domain-reduction,
we pre-process the MLN utilizing standard clustering algorithms such as K-means to
merge together objects that are in some sense “similar” to each other from an infer-
ence perspective. Importantly, this pre-processing step allows us to plug-in existing
grounded/lifted inference algorithms where the sampling-space (for sampling-based in-
ference) or search-space (for search-based inference) canbe controlled, which makes
inference feasible even when the original MLN’s domain is extremely large.

In order to obtain an accurate domain-reduced approximation of the original MLN,
we specify a novel distance function that measures similarity based on the evidence pre-
sented to the MLN. This distance function helps cluster together objects having similar
evidence-structure. The inherent symmetry in MLN representation makes it more likely
that similar evidence structure translates to approximately similar marginal probabili-
ties. Thus, we compute the marginal probability for a singleelement of the cluster and
project the same results to all elements in the cluster, thereby drastically reducing the
complexity of inference.

We evaluated our approach on several benchmark MLNs available on the Alchemy
website [11]. Also, in our experiments, we leverage a numberof clustering algorithms
from data-mining/machine learning literature implemented in Weka [8] to scale-up in-
ference to very large domain-sizes. We experimented with two inference algorithms,
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Wins(A,A) 0.56
Wins(A,B) 0.56
Wins(A,C) 0.56
Wins(B,A) 0.56
Wins(B,B) 0.56
Wins(B,C) 0.56
Wins(C,A) 0.56
Wins(C,B) 0.56
Wins(C,C) 0.56

(a) Original Marginals

Strong(C)

Wins(A,C)

Wins(B,B)

Wins(B,C)

Wins(C,A)

(b) Evidence

Wins(A,A) 0.6
Wins(A,B) 0.6
Wins(B,A) 0.63
Wins(C,B) 0.85
Wins(C,C) 0.85

(c) New Marginals

Fig. 1. Effect of evidence on an MLN with one formula,1.75 Strong(x) ⇒ Wins(x,y). The
marginal probabilities which were equal in (a) become unequal in (c) due to evidence (b).

a propositional sampling-based algorithm, Gibbs sampling[5] and a lifted message-
passing algorithm, Lifted Belief Propagation [20] to show the generality of our ap-
proach. Our results clearly illustrate that, using a fraction of the true groundings, we are
able to approximate the marginal probabilities quite consistently on a wide variety of
MLN structures with arbitrary evidence.

2 Preliminaries

First-order logic (FOL) consists of predicates (e.g.,Friends) that represent relations
between objects, logical connectives (e.g.,∨, ¬, etc.) and quantifiers (∀, ∃). Each predi-
cate has a parenthesized list of arguments which can be substituted by a term which can
either be a logical variable (x), a constant (X) or a function. A formula in first order
logic is a predicate (atom), or any complex sentence that canbe constructed from atoms
using logical connectives and quantifiers. For example, theformula∀x Smokes(x) ⇒
Asthma(x) states that all persons who smoke have asthma. Agroundatom correspond-
ing to a predicate is one where each term is substituted by a constant symbol.

We use a strict subset of FOL. Specifically, we make the following assumptions.
First, we assume that there is a one-to-one mapping between the constant symbols
and objects (Herbrand semantics). This means that any possible world is simply an
assignment ofTrue or False to every distinctgroundatom. Second, we assume a
function-free language where each variable is typed and thenumber of constant sym-
bols is finite. Therefore, for any variablex, we can define a finite set∆x (domain of
x) which consists of all the constant symbols that can be substituted for x. We re-
fer to the constants corresponding to a domain as the domain’s groundings. A ground
formula is a formula obtained by substituting all of its variables with a constant. A
ground KB is a KB containing all possible groundings of all ofits formulas. For ex-
ample, the grounding of a KB containing one formula,Smokes(x) ⇒ Asthma(x)
where∆x = {Ana,Bob}, is a KB containing two ground formulas:Smokes(Ana) ⇒
Asthma(Ana) andSmokes(Bob) ⇒ Asthma(Bob).
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Markov logic [4] extends FOL by softening the hard constraints expressed by the
formulas. A soft formula or a weighted formula is a pair(f, w) wheref is a formula
in FOL andw is a real-number. A MLN denoted byM, is a set of weighted formu-
las (fi, wi). Given a set of constants that represent objects in the domain, a Markov
logic network defines a Markov network or a log-linear model.The Markov network
is obtained by grounding the weighted first-order knowledgebase and represents the
following probability distribution.

PM(ω) =
1

Z(M)
exp

(

∑

i

wiN(fi, ω)

)

(1)

whereω is a world,N(fi, ω) is the number of groundings offi that evaluate toTrue
in the worldω andZ(M) is a normalization constant or the partition function.

In this paper, we assume that the input MLN to our algorithm isin normal form
[9, 12]. A normalMLN [9] is an MLN that satisfies the following two properties:(1)
There are no constants in any formula, and (2) If two distinctatoms with the same
predicate symbol have variablesx and y in the same position then∆x = ∆y. An
important distinction here is that, unlike in previous workon lifted inference that use
normal forms [9, 6] which require the MLN along with the associated evidence to be
normalized, here we only require the MLN in normal form.

The two main inference problems in MLNs are computing the partition function
and the marginal probabilities of query atoms given evidence. In this paper, we focus
on the latter.

3 Domain Clustering

3.1 Problem Formulation

Let M denote an MLN withM predicatesR1, R2, . . ., RM , andN weighted formulas
f1, f2, . . ., fN . LetGM denote the propositional Markov network obtained by ground-
ing all the formulas inM. Let E = {Ek}

S
k=1 be the set ofevidences. EachEk ∈ E

represents a single ground atom that is known to be eitherTrue or False. Let I be a
set of indices of the form(i, j) such that1 ≤ i ≤ M , 1 ≤ j ≤ Ai, whereAi is the arity
of the i-th predicate. In other words,(i, j) is an index to thej-th argument of thei-th
predicate inM.

LetR be a binary relation onI such that(i, j)R (a, b) iff there exists a formulaf ∈
M such that: (1)f contains atoms having predicate symbols indexed byi anda, and (2)
a logical variablex of f appears as thej-th argument and as theb-th argument of atoms
having predicate symbols indexed byi anda respectively. Clearly,R is symmetric and
reflexive. LetR+ be the transitive closure ofR on I .R+ is an equivalence relation onI .
LetI = {I1 I2 . . . IP } denote the set of equivalence classes ofI due to the equivalence
relationR+. Let ∆Ik

denote the domain (possible groundings) of an element ofIk.
Note that since we assume that the MLN is in normal form, all elements of∆Ik

have
the same domain.
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Example 1.Let M contain exactly one formulaR1(x,y) ∧ R2(y,z) ⇒ R3(z,x). Let∆x

= ∆y = ∆z = {A,B}. I = {{(1, 1), (3, 2)}, {(1, 2), (2, 1)}, {(2, 2), (3, 1)}}. ∆I1

= {A,B} and groundingI1 with A, yields the partially ground formula,R1(A,y) ∧
R2(y,z) ⇒ R3(z,A).

To reduce the total number of formulas inGM, we reduce the number of groundings
in eachIk ∈ I independently. Specifically, for each∆Ik

, we learn a new domain,̂∆Ik

and a surjective mappingζ : ∆Ik
→ ∆̂Ik

, i.e.,∀ µ ∈ ∆̂Ik
, ∃ C ∈ ∆Ik

such thatζ(C)

= µ. We formulate this domain-reduction problem (|∆̂Ik
| << |∆Ik

|) as a standard
clustering problem below.

Definition 1. Given a distance measured between any two groundings ofIk ∈ I and
the number of clusters forIk equal tork, we define the clustering problem as,

min
C1...CP

P
∑

k=1

rk
∑

j=1

∑

Ckj∈Ckj

d(Ckj , µkj) (2)

whereCkj corresponds to all groundings ofIk that are placed in clusterj, µkj is
the cluster-center ofCkj , i.e., it represents the “average grounding” for that cluster,
ζ−1(µkj) = Ckj .

Each cluster-center in some sense “compresses” the original domain, and we gener-
ate a new MLNM̂ fromM by replacing each∆Ik

with ∆̂Ik
= {µkj}

rk
j=1. Importantly,

the formulation in Eq. (2) allows us control the inference-complexity inM̂ even when
GM is extremely large. This is important because, for arbitrary MLN structures or for
inference with evidence, even state-of-the-art inferencetechniques end up working on
a model whose size is comparable toGM and in most cases,GM grows rapidly with
domain-size. For example, consider the MLN,R(x, y) ∧ S(y, z) ⇒ T(z, x), even for∆x

= ∆y = ∆z = ∆u = 100, the number of formulas inGM is already one million. Further,
the search space (for search-based algorithms) or the sampling space (for sampling-
based algorithms) is massive, i.e., exponential in the total number of ground atoms in
the MLN. By clustering, we are essentially compressing thislarge space and now any
existing inference algorithm can be used to solve large problems as they implicitly work
in this reduced space. The key advantage is that this space complexity can now be con-
trolled based on the cluster-size. Specifically,

Proposition 1. The number of ground atoms in̂M isO(MrA), whereM is the number
of predicates inM, r = max

k
rk andA is the maximum arity of a predicate inM.

Clearly, the ground atoms in̂M are different from those inM. Specifically, an atom
in M̂ is ground with cluster-centers rather than concrete objects of the original MLN.
Thus, one ground atom in̂M implicitly corresponds to multiple ground atoms inM.
This also means that in̂M, the original evidenceE needs to be modified because it is
specified on the ground atoms ofM. Therefore, we approximateE with Ê which spec-
ifies the evidence on atoms ground with cluster-centers instead of the original objects
in M. To specify this, we define theexpansionof a ground atom inM̂ as the set of all
groundings that it represents inM. Formally,
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Definition 2. Theexpansionof thej-th ground atom corresponding to thei-th predi-
cate (Ri(µi1j1 , . . . µiAi

jAi
)) in M̂ is denoted byπij and consists of all distinct ground

atoms of the formRi(C1, . . ., CAi
) whereCk ∈ ζ−1(µikjk).

Clearly, if we assert in̂E that a ground atom inM̂ is True (orFalse), this implicitly
asserts that every grounding in its expansion isTrue (or False). Given a clustering
of the domains, in order to best approximateE for this clustering, we minimize the
approximation error as follows.

min
Ê

|E△π̄(Ê)| (3)

whereÊ is a subset of the ground atoms in̂M and each grounding is assigned a sign
(positive/True or negative/False), π̄(Ê) expands every grounding in̂E and assigns
each grounding in the expansion the same sign as its corresponding grounding inÊ.
The△ operator computes the symmetric difference betweenE andπ̄(Ê). (Note that a
grounding with different signs is treated as distinct elements for our purpose).̂E can be
optimally chosen using the following proposition.

Proposition 2. Let πij be the expansion of one grounding (Ê) in Ê. Let n+ be the
count of positive-sign elements andn−, the count of negative-sign elements inπij ∩E.

Eq. (3) is optimized by assigninĝE as positive (negative) ifn+ ≥
|πij|
2

(

n− ≥
|πij |
2

)

.

Algorithm 1 shows a schematic illustration of our algorithmto compute the marginal
probabilities in an MLN given evidence. Algorithm 1 needs three other algorithms to
be specified namely, the distance function, clustering algorithm and the inference algo-
rithm. The amount of reduction applied to each domain is specified as the cluster-bound
α. The algorithm starts by computing the partitionI from the term dependencies inM.
Next, to eachIk ∈ I, the clustering algorithmL is applied which outputs the clustered
domain∆Ik

as well as the mapping functionζ. ∆Ik
is now replaced by its approxi-

mation in the new MLNM̂. Once all the domains are suitably reduced, the next step
is to approximate the evidence based on the reduced domains.Using Proposition 2, for
every grounding of every atom in̂M, we make a decision as to whether it is to be con-
sidered positive evidence, negative evidence or treated asa grounding whose truth value
is unknown. This yields the approximate evidence setÊ. We then invoke the inference
algorithmF to compute the marginals in̂M. Finally, we project the results obtained
on M̂ back to the original domains. Specifically, if a grounding in̂M has a marginal
probabilityp, then each grounding in its expansion is assigned the same probability.

3.2 Distance Function

The distance function is a key parameter that affects the quality of the generated clusters
in Eq. (2) and in turn the inference results computed in Algorithm 1. The advantage of
our formulation is that it is quite easy to plug-in a new distance function and generate
“new” inference algorithms targeted towards specific applications or datasets. Here, we
develop a generic distance measure using the evidence specified on the MLN.
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Algorithm 1: Compute-Marginals
Input : MLN M, EvidenceE, set of query predicatesQ, Distance functiond, Clustering

functionL, Inference algorithmF , cluster-boundα
Output : Marginal probabilitiesP for each ground atom corresponding to a predicate inQ

1 Compute the partitionI from M

2 M̂ = M
3 for Ik ∈ I do
4 numclusters = α × ∆Ik

5 (∆̂Ik
, ζ) = L(numclusters, d)

6 Replace∆Ik
with ∆̂Ik

in M̂

7 ConstructÊ based on Proposition 2

8 P̂ = F(M̂, Ê,Q)
9 for EachRk ∈ Q do

10 for Eachj, wherej indexes the possible groundings ofRk in M̂ do
11 for Eacht, wheret indexes the possible groundings ofRk in the expansionπkj

do
12 P(Rk, t) = P̂(Rk, j)

13 returnP

Example 2.Consider the MLN with one formulaR(x) ⇒ S(x,y) with weight1.75 and
domain∆x = {A, B, C}. Let the evidenceE = {R(A), R(B)}. The task is to compute
the marginal probabilities of all groundings ofS(x,y) which we refer to as the query.
The exact marginal probabilities for the query are,S(A,y) = S(B,y) = 0.5, S(C,y) =
0.56. Thus, an ideal distance function should give us a clustering of∆x whereA andB
are placed in the same cluster as they have the same marginalsw.r.t the query variable.
To do this, we observe that the evidence onR(A) ⇒ S(A,y) andR(B) ⇒ S(B,y) are
“symmetrical”, i.e., they satisfy the same number of groundings and consequently the
number of groundings that are left unsatisfied in both the formulas is the same. In other
words, whenx = A, the relevant evidence yields MLNM′ and whenx = B, its yields
M′′ and if M′ is sufficiently close toM′′, we would want all the groundings where
x = A clustered together with the groundings wherex = B because they are likely to
have the same marginal probabilities. We formalize this intuitive idea below.

LetMCkj
represent the MLN obtained after groundingIk with thej-th constant in

∆Ik
. Clearly, in the general case, for any two distinctj1, j2, MCkj1

andMCkj2
are not

necessarily independent MLNs as there may be atoms inMCkj1
that are also present

in MCkj2
. However, in our distance function, we relax the constraints/dependencies

betweenMCkj1
, MCkj2

and assume these to be independent MLNs and compute the
distance between these two MLNs. Specifically, we define a feature vectorUCkj

= cf1 ,
. . . cfN , wherecfk is the number of groundings in formulafk of MLN MCkj

satisfied
due to the evidenceE. The distance is computed asd(Ckj1 , Ckj2) = ||UCkj1

−UCkj2
||.

Even though the above distance function seems like an intuitive and reasonable
heuristic, it turns out that computing the distance function efficiently is infeasible in the
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general case because computing the counts inUCkj
is a hard problem whenE is large.

Formally, the following result has been shown in [4],

Theorem 1. Computing the number of satisfied groundings of a first-orderclause in a
database is#P -complete in the length of the clause.

Using database terminology, computing the counts inUCkj
requires computing

joins over an arbitrary number of relations (or tables). Therefore, we further relax the
constraints/dependencies within the atoms in a formula to guarantee feasibility of com-
putingUCkj

when the size of the evidence-set is very large. In order to formalize this
clearly, we specify the ground atoms using a relational database. Further, we also as-
sume that each formula is reduced to a clausal form. Thei-th predicateRi is stored as
a relational database tableRi with Ai + 1 columns (Ai is the arity), namely,id1,, id2
. . . idAi

andval. The firstAi columns correspond to a specific grounding and theval

column specifies whether that ground atom isTrue (val = 1), False (val = 0) or
unknown (val = −1). Given such a database, computing the feature vector involves
counting the number of groundings of the formulas inMCkj

that are satisfied by the
evidence, which according to Theorem 1 is a hard problem in the general case. Though
Theorem 1 is not an issue when the number of evidence atoms is small, to scale-up
inference to arbitrarily large evidence-sets, we adopt thefollowing approach. Instead
of computing the exact number of groundings for a formula satisfied by the evidence,
which involves an arbitrary number of joins over the relations in the formula, we ap-
proximate this with a vector of counts, where each count is computed on a subset of
relations and the computation involves a bounded number of joins over these relations.

Example 3.Let M contain one formula,¬R(x, y) ∨ ¬S(y,z) ∨ T(z,x), where∆x =
{A,B,C}. To compute the count of satisfied groundings forx = A, we compute its
inverse, i.e., the number of unsatisfied groundings forx = A. The satisfied count is
simply the difference between the total number of groundings and the number of unsat-
isfied groundings. Since the total number of groundings∆y × ∆z is a constant for all
groundings ofx, it does not affect the clustering and we simply ignore it. The unsatisfied
groundings forx = A is given by the following relational algebra expression

σR.val=1∧S.val=1∧T.val=0((σR.id1=A(R) ⊲⊳R.id2=S.id1
S)

⊲⊳S.id2=T.id1∧R.id1=T.id2
T ) (4)

whereσ is the selection operator and⊲⊳ is the join operator. Clearly, the above ex-
pression has two joins. However, if we impose a constraint that no joins are allowed
during the computation of the feature vector, we approximate Eq. (4) by implicitly
assuming that each predicate in the formula is independent i.e. we ignore the joins
to obtain a vector of counts by counting the tuples returned by 3 separate queries,
σR.val=1∧R.id1=A(R), σS.val=1(S) andσT.val=0∧T.id2=A(T ). An alternate distance
function can be obtained if we only allow exactly one join in aquery. In this case,
we can get a better approximation of Eq. (4) by considering two queries,

σR.id1=A∧R.val=1(R) ⊲⊳R.id2=S.id1
σS.val=1(S)

σS.val=1(S) ⊲⊳S.id2=T.id1
σT.val=0∧T.id2=A(T )
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Algorithm 1: Build-Query

Input: Clausal formula ft
Output: Relational-Algebra expression Q

1 Q = ∅
2 for Ri ∈ ft do

3 Rvalue = 1

4 if Ri is positive then

5 Rvalue = 0

6 if Q = ∅ then

7 Q = Q + σRi.val=Rvalue(Ri)

8 else

9 Q = Q ⊲⊳θ σRi.val=Rvalue(Ri)

Fig. 2. Building a query for the feature vector

The algorithm illustrated in Fig. 3 generalizes the idea in the above example and
computes the feature vectors for a specificIk ∈ I. The algorithm generates multiple
queries corresponding to each grounding ofIk such that the number of joins in each
query is lesser thanJ . For this, we go over each formulaft, and first check ifft is
relevantto Ik, i.e., if ft contains at least one atom corresponding toRi such that for
somep, (i, p) ∈ Ik, thenft is a relevant formula for clusteringIk, otherwise, we ignore
ft. This is because, the features fromft which are not relevant toIk remains identical
for every grounding ofx and therefore never affects the clustering. For every relevant
ft, we first build the complete query which is a sequence ofθ-joins on the tables cor-
responding to every atom inft. The query selects the the groundings offt that are not
satisfied by the evidence. Theθ in the join specifies variables shared among atoms inft.
For e.g. In a formula¬R(x) ∨ S(x), theθ-join is specified asσR.val=1(R) ⊲⊳R.id1=S.id1

σS.val=0(S). Once we build the full query, we simply walk through the query executing
no more thanJ joins at a time. For each atom which has a variable that corresponds to
some element ofIk, we ground the variable by enforcing the select condition inline 11
of the algorithm. We execute the partial queryQ′ with a maximum ofJ joins and store
the result (count) in the feature vector. Next, we removeQ′ from Q and relax the next
θ- join condition as follows. Among all the tables mentioned in Q′, we select one table
Rs, that participates in the next join operation inQ−Q′. We only retain the join condi-
tions related toRs in the next join inQ−Q′ and remove the rest of the conditions. We
continue until we empty the original queryQ. Finally, we return the vector of counts
accumulated across all queries for each grounding ofIk.

4 Related Work

Several previous approaches have been suggested for improving the scalability of infer-
ence in MLNs. Most of these approaches can be termed as liftedinference algorithms
since they either use rules that can be directly applied on the first-order structure or
identify symmetries in the ground representation to perform efficient inference. Both
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Algorithm 1: Compute-Features

Input: M and its associated relational DB, join-bound J , Ik ∈ I

Output: Feature vector set {UCkj
}
∆Ik
j=1

1 U = ∅
2 for Ckj ∈ ∆Ik

do

3 UCkj
= ∅

4 for ft ∈ F do

5 if ft is not relevant to Ik then

6 continue

7 Q = Build-Query(ft)

8 while Q not empty do

9 Q′ = Select a sub-query containing up to the first J joins in Q
10 for Ri ∈ Q′ do

11 if ∃ p such that (i, p) ∈ Ik then

12 Wrap a select (σRi.idp=Ckj
) around Ri

13 UCkj
.append(Count(Q′))

14 Let Rs be a table in Q′ whose attribute participates in the θ-join after Q′

15 if Rs = ∅ then

16 Q = (Q−Q′)

17 else

18 Relax the θ-join and include only those constraints involving Rs

19 Q = Rs ⊲⊳θ (Q−Q′)

20 U.append(UCkj
)

21 return U

Fig. 3. Algorithm to compute the feature vectors.

exact [3, 6, 26, 1] as well as approximate [20, 10, 7, 13, 27, 2]lifted algorithms have been
developed that can greatly improve scalability. However, all these algorithms are effi-
cient only when given the right MLN structure/evidence. Specifically, [1, 25] show that
efficient inference is possible when presented with specificevidence-structure. More
recently, [24] have proposed to counter the evidence-problem by adding more symme-
tries that make the MLN liftable. Specifically, they computea low-rank boolean ma-
trix factorization of the evidence matrix which implicitlyinduces a clustering whereas
we explicitly cast it as a clustering problem thereby allowing us the flexibility to use
a range of clustering algorithms and also better control of the inference-complexity.
Further, [24] handles only binary evidence while our approach is much more general.
Finally, our approach of pre-processing the MLN is related to [19] which develops a
systematic grounding procedure that can reduce the ground MLN size in many cases,
and our approach of leveraging databases for MLN inference is related to [14].

5 Experiments

5.1 Setup

We evaluate our approach on 4 benchmark MLNs available in Alchemy [11], namely
Entity Resolution (ER), Segmentation (Seg), Web Linkage analysis (WebKB) and Pro-
tein Interaction (Protein). Additionally, we added two newMLNs that have different
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structures called Student (Teaches(i, c) ∧ Prereq(c, c1) ⇒ Takes(s, c1)) and Re-
lation (Related(i, j) ∧ Friends(j, k) ⇒ Loves(k, i)). For our experiments, we
implemented our system using MySQL. To speed up query processing, we createdn
indexes for a table corresponding to a n-ary predicate, where the column correspond-
ing to each argument of a predicate is indexed separately. For the distance function,
we limit the number of joins (J) to 1. In the inference subroutine, we used two algo-
rithms, a lifted algorithm based on message passing, Lifted-BP [20] and a propositional
algorithm based on sampling, Gibbs sampling [5]. We used theimplementation of both
these algorithms from Alchemy. For the clustering subroutine, we experimented with
four different algorithms available in Weka [8] namely, KMeans++ (KM), Expectation-
Maximization (EM), Hierarchical clustering (HC) and XMeans (XM). We ran all our
experiments on a quad-core Ubuntu machine with 6 GB RAM.

5.2 Approximation results on benchmarks

Fig. 4 illustrates the approximation error on each benchmark for all combinations of the
two inference and four clustering algorithms. Thex-axisplots the inverse compression
ratio ICR = NC

NG
, whereNC is the total number of ground formulas in the approx-

imated MLN after clustering andNG is the total number of ground formulas in the
original MLN. The y-axisshows the approximation error calculated as follows.Err

=
∑

g∈G DKL(Pg ||P
′

g)

|G| , whereDKL is the standard KL-Divergence distance measure,G

refers to all groundings of a query predicate,Pg is the marginal distribution ofg com-
puted from the original MLN andP ′

g is computed from the approximate MLN using
clustered domains. For fairness, both marginals are computed using the same inference
algorithm. We set50% of arbitrary groundings as evidence, where25% areTrue and
25% areFalse.

Fig. 4 illustrates the trade-off between accuracy and complexity. AsICR increases,
the complexity increases, however, the approximation error reduces because we map
the original domains to a larger set thereby reducing the difference between the original
MLN and the approximate MLN. The structure of the MLN also plays an important
role in determining the accuracy of the approximation. For some cases such as Student
in Fig. 4 (a), (g) the error goes down quite rapidly initiallyand stays consistently low
afterwards. In some other cases such as ER, Fig. 4 (f), (l), the change is more gradual.
This is because ER contains complex formulas with multiple self-joins such as the tran-
sitive relation which make it harder to approximate. In almost all cases for Lifted-BP
(except ER), the approximation error was below 0.2 for even small compression ratios.
For Gibbs sampling though, in general, it took slightly larger compression ratios before
the approximation was close to ground inference such as in the benchmarks Protein (k)
and ER (l). One of the reasons for this could be that deterministic dependencies or hard
constraints tend to be problematic for Gibbs sampling [16],i.e., if the probabilities lie at
the extremes then the Gibbs sampler mixes very slowly. Therefore the approximations
given by Gibbs sampling are not very accurate even for the fully ground model. Among
the clustering algorithms, KM and HC clearly outperformed XM and EM. In almost
all cases, KM and HC produced clusterings that produced morestable and consistent
results compared to EM and XM. For example, in (a), (d) and (h)the EM algorithm
gave poor results while in (i), XM gave poor results.
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Fig. 4. Approximation-error vsICR. The y-axis shows the average KL-Divergence of the
marginals computed on the clustered MLN from the marginals computed on the original MLN
(smaller is better). (a) - (f) show the results using Lifted-BP, (g) - (l) using Gibbs sampling.
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5.3 Effect of Evidence

Fig. 5 illustrates the error for different values of cluster-bounds (α) and varying amount
of evidence. The results shown Fig. 5 use K-Means++ for clustering and Lifted-BP for
inference. As expected, using a larger value ofα in most cases leads to lower errors
due to a better approximation of the original MLN. Also, it can be seen that in most
of the cases illustrated in Fig. 5, for very small or very large amounts of evidence,
the errors seem to go down. This is quite consistent with the effect that evidence has
on MLNs as previously shown in the introduction. Evidence breaks symmetries in the
MLN and thus if very few groundings or nearly all groundings are evidence, as there are
more symmetries, the inference algorithms tend to give us better approximations (for
all α values) than the cases shown in middle portion of the graphs where the random
evidence makes inference more challenging.
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Fig. 5. Illustrating the effect of evidence. The x-axis varies the amount of evidence on the atoms
in the MLN. The y-axis plots the approximation error for varying cluster-bounds. The experiment
is run using K-Means for clustering and Lifted-BP for inference.

5.4 Scalability

Fig. 6 illustrates the scalability of our approach when handling large domain-sizes. For
different domain-sizes, we show the time in seconds it takesto compute the approximate
MLN after clustering. We used anα value of 0.25 for these experiments and introduced
50% random evidence with half of themTrue and the other halfFalse. As expected,
the time taken to compute the approximate MLN increases as the domain-size grows.
However, it should be noted that none of the MLNs in Fig. 6 could be processed by
existing ground/lifted inference algorithms in Alchemy before running out of memory
as the number of ground formulas is extremely large. For example, one instance of the
Relation MLN in Fig. 6 (a) has one billion groundings. Thus, without approximating
the MLN, there is no feasible approach to inference in such large models. As shown by
our results, we were able to complete processing the MLN in a reasonable amount of
time even when the groundings reached a trillion as in Fig. 6 (e). Also, the number of
first-order formulas and their structure play a role in determining the complexity due to
the distance function computation. Recall that we compute avector for every formula
in the MLN. Therefore, a larger number of formulas mean more computations on the
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database. For instance, Fig. 6 (e) has just one formula while(f) has 8 formulas which
have more complex structure. Therefore, even though the number of ground formulas
in (e) is a trillion while in (f) it is a billion, we took more time to process (f). Further, it
can be seen that for each of the benchmarks, the third instance (the largest MLN) takes a
visibly longer time when compared to the first two instances.This is expected because,
when the size of the database grows really large as is the casefor very large domain-
sizes, it typically requires many more hard disk accesses for query processing which
causes it to slow down. Finally, as seen in the results, the type of clustering has minimal
impact on the time taken to process the MLN, i.e., nearly all clustering methods took
approximately the same amount of time.
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Fig. 6. Scalability experiments. The y-axis shows the time taken toform the approximate MLN
and the x-axis shows [Nf , Na], whereNf is the number of ground formulas andNa is the
number of ground atoms.

6 Conclusion

In this paper, we presented an approach for scaling up inference in MLNs. Existing
approaches either ground the MLN which makes it too large to process or use rules to
identify symmetries and perform lifted inference. However, lifting rules are applicable
only in certain specific, symmetric cases and more importantly, in the presence of ev-
idence, these symmetries are broken, rendering lifted inference powerless. To achieve
scalable inference for such hard cases in which we can have arbitrary MLN structures
with arbitrary evidence, we proposed to compress the original MLN. Specifically, we
defined a novel distance function that is sensitive to the evidence presented to the MLN
and used it to replace groups of similar objects in the MLN by their cluster centers. Our
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experimental results on several benchmark MLNs clearly illustrated the high accuracy
and scalability of our approach.
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