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Abstract. Markov Logic is a powerful representation that unifies foster logic
and probabilistic graphical models. However, scaling-nferience in Markov
Logic Networks (MLNSs) is extremely challenging. Standanmdmghical model
inference algorithms operate on the propositional Marketwork obtained by
grounding the MLN and do not scale well as the number of objetthe real-
world domain increases. On the other hand, algorithms whécform inference
directly at the first-order level, namelifted inference algorithmsalthough more
scalable than propositional algorithms, require the MLNh&wve specific sym-
metric structure. Worse still, evidence breaks symmetdes the performance
of lifted inference is the same as propositional inferermespmetimes worse,
due to overhead). In this paper, we propose a general metitasblving this
“evidence” problem. The main idea in our method is to appr@te the given
MLN having, say;n objects by an MLN having: objects such that << n and
the results obtained by running potentially much fastegnece on the smaller
MLN are as close as possible to the ones obtained by runnfageimce on the
larger MLN. We achieve this by finding clusters of “similarfagindings using
standard clustering algorithms (e.g., K-means), and camjaall groundings in
the cluster by their cluster center. To this end, we develop\el distance (or
similarity) function for measuring the similarity betweamo groundings, based
on the evidence presented to the MLN. We evaluated our apipramamany dif-
ferent benchmark MLNs utilizing various clustering andeirgnce algorithms.
Our experiments clearly show the generality and scalgtwfiour approach.

1 Introduction

Markov Logic Networks (MLNSs) [18, 4] unify first-order logend probabilistic models
and are arguably the most popular representation fortitatiselational learning. They
have been used in a wide variety of application domains @iotynatural language un-
derstanding [17], computer vision [22] and planning [21istJas in conventional prob-
abilistic models such as Bayesian networks and Markov nésydhe key challenge
in MLNs is to develop scalable inference algorithms. Howegthgs challenge is more
pronounced in MLNs because MLNs are template models, cottypsecified using a
first-order logic representation and as a result even a sggyrsimple MLN can yield
an arbitrary large (propositional) probabilistic modelthe number of objects in the
real-world domain increases.
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Existing MLN inference algorithms can be broadly classifie two categories,
propositional algorithms, which operate on the Markov rgkwobtained by grounding
the MLN and lifted algorithms, which operate directly on fivst-order representation,
grounding only as necessary. Propositional algorithmh sgdGibbs Sampling [5] and
Belief Propagation [28] do not scale well as the number oéctsj gets large, because
they perform inference over the Markov network obtained byugding the MLN,
which for large domain-sizes can be huge. On the other héitel] inference algo-
rithms[15, 3, 6, 26, 20, 10, 7, 2, 27, 13] either directly @gteron the first-order structure
or exploit symmetries in the propositional model and camefoge, in principle, scale
significantly better than propositional inference algaris.

Lifted inference algorithms typically suffer from two preims. First, they require
MLNSs to have a specific symmetric structure [3, 9, 23], wh&hot always the case in
real-world applications. For example, to apply certaireiehce operations, the MLN
needs to be composed of purely singleton atoms [9]. Secdadn@ore serious problem
is that, in the presence of evidence most MLNSs are not lii@lelcause evidence breaks
symmetries. As a concrete example, the symmetrical mdngiababilities in Fig. 1 (a)
are broken with evidence (b). Therefore, a lifted algorithat could potentially exploit
the symmetry in (a) can no longer do so in (c). Thus, in thegares of evidence, lifted
inference algorithms often resort to grounding the MLN.sTisi problematic because
most interesting inference problems are almost alwayseofdhm P(Q|E), i.e., com-
puting the probability of a query given evidence. Thereftirere is a pressing need for
inference algorithms that work without restrictions on MEN structure or evidence.
The main contribution of this paper is presenting one sucthate

Our main idea is to reduce the number of objects in the donfdivedILN, thereby
approximating it by a much smaller MLN such that the resuttsamed by performing
inference on the smaller MLN are as close as possible to theastained by running an
expensive inference algorithm on the original MLN. To agbithis domain-reduction,
we pre-process the MLN utilizing standard clustering athons such as K-means to
merge together objects that are in some sense “similar” ¢b ether from an infer-
ence perspective. Importantly, this pre-processing slies us to plug-in existing
grounded/lifted inference algorithms where the sampsipgee (for sampling-based in-
ference) or search-space (for search-based inferencdjecaantrolled, which makes
inference feasible even when the original MLN’s domain isexely large.

In order to obtain an accurate domain-reduced approximafithe original MLN,
we specify a novel distance function that measures sinyilagised on the evidence pre-
sented to the MLN. This distance function helps cluster tiogreobjects having similar
evidence-structure. The inherent symmetry in MLN représén makes it more likely
that similar evidence structure translates to approxipaienilar marginal probabili-
ties. Thus, we compute the marginal probability for a siredéanent of the cluster and
project the same results to all elements in the clusterethedrastically reducing the
complexity of inference.

We evaluated our approach on several benchmark MLNs alaitaedthe Alchemy
website [11]. Also, in our experiments, we leverage a nunaolbetustering algorithms
from data-mining/machine learning literature implemernteWeka [8] to scale-up in-
ference to very large domain-sizes. We experimented withitference algorithms,
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Wins(A,A) | 0.56
Wins(A,B) | 0.56
Wins(4,C) | 0.56
Wins(B,A) | 0.56
Wins(B,B) | 0.56 || Strong(C) || Wins(A,A4) | 0.6
Wins(B,C) | 0.56 || Wins(A,C) || Wins(A,B) | 0.6
Wins(C,A) | 0.56 || Wins(B,B) || Wins(B,A) | 0.63
Wins(C,B) | 0.56 || Wins(B,C) || wins(C,B) | 0.85
Wins(C,C) | 0.56 || Wins(C,A) || Wins(C,C) | 0.85

(a) Original Marginals  (b) Evidence (c) New Marginals
Fig. 1. Effect of evidence on an MLN with one formul&,75 St r ong(z) = W ns(z,y). The

marginal probabilities which were equal in (a) become uaégu(c) due to evidence (b).

a propositional sampling-based algorithm, Gibbs samplijgand a lifted message-
passing algorithm, Lifted Belief Propagation [20] to shdve tgenerality of our ap-

proach. Our results clearly illustrate that, using a fattf the true groundings, we are
able to approximate the marginal probabilities quite cetesitly on a wide variety of

MLN structures with arbitrary evidence.

2 Preliminaries

First-order logic (FOL) consists of predicates (eFy.j ends) that represent relations
between objects, logical connectives (e\g.;, etc.) and quantifiers/( 3). Each predi-
cate has a parenthesized list of arguments which can batstddby a term which can
either be a logical variablec}, a constantX) or a function. A formula in first order
logic is a predicate (atom), or any complex sentence thabeaonstructed from atoms
using logical connectives and quantifiers. For examplefdhaulaVxz Snokes(x) =
Ast hma(x) states that all persons who smoke have asthnggoAndatom correspond-
ing to a predicate is one where each term is substituted bypstaat symbol.

We use a strict subset of FOL. Specifically, we make the fallgnassumptions.
First, we assume that there is a one-to-one mapping betvweenanstant symbols
and objects (Herbrand semantics). This means that anyhp@sedrld is simply an
assignment ofir ue or Fal se to every distinctgroundatom. Second, we assume a
function-free language where each variable is typed andtineber of constant sym-
bols is finite. Therefore, for any variabie we can define a finite set, (domain of
x) which consists of all the constant symbols that can be guted for . We re-
fer to the constants corresponding to a domain as the dosmgiiauindings. A ground
formula is a formula obtained by substituting all of its \ednlies with a constant. A
ground KB is a KB containing all possible groundings of allitsf formulas. For ex-
ample, the grounding of a KB containing one formumpkes(z) = Ast hma(z)
whereA, = {Ana, Bob}, is a KB containing two ground formulaSnokes (Ana) =
Ast hma(Ana) andSnokes (Bob) = Ast hma(Bob).
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Markov logic [4] extends FOL by softening the hard constimiexpressed by the
formulas. A soft formula or a weighted formula is a pgit w) where f is a formula
in FOL andw is a real-number. A MLN denoted by, is a set of weighted formu-
las (f;,w;). Given a set of constants that represent objects in the adgradlarkov
logic network defines a Markov network or a log-linear moddle Markov network
is obtained by grounding the weighted first-order knowledgse and represents the
following probability distribution.

Ppm(w) = ﬁ exp (Z wz‘N(fiaw)> (2)

wherew is a world, N (f;,w) is the number of groundings gf that evaluate tdr ue
in the worldw andZ (M) is a normalization constant or the partition function.

In this paper, we assume that the input MLN to our algorithrimisormal form
[9,12]. AnormalMLN [9] is an MLN that satisfies the following two propertied)
There are no constants in any formula, and (2) If two distatoims with the same
predicate symbol have variablesandy in the same position thed, = A,. An
important distinction here is that, unlike in previous wank lifted inference that use
normal forms [9, 6] which require the MLN along with the assted evidence to be
normalized, here we only require the MLN in normal form.

The two main inference problems in MLNs are computing theifi@n function
and the marginal probabilities of query atoms given eviéelr this paper, we focus
on the latter.

3 Domain Clustering

3.1 Problem Formulation

Let M denote an MLN withM predicate®};, Ry, ..., Ry, and N weighted formulas
f1, f2, ... fn. LetG o denote the propositional Markov network obtained by greund
ing all the formulas inM. LetE = {Ek}le be the set okvidencesEachFE, € E
represents a single ground atom that is known to be eithae or Fal se. Letl be a
set of indices of the forn(i, j) suchthatl <i < M, 1 < j < A;, whereA, is the arity
of thei-th predicate. In other words$i, j) is an index to the-th argument of theé-th
predicate inM.

Let R be a binary relation ohsuch thati, j) R (a, b) iff there exists a formulg €
M such that: (1) contains atoms having predicate symbols indexeddnda, and (2)
a logical variabler of f appears as thgth argument and as tlbeth argument of atoms
having predicate symbols indexed bgnda respectively. ClearlyR is symmetric and
reflexive. LetR™ be the transitive closure df onl. R™ is an equivalence relation dn
LetZ = {Z, Z» ... Zp } denote the set of equivalence classeEdie to the equivalence
relation R*. Let Az, denote the domain (possible groundings) of an elemef, of
Note that since we assume that the MLN is in normal form, &lirednts ofAz, have
the same domain.
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Example 1.Let M contain exactly one formulB; (z,y) A Ra(y,2) = Rs(z,x). Let A,
=4, =A. ={AB}.T={{(11),3,2)}, {(1,2), (2, 1)}, {(2,2), (3,1)}}. Az,
= {A,B} and groundindZ; with A, yields the partially ground formuld; (4,y) A
Ra(y,2) = Rs(z,4).

To reduce the total number of formulasd, we reduce the number of groundings
in eachZ;, € 7 independently. SpeC|f|caIIy, for eachy, , we learn a new domainiz,
and a surjective mapping: Az, — Azk, i.e,Vpue Azk, 3 C € Az, such that(C)

= 1. We formulate this domain-reduction problefalg, | << |Az,|) as a standard
clustering problem below.

Definition 1. Given a distance measudkebetween any two groundings 6f € Z and
the number of clusters fdf;, equal tor, we define the clustering problem as,

mm ZZ Z d(Clj, o) 2)

F k=1 j=1 C4;€Ch;

whereCy; corresponds to all groundings @i, that are placed in clustey, x; is
the cluster-center o€y, i.e., it represents the “average grounding” for that clast

¢ (ury) = Cuy.
Each cluster-center in some sense “compresses” the drépinzin, and we gener-
ate a new MLNM from M by replacing each\z, with Az, = {1k} - Importantly,

the formulation in Eq. (2) allows us control the inferenaavplexity mM even when
G A is extremely large. This is important because, for arbjtMEN structures or for
inference with evidence, even state-of-the-art inferéacbniques end up working on
a model whose size is comparableda, and in most case$; ,, grows rapidly with
domain-size. For example, consider the MIB{z, y) A S(y, z) = T(z, z), even forA,
=A,=A,=A4, =100, the number of formulas ifi , is already one million. Further,
the search space (for search-based algorithms) or the isgngplace (for sampling-
based algorithms) is massive, i.e., exponential in the mtmber of ground atoms in
the MLN. By clustering, we are essentially compressing ldnige space and now any
existing inference algorithm can be used to solve largelprobas they implicitly work
in this reduced space. The key advantage is that this spagelexity can now be con-
trolled based on the cluster-size. Specifically,

Proposition 1. The number of ground atoms.ivt is O(Mr#), whereM is the number
of predicates inM, r = maxry and A is the maximum arity of a predicate ji.

Clearly, the ground atoms i are different from those in1. Specifically, an atom
in M is ground with cluster-centers rather than concrete objefcthe original MLN.
Thus, one ground atom M implicitly corresponds to multiple ground atoms.m.
This also means that iV, the original evidenc& needs to be modified because it is
specified on the ground atoms.bi. Therefore, we approximatewith E which spec-
ifies the evidence on atoms ground with cluster-centersaasof the original objects
in M. To specify this, we define thexpansiorof a ground atom in\ as the set of all
groundings that it represents.vi. Formally,



6 Deepak Venugopal, Vibhav Gogate

Definition 2. Theexpansiorof the j-th ground atom corresponding to thieth predi-
cate Ri(Lirjr» - - - Mia,ja,)) IN M is denoted byr;; and consists of all distinct ground
atoms of the fornR;(C1, . .., Ca,) WhereCy, € ¢ (i, )-

Clearly, if we assert i that a ground atom i is Tr ue (or Fal se), this implicitly
asserts that every grounding in its expansiofirisie (or Fal se). Given a clustering
of the domains, in order to best approxim&dor this clustering, we minimize the
approximation error as follows.

min [EA7 (E)| 3)
E

whereE is a subset of the ground atomsM and each grounding is assigned a sign
(positivelTr ue or negativefal se), 7(E ) expands every grounding i and assigns
each grounding in the expansion the same sign as its condspgrounding inks.
The A operator computes the symmetric difference betweamd 7 (E). (Note that a
grounding with different signs is treated as distinct elatador our purpose)t can be
optimally chosen using the following proposition.

Proposition 2. Let 7;; be the expansion of one grounding)(in E. Let n, be the
count of positive-sign elements and, the count of negative-sign elementsrin N E.

Eq.(3)is optimized by assigning as positive (negative) if. > ‘””' (n_ > ‘”—2”)

Algorithm 1 shows a schematic illustration of our algorittmeompute the marginal
probabilities in an MLN given evidence. Algorithm 1 needseth other algorithms to
be specified namely, the distance function, clusteringrélym and the inference algo-
rithm. The amount of reduction applied to each domain isiipélas the cluster-bound
a. The algorithm starts by computing the partitibfrom the term dependencies.vi.
Next, to eaclZ;, € Z, the clustering algorithnt is applied which outputs the clustered
domainAz, as well as the mapping functiagh Az, is now replaced by its approxi-
mation in the new MLNM. Once all the domains are suitably reduced, the next step
is to approximate the evidence based on the reduced dorusimg Proposition 2, for
every grounding of every atom ifvf, we make a decision as to whether it is to be con-
sidered positive evidence, negative evidence or treatadjesunding whose truth value
is unknown. This yields the approximate ¢ evidencelsetVe then invoke the inference
algorithm F to compute the marginals iM. Finally, we project the results obtained
on M back to the original domains. Specifically, if a grounding\ii has a marginal
probabilityp, then each grounding in its expansion is assigned the saobapifity.

3.2 Distance Function

The distance function is a key parameter that affects thétgoéthe generated clusters

in Eq. (2) and in turn the inference results computed in Athan 1. The advantage of

our formulation is that it is quite easy to plug-in a new digta function and generate
“new” inference algorithms targeted towards specific agglons or datasets. Here, we
develop a generic distance measure using the evidencdisgexri the MLN.
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Algorithm 1: Compute-Marginals
Input: MLN M, EvidenceE, set of query predicateg, Distance functioni, Clustering
function £, Inference algorithni, cluster-boundv
Output: Marginal probabilitiesP for each ground atom corresponding to a predicat@ in
Compute the partitio from M
M=M
for 7, € Z do
numclusters = o X Az,
(Azk, Q) = L(numclusters, d)
ReplaceAz, with Az, in M
7 Constructs based on Proposition 2
8 P=F(M,E, Q)
9 for EachR;, € Q do
10 for Eachj, wherej indexes the possible groundingsRifin M do

o o b~ W N P

11 for Eacht, wheret indexes the possible groundingsRif in the expansionry;
do

12 | P(Re.t) = PR, 5)

13 returnP

Example 2.Consider the MLN with one formulR(z) = S(z,y) with weight1.75 and
domainA, = {A, B, C}. Let the evidenc& = {R(A), R(B)}. The task is to compute
the marginal probabilities of all groundings 8x,y) which we refer to as the query.
The exact marginal probabilities for the query &€4,y) = S(B,y) = 0.5, S(C,y) =
0.56. Thus, an ideal distance function should give us a clugjerfd,, whereA andB
are placed in the same cluster as they have the same manginathe query variable.
To do this, we observe that the evidenceR{al) = S(A,y) andR(B) = S(B,y) are
“symmetrical’, i.e., they satisfy the same number of grdngd and consequently the
number of groundings that are left unsatisfied in both thmtdas is the same. In other
words, whenr = A, the relevant evidence yields ML’ and whenr = B, its yields
M and if M’ is sufficiently close taM”, we would want all the groundings where
x = A clustered together with the groundings where- B because they are likely to
have the same marginal probabilities. We formalize thigifivie idea below.

Let M, represent the MLN obtained after groundibgwith the j-th constant in
Az, . Clearly, in the general case, for any two distifGtjs, Mc,,, andMc,,, are not
necessarily independent MLNs as there may be atorgli), that are also present
in Mc,,,. However, in our distance function, we relax the constedttependencies
betweenMc¢,; , Mc,,, and assume these to be independent MLNs and compute the
distance between these two MLNs. Specifically, we definetafeaectolUc, ;, = cy,,
... Cpy,» Wherecy, is the number of groundings in formufa of MLN M, ; satisfied
due to the evidende. The distance is computed @&, , C;,) = |[Uc,;, —Ugy,, |II-

Even though the above distance function seems like an iveguitnd reasonable
heuristic, it turns out that computing the distance funcé€ficiently is infeasible in the
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general case because computing the countédp, is a hard problem whek is large.
Formally, the following result has been shown in [4],

Theorem 1. Computing the number of satisfied groundings of a first-odlieuse in a
database is# P-complete in the length of the clause.

Using database terminology, computing the countdJin, ; requires computing
joins over an arbitrary number of relations (or tables). r€fare, we further relax the
constraints/dependencies within the atoms in a formulasrantee feasibility of com-
putingUg, ; when the size of the evidence-set is very large. In ordertmdtize this
clearly, we specify the ground atoms using a relationalluieta. Further, we also as-
sume that each formula is reduced to a clausal form.ifthepredicateR; is stored as
a relational database tahig with A; + 1 columns (4; is the arity), namelyidy ,, ids
...1id, andwal. The firstA,; columns correspond to a specific grounding anduidie
column specifies whether that ground atonTisue (val = 1), Fal se (val = 0) or
unknown ¢al = —1). Given such a database, computing the feature vectoniesol
counting the number of groundings of the formulashif, ; that are satisfied by the
evidence, which according to Theorem 1 is a hard problemamyéneral case. Though
Theorem 1 is not an issue when the number of evidence atonmsal, $0 scale-up
inference to arbitrarily large evidence-sets, we adoptfatiewing approach. Instead
of computing the exact number of groundings for a formulésgatl by the evidence,
which involves an arbitrary number of joins over the relaion the formula, we ap-
proximate this with a vector of counts, where each count mmated on a subset of
relations and the computation involves a bounded numbeims pver these relations.

Example 3.Let M contain one formulamR(z, y) V =S(y,2) V T(z,z), whereA, =
{A, B,C'}. To compute the count of satisfied groundingsfoe A, we compute its
inverse, i.e., the number of unsatisfied groundingsifee A. The satisfied count is
simply the difference between the total number of grounslangd the number of unsat-
isfied groundings. Since the total number of groundidgsx A, is a constant for all
groundings ofz, it does not affect the clustering and we simply ignore ite Thsatisfied
groundings forr = A is given by the following relational algebra expression

O R.val=1AS.val=1AT.val=0 ((OR.id;=A(R) MR idy=5.id; S)
DS idy=T.idy AR.idy=T.ids L) (4)

whereo is the selection operator amd is the join operator. Clearly, the above ex-
pression has two joins. However, if we impose a constraiat tio joins are allowed
during the computation of the feature vector, we approxarizg. (4) by implicitly
assuming that each predicate in the formula is independentvie ignore the joins
to obtain a vector of counts by counting the tuples returng® Iseparate queries,
ORval=1AR.idi=A(R), 08.vai=1(S) and or yai—onrt.ids—4(T). An alternate distance
function can be obtained if we only allow exactly one join irgaery. In this case,
we can get a better approximation of Eq. (4) by considerirgdueries,

OR.idi=AAR.val=1(R) MR.idy=S.idy 0S.val=1(95)

08.val=1(5) DS idy=T.id; OT.val=0AT.idg=A(T)
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Algorithm 1: Build-Query
Input: Clausal formula f;
Output: Relational-Algebra expression Q

1 9=0

2 for R; € fi do

3 Ruvalue =1

4 if R; is positive then

5 L Rvalue =0

6 if Q = () then

7 L Q = Q + O'Ri.val:Rvalue(Ri)

8 else

9 L Q = Q >g URiwal:Rvalue(Ri)

Fig. 2. Building a query for the feature vector

The algorithm illustrated in Fig. 3 generalizes the ideahie above example and
computes the feature vectors for a specifice Z. The algorithm generates multiple
queries corresponding to each groundinggfsuch that the number of joins in each
query is lesser thad. For this, we go over each formul, and first check iff; is
relevantto Zx, i.e., if f; contains at least one atom correspondingisuch that for
somep, (i, p) € Zy, thenf; is a relevant formula for clusteririg,, otherwise, we ignore
fi. This is because, the features frgimwhich are not relevant t@;, remains identical
for every grounding of: and therefore never affects the clustering. For every aglev
f+, we first build the complete query which is a sequencé-iins on the tables cor-
responding to every atom ify. The query selects the the groundingsfpthat are not
satisfied by the evidence. THen the join specifies variables shared among atonfs.in
For e.g. In a formulaR(x) v S(z), thed-join is specified as g yai=1 (R) ™Mpg.id;=S.id,
o5.vai=0(S). Once we build the full query, we simply walk through the quexecuting
no more than/ joins at a time. For each atom which has a variable that qoorets to
some element df, we ground the variable by enforcing the select conditidimiea 11
of the algorithm. We execute the partial qu&ywith a maximum ofJ joins and store
the result (count) in the feature vector. Next, we rem@drom Q and relax the next
- join condition as follows. Among all the tables mentioned)’, we select one table
R, that participates in the next join operationdn- Q’. We only retain the join condi-
tions related taR, in the next join inQ — Q' and remove the rest of the conditions. We
continue until we empty the original queg. Finally, we return the vector of counts
accumulated across all queries for each groundirig, of

4 Related Work

Several previous approaches have been suggested for iimgthe scalability of infer-
ence in MLNs. Most of these approaches can be termed as iliftexence algorithms
since they either use rules that can be directly applied erfitet-order structure or
identify symmetries in the ground representation to penfefficient inference. Both
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Algorithm 1: Compute-Features
Input: M and its associated relational DB, join-bound .J, Z, € 7

Output: Feature vector set {Uc, }JA:I{C
1U=0
2 for Cx; € Az, do
3 Ug,,; =0
4 for f; € Fdo
5 if f: is not relevant to Z;, then
6 |_ continue
7 Q = Build-Query(f;)
8 while Q not empty do
9 Q' = Select a sub-query containing up to the first J joins in Q
10 for R; € Q' do
1 if 3 p such that (i, p) € I, then
12 L L Wrap a select (OR;.idy=Cy;) around R;
13 Ug,,, -append(Count(Q"))
14 Let R; be a table in Q" whose attribute participates in the 0-join after Q’
15 if Rs = () then
16 | 2=(@-9)
17 else
18 Relax the §-join and include only those constraints involving R
19 L Q=Rs>p (- Q)
20 | U.append(Uck])

21 return U

Fig. 3. Algorithm to compute the feature vectors.

exact[3, 6, 26, 1] as well as approximate [20, 10, 7, 13, 2Ifft2{l algorithms have been
developed that can greatly improve scalability. Howevitthase algorithms are effi-
cient only when given the right MLN structure/evidence. 8feally, [1,25] show that
efficient inference is possible when presented with speeifidence-structure. More
recently, [24] have proposed to counter the evidence-prolly adding more symme-
tries that make the MLN liftable. Specifically, they compatéow-rank boolean ma-
trix factorization of the evidence matrix which implicitigduces a clustering whereas
we explicitly cast it as a clustering problem thereby allogvus the flexibility to use
a range of clustering algorithms and also better controhefihference-complexity.
Further, [24] handles only binary evidence while our applhoia much more general.
Finally, our approach of pre-processing the MLN is relatd19] which develops a
systematic grounding procedure that can reduce the grourd $ize in many cases,
and our approach of leveraging databases for MLN inferemoelated to [14].

5 Experiments

5.1 Setup

We evaluate our approach on 4 benchmark MLNs available ihekity [11], namely
Entity Resolution (ER), Segmentation (Seg), Web Linkagalysis (WebKB) and Pro-
tein Interaction (Protein). Additionally, we added two nB#.Ns that have different
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structures called Studentéaches(i, c) A Prer eq(c, c1) = Takes(s, c¢1)) and Re-
lation (Rel at ed(i, j) A Fri ends(j, k) = Loves(k, 7)). For our experiments, we
implemented our system using MySQL. To speed up query psotgswe createa
indexes for a table corresponding to a n-ary predicate, evtier column correspond-
ing to each argument of a predicate is indexed separatetythieodistance function,
we limit the number of joins() to 1. In the inference subroutine, we used two algo-
rithms, a lifted algorithm based on message passing, -Bed20] and a propositional
algorithm based on sampling, Gibbs sampling [5]. We usedhtipdementation of both
these algorithms from Alchemy. For the clustering subrajtive experimented with
four different algorithms available in Weka [8] namely, Kifes++ (KM), Expectation-
Maximization (EM), Hierarchical clustering (HC) and XMea(XM). We ran all our
experiments on a quad-core Ubuntu machine with 6 GB RAM.

5.2 Approximation results on benchmarks

Fig. 4 illustrates the approximation error on each benchkifwarall combinations of the
two inference and four clustering algorithms. Thexisplots the inverse compression
ratio ICR = %—g where N¢ is the total number of ground formulas in the approx-
imated MLN after clustering an@s is the total number of ground formulas in the

original MLN. Thgy—axisshows the approximation error calculated as followsr

= W, whereD g, is the standard KL-Divergence distance measg@re,
refers to all groundings of a query predicakg,is the marginal distribution of com-
puted from the original MLN and’ is computed from the approximate MLN using
clustered domains. For fairness, both marginals are caedpuging the same inference
algorithm. We set0% of arbitrary groundings as evidence, whew; areTr ue and
25% areFal se.

Fig. 4 illustrates the trade-off between accuracy and cerifyl AsIC R increases,
the complexity increases, however, the approximationrggduces because we map
the original domains to a larger set thereby reducing tHerifice between the original
MLN and the approximate MLN. The structure of the MLN alsoyslan important
role in determining the accuracy of the approximation. Feons cases such as Student
in Fig. 4 (a), (g) the error goes down quite rapidly initiaéipd stays consistently low
afterwards. In some other cases such as ER, Fig. 4 (f), é)cliange is more gradual.
This is because ER contains complex formulas with multiplgjsins such as the tran-
sitive relation which make it harder to approximate. In adtnall cases for Lifted-BP
(except ER), the approximation error was below 0.2 for evealkscompression ratios.
For Gibbs sampling though, in general, it took slightly Ewrgompression ratios before
the approximation was close to ground inference such agibéhchmarks Protein (k)
and ER (l). One of the reasons for this could be that detestiérdependencies or hard
constraints tend to be problematic for Gibbs sampling [d€], if the probabilities lie at
the extremes then the Gibbs sampler mixes very slowly. Toer¢he approximations
given by Gibbs sampling are not very accurate even for thg fubund model. Among
the clustering algorithms, KM and HC clearly outperformeld dnd EM. In almost
all cases, KM and HC produced clusterings that produced statde and consistent
results compared to EM and XM. For example, in (a), (d) andt{e)EM algorithm
gave poor results while in (i), XM gave poor results.
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Fig. 4. Approximation-error vsIC'R. The y-axis shows the average KL-Divergence of the
marginals computed on the clustered MLN from the marginataputed on the original MLN
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5.3 Effect of Evidence

Fig. 5illustrates the error for different values of clusb@unds §) and varying amount
of evidence. The results shown Fig. 5 use K-Means++ for etirgg and Lifted-BP for
inference. As expected, using a larger valuexah most cases leads to lower errors
due to a better approximation of the original MLN. Also, itnche seen that in most
of the cases illustrated in Fig. 5, for very small or very B@mounts of evidence,
the errors seem to go down. This is quite consistent with ffeetethat evidence has
on MLNs as previously shown in the introduction. Evidencedis symmetries in the
MLN and thus if very few groundings or nearly all groundings avidence, as there are
more symmetries, the inference algorithms tend to give tiehbapproximations (for
all o values) than the cases shown in middle portion of the graptesevthe random
evidence makes inference more challenging.

a=0.1 —— a=0.5 %
a=0.25 - a=0.75 8

Error
Error
Error

3 Bege
0.05 . - 3
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Evidence % Evidence % Evidence %

(a) Relation (b) Seg (c) WebKB

Fig. 5. lllustrating the effect of evidence. The x-axis varies theant of evidence on the atoms
in the MLN. The y-axis plots the approximation error for viagy cluster-bounds. The experiment
is run using K-Means for clustering and Lifted-BP for infece.

5.4 Scalability

Fig. 6 illustrates the scalability of our approach when Hizugdarge domain-sizes. For
different domain-sizes, we show the time in seconds it ttkesmpute the approximate
MLN after clustering. We used amvalue of 0.25 for these experiments and introduced
50% random evidence with half of thefir ue and the other haFal se. As expected,
the time taken to compute the approximate MLN increasesaddmain-size grows.
However, it should be noted that none of the MLNSs in Fig. 6 ddu processed by
existing ground/lifted inference algorithms in Alchemyfdr@ running out of memory
as the number of ground formulas is extremely large. For @@none instance of the
Relation MLN in Fig. 6 (a) has one billion groundings. Thusthout approximating
the MLN, there is no feasible approach to inference in sudelanodels. As shown by
our results, we were able to complete processing the MLN imaaanable amount of
time even when the groundings reached a trillion as in Fige)6Also, the number of
first-order formulas and their structure play a role in deieing the complexity due to
the distance function computation. Recall that we computecsor for every formula
in the MLN. Therefore, a larger number of formulas mean mamgutations on the
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database. For instance, Fig. 6 (e) has just one formula fjifeas 8 formulas which
have more complex structure. Therefore, even though thebauof ground formulas
in (e) is a trillion while in (f) it is a billion, we took moretine to process (f). Further, it
can be seen that for each of the benchmarks, the third irestgmelargest MLN) takes a
visibly longer time when compared to the first two instandéss is expected because,
when the size of the database grows really large as is thef@agery large domain-
sizes, it typically requires many more hard disk accesseguery processing which
causes it to slow down. Finally, as seen in the results, the ¢f clustering has minimal
impact on the time taken to process the MLN, i.e., nearly latering methods took
approximately the same amount of time.
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Fig. 6. Scalability experiments. The y-axis shows the time takefotim the approximate MLN
and the x-axis showsN¢, N.], where Ny is the number of ground formulas amd, is the
number of ground atoms.

6 Conclusion

In this paper, we presented an approach for scaling up iméeren MLNs. Existing
approaches either ground the MLN which makes it too largedogss or use rules to
identify symmetries and perform lifted inference. HoweVigting rules are applicable
only in certain specific, symmetric cases and more impdgtantthe presence of ev-
idence, these symmetries are broken, rendering liftedeénfee powerless. To achieve
scalable inference for such hard cases in which we can haiteasy MLN structures
with arbitrary evidence, we proposed to compress the aldlLN. Specifically, we
defined a novel distance function that is sensitive to theéesde presented to the MLN
and used it to replace groups of similar objects in the MLNH®jrtcluster centers. Our
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experimental results on several benchmark MLNs cleatgiithted the high accuracy
and scalability of our approach.
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