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ABSTRACT
In this paper, we consider the following activity recognition task:
given a video, infer the set of activities being performed in the video
along with an assignment of activities to each frame in the video.
Although this task can be solved accurately using existing deep
learning systems, their use is problematic in interactive settings. In
particular, deep learning models are black boxes: it is difficult to
understand how and why the system assigned a particular activity
to a frame. This reduces the users’ trust in the system, especially in
the case of end-users who need to use the system on a regular basis.
We address this problem by feeding the output of deep learning to
a tractable interpretable probabilistic graphical model and then per-
forming joint learning over the two. The key benefit of our proposed
approach is that deep learning helps achieve high accuracy while the
interpretable probabilistic model makes the system explainable. We
demonstrate the power of our approach using a visual interface to
provide explanations of model outputs for queries about videos.

CCS CONCEPTS
• Computing methodologies → Activity recognition and under-
standing; • Human-centered computing → Graphical user inter-
faces; User studies.
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1 INTRODUCTION
We propose a two-layer architecture that stacks a tractable, inter-
pretable probabilistic graphical model, specifically a cutset network
[10], layer on top of a deep learning layer to address the aforemen-
tioned drawback. A possible interpretation of this model is that
the deep learning layer provides noisy sensory inputs to the cutset
network layer which in turn removes the noise and provides explain-
ability. The interaction graph of the cutset network encodes our prior
knowledge about the relationship between various (human inter-
pretable) random variables in the network. The rationale is that the
prior knowledge will help correct the errors made by the neural net-
work and thus help improve accuracy. The cutset network provides
explainability not only because it is interpretable but also because we
can perform tractable (linear time in the size of the model) abductive
inference to compute explanations for the decisions made by the
model. To model temporal aspects in video, we propose a novel
tractable dynamic probabilistic modeling framework called dynamic
cutset networks and show that they greatly improve the estimation
accuracy.

We experimentally demonstrate the efficacy of our proposed ap-
proach by building an interactive visual interface and a machine
learning system for activity recognition for the Textually Annotated
Cooking Scenes (TaCOS) dataset [11]. The purpose of building this
system is two-fold. First, we want to show that we can create a
working prototype explainable AI system that not only performs
accurate activity recognition in videos but can also generate human
understandable explanations and answer queries posed by end-users.
Second, we aim to use the resulting system as the basis for user
studies of how different types of explanations affect user trust and
understanding of machine learning models.

2 RELATED WORK
This effort was inspired by the work of Rohrbach et al. [12] on
generating a semantic representation from videos at an activity level.
Instead of generating sentences in natural language however, we
assign a number of pre-defined labels divided into categories. We
do this by using deep-architectures with proven results in order to
generate high accuracies for predicting the activity labels. Related
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efforts have considered the task of dense captioning [4], i.e., gener-
ating summaries of texts from particular segments. Song et al. [13]
attempted to create captioning methods that require minimum super-
vision on the TaCOS dataset. Duan et al. [1] attempted to combine
caption generation and sentence localization to feed off each other
to create a weakly supervised training model. These works focus
on creating text summaries for video segments, and as is typical
of deep learning approaches, they are essentially black boxes. Our
approach, on the other hand, aims to create a semantic representation
for activities in each frame that can both be used to answer queries
easily as well as generate explanations that justify these answers.

There have also been a number of studies on how trust influences
interactions between humans and automated systems, e.g., [6], [7],
[5] and [2]. These studies examine factors that might affect the trust
of the user in the system, such as showing the past performance of the
system and making the working of the system more understandable
(Lee et al. [5]). Hoffman [3] provides a more detailed taxonomy of
such factors and explain how trust is context-specific and dynamic.
In other words, trust might vary with respect to specific contexts of
automation and must also be maintained over time. Our aim is to
be able to control and measure the trust of humans with respect to
these systems in order to better understand what kind of explanations
influence the trust variable.

3 PROBLEM DESCRIPTION
In this section, we will define the problem in precise terms and also
describe the framework we will be using for question-answering and
generating explanations.

3.1 Activity Recognition with Explanations
The objective of our proposed system is two-fold: (a) perform ac-
curate activity recognition in videos, and (b) compile knowledge
acquired while learning to recognize activities into an explanatory
model. The latter can then be used to explain why a particular activity
was assigned to a frame by the system.

We define an activity as a (action, object, location) triple. The
action component forms the core part of the activity. These are usu-
ally verbs such as wash, cut, slice, open, etc. The object component
denotes the entities over which the activity is performed. These are
generally nouns such as apples, refrigerator, cutting board, knife, etc.
Finally, the location component tells us where the activity is taking
place. These are generally location nouns such as kitchen, bathroom,
counter top, sink, etc. but can also overlap with the nouns we use
as objects. For example, when we “kick open a door,” the activity
is “kick” and the object is “door,” but the same entity might play a
different semantic role in a different activity such as if a baby “draws
a picture on the door.” Here “draw” is the activity, “picture” is the
object, and “door” is the location.

For the purposes of our initial system, we make the following
simplifying assumptions.

(1) We train our system on a closed-domain. In this study, we use
cooking videos.

(2) We assume that only one major activity is taking place per
frame (minor activities are ignored).

(3) The action must always be present, while the object and the
location are optional. For reflexive actions, such as “walking,”
the object is “None.”

In future, we plan on making activities more complex (so that we
can pose more interesting queries on them). We also plan on defining
hierarchies on activities to create ‘super’ and ‘sub’ activities. For
instance, taking out an egg from a refrigerator might be a sub-activity
of cooking the egg, which in turn might be a sub-activity of cooking
a full-course meal.

3.2 Formulating Queries
Now that we have precisely defined activities, we can define queries
and explanations. A query is similar to an activity in that it is also
a triple of the form (action, object, location). Once this triple is
formulated, we run a filtering query—which seeks to assign an
activity to each frame in the video based on the current and previous
frames (but not future frames)—to check how many frames match
our query. For instance, if we wanted to ask the system if the person
in the video sliced an orange on the cutting board, our query tuple
would look something like: (slice, orange, cutting-board). Once we
have formulated this tuple, we simply ask the system to search for
frames where the probability of this tuple being the actual activity is
above a certain threshold.

We envision that our system will be used to answer a wide-range
of queries including but not limited to:

(1) Selection queries. Did the person slice an orange on the
counter?

(2) Counting. How many oranges did the person slice on the
counter?

(3) Recipe. Did the person deviate from a pre-defined recipe?
(4) Complex: Combination of all of the above

In this paper, we will focus on selection queries and leave the re-
maining for future work.

3.3 Generating Explanations
The aim of our system is not only to answer queries but also to
explain the predictions to the end-user. As mentioned in the previ-
ous section, selection queries involve formulating the query into a
(action, object, location) tuple and then filtering on the video to find
frames which have a high probability of containing the activity. Note
that two of the three parameters can be optional. This means that
our queries can be as simple as “Did the person wash something?”
(wash, ?, ?) or “Did anything happen on the kitchen counter?” (?, ?,
counter), etc.

We seek to build a system that can generate three types of expla-
nations:

(1) Video Explanations: When the system answers “yes” we
want the system to highlight segments (possibly more than
one) of the video where the activity happened. For “no” an-
swers, we want the system to highlight segments where a
related activity happened (e.g., carrots were cut in the video
but not oranges). If no related activity is found in case of a
“no answer,” we want the system to output the most likely
activity in the video.
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Figure 1: High-level Architecture and Data Processing Pipeline. Our system has two layers: a video classification layer based on deep learning whose
output is fed to an explanation layer which is based on cutset networks [10], a tractable interpretable probabilistic model. During the learning phase,
the classification layer uses the video and the ground truth (labels) as input and learns a mapping from frames to object, action and location. During
the learning phase, the explanation layer uses the labels predicted by the classification layer and ground truth as input and learns a mapping from
predicted labels to the ground truth. During the query phase, the system answers questions by performing abductive inference over the cutset network
(in the explanation layer).

(2) Ranked (action,object,location) Triples: We want the sys-
tem to display top-k predicted activity triples in the video that
are relevant to the query.

(3) Most Probable Entities: We want the system to display the
most probable actions, objects and locations (along with their
likelihood) that are relevant to the query.

4 SYSTEM DESCRIPTION
This section explains the architecture and the functioning of our sys-
tem in detail. Fig. 1 shows a high-level overview of the components
of the system and the processing pipeline. Roughly speaking, the
system can be categorized into the following two layers:

(1) Video Classification Layer
In this layer, we use a convolutional neural network whose ar-
chitecture is based on GoogleNet [15]. The network takes as
input a number of video frames, a vocabulary file, and a set of
annotated ground truths and then uses a version of backprop-
agation with the Adam algorithm to learn the weights. The
output is a set of labels that correspond to each vocabulary
word. The accuracy of network for the multilabel classifica-
tion task is measured using standard information retrieval
metrics.

(2) Explanation Layer
The ground labels and the predicted labels from the previous

layer are fed to this layer and are used to train a Conditional
Cutset Network [10]. Once training is done, we are now in a
position to pose queries to the system. The system uses the
trained model to answer these queries and returns the top k-
best explanations using sampling-based inference techniques.

Next, we will describe each layer in more detail.

4.1 Video Classification Layer
For this layer, we will be using the BAIR/BLVC GoogleNet Model
[14]. This is a pre-trained model that uses the ILSVRC dataset.
There are 22 layers in the network. It uses a key component called
the Inception Model (for details, please refer [15]) that creatively
uses convolutions of size 1x1 to increase the representational power
the network without increasing the number of parameters. These
layers are stacked one on top of the other. The architecture preserves
translational invariance.

The other reason we used GoogleNet is because the computational
load does not increase exponentially with the increase in layers.
This is because the Inception modules use 1x1 convolutions. The
vanishing gradient problem is taken care of by using rectified linear
units in the perceptrons. This also avoids the introduction of sparse
activations in the hidden layers of the network.
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Figure 2: (a) Architecture of Sensor Network using Plate Notation (b) Architecture of Dynamic Cutset Network

Finally, we made a slight modification to this architecture by
replacing the softmax layer on top with a fully-connected layer with
28 nodes that use the sigmoid cross-entropy loss.

The video is first divided into frames which are then fed to this
layer along with the ground labels for each frame. For instance, if
we have 10,000 frames in our dataset and the 328th frame has the
person taking a carrot out from the fridge, then the 328th row in the
ground labels file will have (take-out, carrot, fridge) set to true and
all other labels set to false.

The output layer has a node for every label in the vocabulary. For
the purposes of this experiment, we are using 28 labels. The neural
network takes in the video frame as an input and tries to guess the
correct activity labels for each frame. The accuracy of this multi-
label classification task is measured using standard metrics such as
the Hamming loss and the Jaccard index.

4.2 Explanation Layer
At the end of processing the first layer, we have a list of predicted
labels for selected video frames. In the explanation layer, we correct
errors in the predicted labels using a probabilistic model at each
frame. Also, we model the dynamics as well as persistence (activities
don’t change rapidly between frames) using a temporal probabilistic
model.

The explanation model uses a Conditional Cutset Network (CCN),
[10] to correct the errors at each frame. The reason for using this
probabilistic model is two-fold. First it is interpretable in that its
structure and parameters can be explained to an expert user using
concepts from graph theory and probability theory respectively. Sec-
ond, it is a tractable model. In particular, the model can answer
queries in time that scales linearly with its size. At a high level, the
CCN treats the output of the neural network as a noisy sensor (see
Fig. 2(a)) and computes a conditional joint probability distribution
over the true labels given the predicted (noisy) labels.

To model dynamics and persistence, we propose to use dynamic
conditional cutset networks (see Fig. 2(b)). To control the number of
parameters and learning complexity, we use 1-Markov and stationar-
ity assumptions, which are widely used in temporal models literature
[9]. Specifically, we assume that each frame is conditionally indepen-
dent of all frames before it given the previous frame (1-Markov) and
all conditional distributions are identical (stationarity). We model
these conditional distributions using conditional cutset networks.

Thus, a dynamic conditional cutset network is a two-tuple. At the
first frame, we have a conditional cutset network which models the
conditional distribution over the labels in the frame given labels
predicted by the neural network. At subsequent frames, we have a
conditional cutset network which models the conditional distribution
over the labels in the frame given labels predicted by the neural
network and the true labels in the previous frame.

The three explanation types (video, ranked triples and most proba-
ble entities) mentioned in the previous section can be computed from
the explanation layer by performing abductive inference (cf. [8])
over the dynamic cutset network. Since inference in cutset networks
is linear in the size of the network, once learned from data, our
explanation layer yields real-time query answers and explanations.

4.3 Dataset and Data Processing
The dataset we are using for this experiment is the TACoS Multi-
Level corpus - MPII Cooking 2 dataset by Rohrbach et al. [12]. Each
video is annotated as follows. The annotations are filename (e.g., s24-
d28), startFrame (e.g. 781), endFrame (e.g., 1098), descriptionIdx
(e.g., 3), ignore (e.g., 0), sentenceProcessed (e.g., the person took
out the cutting board from the drawer and placed it on the counter),
activity (e.g., take out), tool (e.g., hand), object (e.g., cutting board),
source (e.g., drawer), target (e.g., counter).

We generate the ground labels from these annotations. We create
a text file where every row corresponds to a frame of some video. In
addition to the name of the video and the frame number, we have
28 0/1 values depending on which labels are off and which are on.
The order of the labels follows the same order as that of the output
nodes in the video classification layer. We extract the activity, object
and location by punching together the source and destination fields.
For instance, the location drawer-counter indicates that the source
of the action is the drawer and the final destination is the counter.
We repeat this process for each video frame in our training set.

After we have a list of ground labels and predicted labels, we
train the explanation model and pose queries to it. This part will be
discussed in the Experiments section.

4.4 User Interface
The prototype uses an interactive visual interface that allows users
to load videos, ask queries, and review the model output along
with explanations. The goal for the interface design was to limit
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Figure 3: The interactive visual interface allows users to load videos and ask queries. The interface shows the AI’s answer along with
explanatory elements for the output. The most relevant portions of the video play time are shown by colored bars beneath the video,
and the right side shows detected video components and combinations of components relevant to the video and query.

the amount of model information presented to the user in order to
avoid overwhelming users with information. For this reason, the
system uses simple visual representations in the form of graphical
annotations, textual component lists, and simple bar charts. Figure 3
shows the interface.

The interface includes a video player that allows users to watch
the selected video to help review and analyze the system’s answers to
the queries. When a query is submitted, the video player highlights
the most relevant segments of the video through visual annotations
added under the video play bar (shown as orange and purple bars
under the video in Fig. 3). The video player will also automatically
jump to the appropriate segment to help users see the video frames
most important for determining the output. In addition, the right
side of the interface summarizes the detected video components
(activities, objects, and locations) for the query as well as detected
combinations of components. To help users to quickly judge com-
ponent scores, graphical bars are shown underneath detected com-
ponents to visually represent the values of the component scores.
Users can select different video segments to view the corresponding
component scores and combinations from different portions of the
video.

5 EVALUATION
In order to evaluate our system, we designed two experiments using
the TACoS video dataset and annotations. We performed a model
evaluation to measure how successful the system is at identifying ac-
tivities and providing explanations, and we performed a preliminary
user study to assess system understandability and usability.

5.1 Model (Machine Learning) Evaluation
We selected 60313 frames for training and 9355 frames for testing
distributed over 17 videos. For each set, we selected a set of ground
labels and used the video classification layer to generate the predicted
labels. We performed the following ablation study: (1) Our system in
which the explanation layer is removed (GoogleNet); (2) Our system
in which the dynamic model is removed but the sensor model is
kept at each frame (Sensor Model); and (3) the full system (dynamic
CCNs).

Table 1 outlines the accuracy scores for correct activity recogni-
tion according to various evaluation metrics. Since predicting each
activity correctly is a multilabel classification task, we use K-Group
measures to calculate the overall percentage of instances where K
labels out of the total number of labels were predicted currently.
We use the group heuristics K-1, K-2, and K-3 (since each activity
comprises of action, object and location). In addition, we also use
standard measures such as the Hamming Loss and the Jaccard Index.
We observe that in general (with a few exceptions) dynamic CCNs is
more accurate than the sensor model which in turn is more accurate
than GoogleNet.

5.2 Human Feedback
We sought user feedback via a preliminary testing with seven par-
ticipants. All participants were experienced with AI but were un-
familiar with the specifics of the system. Rather than testing the
querying functionality and model accuracy, we were interested in
general user feedback about perception of the system and explana-
tions. Participants were asked to review a set of four videos with five
pre-determined queries per video.



IUI Workshops ’19, March 20, 2019, Los Angeles, USA C. Roy et al.

Evaluation Metric GoogleNet Sensor Dynamic CCNs
K-1 0.9335 0.9677 0.9649
K-2 0.8557 0.8998 0.9156
K-3 0.7918 0.7962 0.8127
Jaccard Index 0.8608 0.8559 0.8628
Hamming Loss 0.1392 0.1286 0.1200

Table 1: Accuracy for Activity Recognition on All Videos. Bold
results indicate the best performing model.

Figure 4: Preliminary results which summarize how partici-
pants used each section. We observe that participants found
video segments very helpful in completing the task.

After participants finished the study, they were asked about the
utility of each section of the interface, in particular, whether the
section helped them complete the given task quickly. The results
of this questionnaire are shown in Fig. 4. Our testing demonstrates
that users were able to effectively and easily use the system to sub-
mit queries and review results. The simplicity of the visual design
enabled participants to easily see the corresponding relevant seg-
ments of the video and to quickly assess the accuracy of the model’s
output. However, participants had mixed thoughts on component
scores (most probable entities) and component combinations (ranked
triples).

We plan to further examine differences in interpretation and study
the utility of the explanation design through more extensive user
testing in the future. In particular, we will run more formal controlled
experiments of how different types of explanation and amount of
explanatory information affect understanding of the model and per-
ception of its accuracy.

6 CONCLUSION
From our preliminary user studies, a strong positive correlation has
been observed between user trust and the goodness of explanations.
As a part of our future work, we plan on improving upon our current
system in the following manner:

(1) Adding support for more vocabulary in the video classifica-
tion layer

(2) Adding support for complex models and automatic query
conversion from natural language in the explanation layer

(3) Adding support for a larger variety of queries
We expect that adding these features will increase the trust of the

users in the system since the range of activities, the precision of the
explanations as well as the types of queries will all increase.
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