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Abstract

We present SGDPLL(T ), an algorithm that solves
(among many other problems) probabilistic infer-
ence modulo theories, that is, inference problems
over probabilistic models defined via a logic theory
provided as a parameter (currently, equalities and
inequalities on discrete sorts). While many solu-
tions to probabilistic inference over logic represen-
tations have been proposed, SGDPLL(T ) is simul-
taneously (1) lifted, (2) exact and (3) modulo the-
ories, that is, parameterized by a background logic
theory. This offers a foundation for extending it
to rich logic languages such as data structures and
relational data. By lifted, we mean that our pro-
posed algorithm can leverage first-order representa-
tions to solve some inference problems in constant
or polynomial time in the domain size (the number
of values that variables can take), as opposed to ex-
ponential time offered by propositional algorithms.

1 Introduction
Uncertainty representation, inference and learning are im-
portant goals in Artificial Intelligence. In the past few
decades, neural networks and graphical models have made
much progress towards those goals, but even today their main
methods can only support very simple types of representa-
tions (such as tables and weight matrices) that exclude log-
ical constructs such as relations, functions, arithmetic, lists
and trees. Moreover, such representations require models in-
volving discrete variables to be specified at the level of their
individual values, making generic algorithms expensive for
finite domains and impossible for infinite ones.

For example, consider the following conditional probabil-
ity distributions, which would need to be either automatically
expanded into large tables (a process called propositionaliza-
tion), or manipulated in a manual, ad hoc manner, in order
to be processed by mainstream neural networks or graphical
model algorithms:

• P (x > 10 | y 6= 98 ∨ z ≤ 15) = 0.1,
for x, y, z ∈ {1, . . . , 1000}
• P (x 6= Bob | friends(x ,Ann)) = 0.3

The Statistical Relational Learning [Getoor and Taskar,
2007] literature offered more expressive languages but relied
on conversion to conventional representations to perform in-
ference, which can be very inefficient. To counter this, lifted
inference [Poole, 2003; de Salvo Braz, 2007] offered solu-
tions for efficiently processing logically specified models, but
with languages of limited expressivity (such as function-free
ones) and algorithms that are hard to extend. More recently,
probabilistic programming [Goodman et al., 2012] has of-
fered inference on full programming languages, but relies on
approximate methods on the propositional level.

We present SGDPLL(T ), an algorithm that solves (among
many other problems) probabilistic inference on models de-
fined over logic representations. Importantly, the algorithm
is agnostic with respect to which particular logic theory is
used, which is provided to it as a parameter. In this paper,
we use the theory consisting of equalities over finite discrete
types, and inequalities over bounded integers, as an exam-
ple. However, SGDPLL(T ) offers a foundation for extending
it to richer theories involving relations, arithmetic, lists and
trees. While many algorithms for probabilistic inference over
logic representations have been proposed, SGDPLL(T ) is si-
multaneously (1) lifted, (2) exact1 and (3) modulo theories.
By lifted, we mean that our proposed algorithm can leverage
first-order representations to solve some inference problems
in constant or polynomial time in the domain size (the number
of values that variables can take), as opposed to exponential
time for propositional algorithms.

SGDPLL(T ) is a generalization of the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm for solving the sat-
isfiability problem. SGDPLL(T ) generalizes DPLL in three
ways: (1) while DPLL only works on propositional logic,
SGDPLL(T ) takes (as mentioned) a logic theory as a param-
eter; (2) it solves many more problems than satisfiability on
boolean formulas, including summations over real-typed ex-
pressions, and (3) it is symbolic, accepting input with free
variables (which can be seen as constants with unknown val-
ues) in terms of which the output is expressed.

Generalization (1) is similar to the generalization of DPLL
made by Satisfiability Modulo Theories (SMT) [Barrett et al.,

1Our emphasis on exact is not due to its being a more useful
inference in practical applications, but to the idea that it is a needed
basis for flexible and well-understood approximations.



2009; de Moura et al., 2007; Ganzinger et al., 2004], but SMT
algorithms require only satisfiability solvers of their theory
parameter to be provided, whereas SGDPLL(T ) may require
solvers for harder tasks (including model counting) that de-
pend on the theory, including symbolic model counters, i.e.,
Figures 1 and 2 illustrate how both DPLL and SGDPLL(T )
work and highlight their similarities and differences.

Note that SGDPLL(T ) is not a probabilistic inference al-
gorithm in a direct sense, because its inputs are not defined
as probabilistic distributions, random variables, or any other
concepts from probability theory. Instead, it is an alge-
braic algorithm defined in terms of expressions, functions,
and quantifiers. However, probabilistic inference on rich lan-
guages can be directly reduced to problems that SGDPLL(T )
can efficiently solve.

2 Intuition: DPLL, SMT and SGDPLL(T )
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Figure 1: Example of DPLL’s search tree for the existence of sat-
isfying assignments. We show the full tree even though the search
typically stops when the first satisfying assignment is found.

The Davis-Putnam-Logemann-Loveland (DPLL) algo-
rithm [Davis et al., 1962] solves the satisfiability (or SAT)
problem. SAT consists of determining whether a propo-
sitional formula F , expressed in conjunctive normal form
(CNF) has a solution or not. A CNF is a conjunction (∧) of
clauses where a clause is a disjunction (∨) of literals, where
a literal is a proposition (e.g., x) or its negation (e.g., ¬x).
A solution to a CNF is an assignment of values from the set
{0, 1} or {TRUE, FALSE} to all Boolean variables (or propo-
sitions) in F such that at least one literal in each clause in F
is assigned to TRUE.

Algorithm 1 shows a simplified and non-optimized version
of DPLL which operates on CNF formulas. It works by re-
cursively trying assignments for each proposition, one at a
time, simplifying the CNF, and terminating if F is a constant
(TRUE or FALSE). Figure 1 shows an example of the execu-
tion of DPLL. Although simple, DPLL is the basis for modern
SAT solvers which improve it by adding sophisticated tech-
niques and optimizations such as unit propagation, watch lit-
erals, and clause learning [Eén and Sörensson, 2003].

Satisfiability Modulo Theories (SMT) algorithms [Bar-
rett et al., 2009; de Moura et al., 2007; Ganzinger et al.,

…

∑x ∈ {1,…,100} ∑z ∈ {1,…,100} [ (if x > y ∧ y ≠ 5   then 0.1 else 0.9) ×
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Figure 2: SGDPLL(T ) for summation with a background theory of
inequalities on bounded integers. It splits the problem according to
literals in the background theory, simplifying it until the sum is over
a literal-free expression. Some of the splits are on a free variable (y)
and create if-then-else expressions which are symbolic conditional
solutions. Other splits are on quantified variables (x, z), and split the
corresponding quantifier. When the base case with a literal-free ex-
pression is obtained, the specific theory solver computes its solution
(white boxes). This figure does not show how the conditional sub-
solutions are summed together; see end of Section 4.1 for examples
and details.

2004] generalize DPLL and can determine the satisfiability of
a Boolean formula expressed in first-order logic, where some
function and predicate symbols have additional interpreta-
tions. Examples of predicates include equalities, inequalities,
and uninterpreted functions, which can then be evaluated us-
ing rules of real arithmetic. SMT algorithms condition on the
literals of a background theory T , looking for a truth assign-
ment to these literals that satisfies the formula. While a SAT
solver is free to condition on a proposition, assigning it to ei-
ther TRUE or FALSE regardless of previous choices (truth val-
ues of propositions are independent from each other), an SMT
solver needs to also check whether a choice for one literal is
consistent with the previous choices for others, according to
T . This is done by a theory-specific model checker provided
to the SMT algorithm as a parameter.

SGDPLL(T ) is, like SMT algorithms, modulo the-
ories but further generalizes DPLL by being symbolic
and quantifier-parametric (thus “Symbolic Generalized
DPLL(T )”). These three features can be observed in the prob-



Algorithm 1 A version of the DPLL algorithm.

DPLL(F )

F : a formula in CNF.
simplify : simplifies boolean formulas given a condition
(e.g., simplify(x ∧ y|¬y) = FALSE)

1 if F is a boolean constant
2 return F
3 else v ← pick a variable in F
4 Sol1 ← DPLL(simplify(F | v))
5 Sol2 ← DPLL(simplify(F |¬v))
6 return Sol1 ∨ Sol2

lem being solved by SGDPLL(T ) in Figure 2:∑
x,z∈{1,...,100}

(ifx > y ∧ y 6= 5 then 0.1 else 0.9)

× (if z < y ∧ y < 3 then 0.4 else 0.6)

In this example, the problem being solved requires more
than propositional logic theory since equality, inequality and
other functions are involved. The problem’s quantifier is a
summation, as opposed to DPLL and SMT’s existential quan-
tification ∃. Also, the output will be symbolic in y because
this variable is not being quantified, as opposed to DPLL and
SMT algorithms which implicitly assume all variables to be
quantified.

Before formally describing SGDPLL(T ), we will briefly
comment on its three key generalizations.

Quantifier-parametric Satisfiability can be seen as com-
puting the value of an existentially quantified formula; the
existential quantifier can be seen as an indexed form of dis-
junction, so we say it is based on disjunction. SGDPLL(T )
generalizes SMT algorithms with respect to the problem be-
ing solved by computing expressions quantified by any quan-
tifier

⊕
based on an associative commutative operation

⊕. Examples of (
⊕

, ⊕, ) pairs are (∀,∧), (∃,∨), (
∑

,+),
and (

∏
,×). Therefore SGDPLL(T ) can solve not only sat-

isfiability (since disjunction is associative commutative), but
also validity (using the ∀ quantifier), sums, products, model
counting, weighted model counting, maximization, and many
more.

Modulo Theories SMT generalizes the propositions in
SAT to literals in a given theory T , but the theory con-
necting these literals remains that of boolean connectives.
SGDPLL(T ) takes a theory T = (TC , TL), composed of
a constraint theory TC and an input theory TL. DPLL
propositions are generalized to literals in TC in SGDPLL(T ),
whereas the boolean connectives are generalized to functions
in TL. In the example above, TC is the theory of inequali-
ties on bounded integers, whereas TL is the theory of +,×,
boolean connectives and if then else . Of the two, TC is
the crucial one, on which inference is performed, while TL is

used simply for the simplifications after conditioning, which
takes time at most linear in the input expression size.

Symbolic Both SAT and SMT can be seen as computing the
value of an existentially quantified formula in which all vari-
ables are quantified, and which is always equivalent to either
TRUE or FALSE. SGDPLL(T ) further generalizes SAT and
SMT by accepting quantifications over any subset of the vari-
ables in its input expression (including the empty set). The
non-quantified variables are free variables, and the result of
the quantification will typically depend on them. Therefore,
SGDPLL(T )’s output is a symbolic expression in terms of
free variables. Section 3 shows an example of a symbolic
solution.

Being symbolic allows SGDPLL(T ) to conveniently solve
a number of problems, including quantifier elimination and
exploitation of factorization in probabilistic inference, as dis-
cussed in Section 5.

3 T -Problems and T -Solutions
SGDPLL(T ) receives a T -problem (or, for short, simply a
problem) of the form⊕

x1:C1

· · ·
⊕

xm:Cm

E,

where, for each i = 1, . . . ,m, xi is an index variable quanti-
fied by

⊕
and subject to constraint Ci in TC , and E an expres-

sion in TL. Ci is assumed to be equivalent to a conjunction of
literals in TC . There may be free variables, that is, variables
that are not quantified, present in both the constraints and E.
An example of a problem is∑

y

∑
x:3≤x∧x≤y

ifx > 4 then y else 10 + z,

for x, y bounded integer variables in, say, {1, . . . , 20}.
A T -solution (or, for short, simply a solution) to a prob-

lem is a quantifier-free expression in TL equivalent to the
problem. It can be an unconditional solution, contain-
ing no literals in TC , or a conditional solution of the form
ifL thenS1 elseS2, where L is a literal in TC and S1, S2

are two solutions (either conditional or unconditional). Note
that, in order for the solution to be equivalent to the problem,
only variables that were free (not quantified) can appear in
the literal L. In other words, a solution can be seen as a deci-
sion tree on literals, with literal-free expressions in the leaves,
such that each leaf is equivalent to the original problem, pro-
vided that the literals on the path to it are true. For example,
the problem∑

x:1≤x∧x≤10

if y > 2 ∧ w > y then y else 4

has an equivalent conditional solution
if y > 2 then ifw > y then 10y else 40 else 40.

4 SGDPLL(T )
In this section we provide the details of SGDPLL(T ), de-
scribed in Algorithm 2 and exemplified in Figure 2. We first
give an informal explanation guided by examples, and then
provide a formal description of the algorithm.



4.1 Informal Description of SGDPLL(T )
Base Case Problems
A problem is in base case 0 if and only if m = 1, E contains
no literals in TC and C is in a base form specific to the theory
T , which its solver must be able to recognize.

In our running example, we a slight variant of difference
arithmetic [de Moura et al., 2007], with atoms of the form
x < y or x ≤ y + c, where c is an integer constant. Strict
inequalities x < y + c can be represented as x ≤ y + c − 1
and the negation of x ≤ y + c is y ≤ x − c − 1. From now
on, we shorten a ≤ x ∧ x ≤ b to a ≤ x ≤ b.

The base case for difference arithmetic is
∑

x:l<x≤u E,
where E is a polynomial and x’s lower and upper bounds l
and u are either variables, or differences between a variable
and an integer constant. One example is

∑
x:y+1≤x≤z−3 y

2 +

4x3. When l < u, Faulhaber’s formula [Knuth, 1993] allows
us to compute a new polynomial E′ (in the variables other
than x) equivalent to the problem (details shown in the Ap-
pendix). Moreover, this can be done (a little surprisingly) in
time only dependent in the degree of the polynomial E, not
on the domain size of x or the distance u − l. If l < u is
false, there are no values of x satisfying the constraint, and
the problem results in 0. Therefore, the solution is the condi-
tional if l < u thenE′ else 0.

A base case 1 problem is such that m > 1 and
⊕

x:Cm
E

satisfies base case 0, yielding solution S. In this case, we
reduce the problem to the simpler⊕

x1:C1

· · ·
⊕

xm−1:Cm−1

S.

Non-Base case Problems
For non-base cases, SGDPLL(T ) mirrors DPLL, by selecting
a splitter literal to split the problem on, generating two sim-
pler problems. This eventually leads to base case problems.

The splitter literal L can come from either the expression
E, to bring it closer to being literal-free, or from Cm, to bring
it closer to satisfying the base form prerequisites. We will see
examples shortly.

Once the splitter literal L is chosen, it splits the problem
in two possible ways: if L does not contain any of the in-
dices xi, it causes an if-splitting in which L is the condition
of an if then else expression and the two simpler sub-
problems are its then and else clauses; if L contains at least
one index, it causes a quantifier-splitting based on the latest
of the indices it contains.

For an example of an if-splitting on a literal coming from
E, consider∑

z

∑
x:3<x≤10

if y > 4 then y else 10.

This is not a base case because E is not literal-free. However,
splitting on y > 4 reduces the problem to

if y > 4 then
∑
z

∑
x:3<x≤10

y else
∑
z

∑
x:3<x≤10

10,

containing two base cases.

For another example of an if-splitting, but this time on a
literal coming from Cm, consider the problem∑

z

∑
x:y<x∧3<x∧x≤10

y2.

This is not a base case because the constraint includes two
lower bounds for x (y and 3), which are not redundant be-
cause we do not know which one is the smallest. We can
however reduce the problem to base case ones by splitting
the problem according to y < 3:

if y < 3 then
∑
z

∑
x:3<x≤10

y2 else
∑
z

∑
x:y<x≤10

y2.

For an example of quantifier-splitting on a literal coming
from E, consider this problem in which the splitter literal
contains at least one index (here it contains two, x and z):∑

x:3<x≤10

∑
z

ifx > 4 then y else 10 + z.

In this case, we cannot simply move the literal outside the
scope of the sum in its latest index x. Instead, we add the
literal and its negation to the constraint on x, in two new sub-
problems:

=
( ∑
x:x>4∧3<x≤10

∑
z

y
)

+
( ∑
x:x≤4∧3<x≤10

∑
z

10 + z
)

=
( ∑
x:4<x<10

∑
z

y
)

+
( ∑
x:3<x≤4

∑
z

10 + z
)
.

In this example, the two sub-solutions are unconditional poly-
nomials, and their sum results in another unconditional poly-
nomial, which is a valid solution. However, if at least one
of the sub-solutions is conditional, their direct sum is not a
valid solution. In this case, we need to combine them with a
distributive transformation of ⊕ over if then else :

S ⊕ (ifL thenS1 elseS2)

≡ ifL thenS ⊕ S1 elseS ⊕ S2,

proceeding recursively if any of solutions S, S2, S3 is also
conditional. For example:

(ifx < 4 then y2 else z) + (if y > z then 3 elsex)

≡ if x < 4 then y2 + (if y > z then 3 elsex)

else z + (if y > z then 3 elsex)

≡ if x < 4 then if y > z then y2 + 3 else y2 + x

else if y > z then z + 3 else z + x.

The algorithm terminates because each splitting generates
sub-problems with one less literal in

⊕
xm:Cm

E, eventually
turning it into a base case and obtaining another problem with
one less quantifier. When all quantifiers are eliminated, we
are left with a sum of (possibly conditional) solutions, which
can be summed up into a single one.

4.2 Formal Description of SGDPLL(T )
We now present a formal version of the algorithm. We start
by specifying the basic tasks the given T -solver is required
to solve, and then show can we can use it to solve any T -
problems.



Requirements on T solver
To be a valid input for SGDPLL(T ), a T -solver ST for theory
T = (TL, TC) must solve two tasks:

• Given a problem
⊕

x:C E, ST must be able to recognize
whether C is in base form and, if so, provide a solution
baseT (

⊕
x:C E) for the problem.

• Given a conjunction C not in base form, ST must pro-
vide a tuple splitT (C) = (L,CL, C¬L) such that L ∈
TC , and conjunctions CL and C¬L are smaller than C
and satisfy L⇒ (C ⇔ CL) ∧ ¬L⇒ (C ⇔ C¬L).

The algorithm is presented in Figure 2. Note that it does not
depend on difference arithmetic theory, but can use a solver
for any theory satisfying the requirements above.

If the T -solver implements the operations above in polyno-
mial time in the number of variables and constant time in the
domain size (the size of their types), then SGDPLL(T ), like
DPLL, will have time complexity exponential in the num-
ber of literals and, therefore, in the number of variables, and
be independent of the domain size. This is the case for the
solver for difference arithmetic and will be typically the case
for many other solvers.

Optimizations
The algorithm as presented so far has not dealt with redun-
dancy and simplification, and may generate solutions such as
ifx = 3 then ifx 6= 4 then y else z elsew in which
literals are implied (or negated) by the context they are in.

Such solutions are longer and therefore more expensive to
use, and also more expensive to compute, since the redundant
literal will be processed by SGDPLL(T ) as usual even though
that particular branch of the search tree could be pruned.

As with SMT algorithms, theory solvers can be used to
detect unsatisfiable conjunctions of constraints and prune the
search as soon as possible. This can be done by keeping a
theory-specific, efficient representation of the conjunction of
literals assumed so far, that can be incrementally updated in
an efficient manner.

Modern SAT solvers benefit enormously from unit prop-
agation and watched literals. In DPLL, unit propagation
is performed when all but one literal L in a clause are as-
signed FALSE. For this unit clause, and as a consequence,
for the CNF problem, to be satisfied, L must be TRUE and
is therefore immediately assigned that value wherever it oc-
curs, without the need to split on it. Detecting unit clauses,
however, is expensive if performed by naively checking all
clauses at every splitting. Watched literals is a data structure
scheme that allows only a small portion of the literals to be
checked instead. In the SGDPLL(T ) setting, unit propaga-
tion and watched literals need to be generalized to its not-
necessarily-Boolean expressions; we leave this presentation
for future work.

5 Probabilistic Inference Modulo Theories
Let P (X1 = x1, . . . , Xn = xn) be the joint probability dis-
tribution on random variables {X1, . . . , Xn}. For any tuple
of indices t, we define Xt to be the tuple of variables indexed
by the indices in t, and abbreviate the assignments (X = x)

Algorithm 2 Symbolic Generalized DPLL (SGDPLL(T )),
omitting pruning, heuristics and optimizations.

SGDPLL(T )(
⊕

x1:C1
· · ·
⊕

xm:Cm
E)

Returns a T -solution for the given T -problem.

1 if split(
⊕

xm:Cm
E) indicates “base case”

2 S ← baseT (
⊕

xm:Cm
E)

3 if m = 1 // decide if base case 0 or 1
4 return S
5 else
6 P ←

⊕
x1:C1

· · ·
⊕

xm−1:Cm−1
S

7 else
8 // split returned (L,

⊕
xm:C′m

E′,
⊕

xm:C′′m
E′′)

9 if L does not contain any indices
10 splittingType ← “if”
11 Sub1 ←

⊕
x1:C1

· · ·
⊕

xm:C′m
E′

12 Sub2 ←
⊕

x1:C1
· · ·
⊕

xm:C′′m
E′′

13 else // L contains a latest index xj :
14 splittingType ← “quantifier”
15 Sub1 ←

⊕
x1:C1

· · ·
⊕

xj :Cj∧L · · ·
⊕

xm:C′m
E′

16 Sub2 ←
⊕

x1:C1
· · ·
⊕

xj :Cj∧¬L · · ·
⊕

xm:C′′m
E′′

17 S1 ← SGDPLL(T )(Sub1)
18 S2 ← SGDPLL(T )(Sub2)
19 if splittingType == “if”
20 return the expression ifL thenS1 elseS2

21 else return combine(S1, S2)

SPLIT(
⊕

x:C E)

1 if E contains a literal L
2 E′ ← E with L replaced by TRUE
3 E′′ ← E with L replaced by FALSE
4 return (L,

⊕
C E′,

⊕
C E′′)

5 elseif C is not recognized as base form by the T -solver
6 (L,C ′, C ′′)← splitT (C)
7 return (L,

⊕
C′ E,

⊕
C′′ E)

8 else return “base case”

COMBINE(S1, S2)

1 if S1 is of the form ifC1 thenS11 elseS12

2 return the following if-then-else expression:
3 if C1

4 then combine(S11, S2)
5 else combine(S12, S2)
6 elseif S2 is of the form ifC2 thenS21 elseS22

7 return the following if-then-else expression:
8 if C2

9 then combine(S1, S21)
10 else combine(S1, S22)
11 else return S1 ⊕ S2



and (Xt = xt) by simply x and xt, respectively. Let t̄ be the
tuple of indices in {1, . . . , n} but not in t.

The marginal probability distribution of a subset of vari-
ables Xq is one of the most basic tasks in probabilistic infer-
ence, defined as

P (xq) =
∑
xq̄

P (x)

which is a summation on a subset of variables occurring in an
input expression, and therefore solvable by SGDPLL(T ).

If P (X = x) is expressed in the language of input and
constraint theories appropriate for SGDPLL(T ) (such as the
one shown in Figure 2), then it can be solved by SGDPLL(T ),
without first converting its representation to a much larger one
based on tables. The output will be a summation-free expres-
sion in the assignment variables xq representing the marginal
probability distribution of Xq .

Other probabilistic inference problems can be equally
solved by SGDPLL(T ). Belief updating consists of comput-
ing the posterior probability of Xq given evidence on Xe,
which is defined as

P (xq|xe) =
P (xq, xe)

P (xe)
=

∑
xq̄,ē

P (x)∑
xē

P (x)
=

P (xq, xe)∑
xq

P (xq, xe)

which be computed with two applications of SGDPLL(T ),
one for the marginal P (xq, xe) and another for P (xe). 2

We can also use SGDPLL(T ) to compute the most likely
assignment on Xq , defined by maxxq

P (x), since max is an
associative commutative operation.

Applying SGDPLL(T ) in the manner above does not take
advantage of factorized representations of joint probability
distributions, a crucial aspect of efficient probabilistic infer-
ence. However, it can be used as a basis for an algorithm,
Symbolic Generalized Variable Elimination modulo theories
(SGVE(T )), analogous to Variable Elimination (VE) [Zhang
and Poole, 1994] for graphical models, that exploits factoriza-
tion. Suppose P (x) is represented as a product of real-valued
functions (called factors) fi:

P (x) = f1(xt1)× · · · × fm(xt1)

and we want to compute a summation over it:∑
xq̄

f1(xt1)× · · · × fm(xtm)

where q and ti are tuples.
We now choose a variable xi for i 6∈ q to eliminate first. Let

g be the product of all factors in which xi does not appear, h
be the product of all factors in which xi does appear, and b be
the tuple of indices of variables other than xi appearing in h.
Then we rewrite the above as∑

xq̄,̄i

g(xī)
∑
xi

h(xi, xb) =
∑
xq̄,̄i

g(xī)h
′(xb)

2However, computing P (xq, xe) and P (xe) separately requires
summing xq̄,ē out of P (x) and then summing xq,q̄,ē out of P (x),
thus summing xq̄,ē out twice. This can be avoided by using the
result of the first application, the summation-free f(xq, xe), and the
fact that P (xe) =

∑
xq

P (xq, xe) =
∑

xq
f(xq, xe), thus limiting

the second application to summing over xq only.

where h′ is a summation-free factor computed by
SGDPLL(T ) and equivalent to the innermost summa-
tion. We now have a problem of the same type as originally,
but with one less variable, and can proceed until all variables
in xq̄ are eliminated. The fact that SGDPLL(T ) is symbolic
allows us to compute h′ without iterating over all values to
xi.

6 Evaluation
We did a very preliminary comparison of SGDPLL(T )-based
SGVE(T ), using an implementation of an equality theory
(=, 6= literals only) symbolic model counter, to the state-
of-the-art probabilistic inference solver variable elimination
and conditioning (VEC) [Gogate and Dechter, 2011], on
randomly generated probabilistic graphical models based on
equalities formulas, on a Intel Core i7 notebook.

We ran both SGVE(T ) and VEC on a random graphical
model with 10 random variables, 5 factors, with formulas of
depth and breadth (number of arguments per sub-formula) 2
for random connectives ∨ and ∧. SGVE(T ) took 1.5 sec-
onds to compute marginals for all variables (unsurprisingly,
irrespective of domain size). We grounded this model for
domain size 16 to provide the table-based input required by
VEC, which then took 30 seconds to compute all marginals.
The largest grounded table given to VEC as input had 6 ran-
dom variables and therefore around 16 million entries. We
did not run VEC on larger domain sizes because generating
its table-based input became unmanageable.

Therefore, SGDPLL(T )-based SGVE(T ) outperforms
VEC even for a problem with a relatively small domain size,
in spite of the fact that VEC uses modern SAT solver tech-
niques [Marić, 2009] that are still to be incorporated into our
implementation of SGDPLL(T ).

We also ran SGVE(T ) on many other random graphical
models involving formulas with depth up to 4, breadth up to
16, and number of random variables up to 12, always com-
puting all marginals under 3 seconds. Depths of 6 with 12
variables, however, greatly increased runtime to 160 seconds.
For large formulas, a version of unit propagation and watched
literals will be needed.

7 Related work
SGDPLL(T ) is related to many different topics in both logic
and probabilistic inference literature, besides the strong links
to SAT and SMT solvers.

SGDPLL(T ) is a lifted inference algorithm [Poole, 2003;
de Salvo Braz, 2007; Gogate and Domingos, 2011], but the
proposed lifted algorithms so far have concerned themselves
only with relational formulas with equality. We have not yet
developed the theory solvers for relational representations re-
quired for SGDPLL(T ) to do the same, but we intend to do
so using the already developed modulo-theories mechanism
available. On the other hand, we have not yet developed a re-
lational solver for SGDPLL(T ) but presented one or inequal-
ities.

SGDPLL(T ) is very similar to the algorithm presented in
[Belle et al., 2015a] and [Belle et al., 2015b], which also uses
a SMT solver to split the problem to a base case. In that



work, the base case is weighted model integration on contin-
uous variables, whereas ours is a sum over bounded integer
variables. Another difference that we allow free variables and
give them a symbolic treatment.

SGDPLL(T ) generalizes several algorithms that operate on
mixed networks [Mateescu and Dechter, 2008] – a framework
that combines Bayesian networks with constraint networks,
but with a much richer representation. By operating on
richer languages, SGDPLL(T ) also generalizes exact model
counting approaches such as RELSAT [Bayardo, Jr. and Pe-
houshek, 2000] and Cachet [Sang et al., 2005], as well as
weighted model counting algorithms such as ACE [Chavira
and Darwiche, 2008] and formula-based inference [Gogate
and Domingos, 2010], which use the CNF and weighted CNF
representations respectively.

8 Conclusion and Future Work
We have presented SGDPLL(T ) and its derivation SGVE(T ),
algorithms formally able to solve a variety of problems, in-
cluding probabilistic inference, modulo theories, that is, ca-
pable of being extended with theories for richer representa-
tions than propositional logic, in a lifted and exact manner.

Future work includes additional theories of interest mainly
among them those for uninterpreted relations (particularly
multi-arity functions) and arithmetic; modern SAT solver op-
timization techniques such as watched literals and unit prop-
agation, and anytime approximation schemes that offer guar-
anteed bounds on approximations that converge to the exact
solution.

Appendix: Summing polynomials with
Faulhaber’s formula
The base case 0 for summation with difference arithmetic
over polynomials requires the computation of a polynomial
equivalent to

∑
x:l<x≤u

t0 + t1x + · · ·+ tnx
n

where x is an integer index and ti are monomials, possibly
including numeric constants and powers of free variables.

Faulhaber’s formula [Knuth, 1993] solves the simpler
sum of powers problem

∑n
k=1 k

p:

n∑
k=1

kp =
1

p + 1

p∑
j=0

(−1)j
(
p + 1

j

)
Bjn

p+1−j ,

where Bj is a Bernoulli number defined as

Bj = 1−
j−1∑
k=0

(
j

k

)
Bk

j − k + 1

B0 = 1.

The original problem can be reduced to a sum of powers
in the following manner, where t, r, s, v, w are families of

monomials (possibly including numeric constants) in the free
variables:∑
x:l<x≤u

t0 + t1x + · · ·+ tnx
n

=

n∑
i=0

∑
x:l<x≤u

tix
i

=

n∑
i=0

u−l∑
x=1

ti(x + l)i

=

n∑
i=0

u−l∑
x=1

ti

i∑
q=0

rqx
q (by expanding the binomial)

=

n∑
i=0

u−l∑
x=1

i∑
q=0

tirqx
q

=

n∑
i=0

i∑
q=0

tirq

u−l∑
x=1

xq (inverting summations to apply Faulhaber’s)

=

n∑
i=0

i∑
q=0

tirq
q + 1

q∑
j=0

(−1)j
(
q + 1

j

)
Bj(u− l)q+1−j

=

n∑
i=0

i∑
q=0

q∑
j=0

si,q,j(u− l)q+1−j

=

n∑
i=0

i∑
q=0

q∑
j=0

si,q,j

q+1∑
l=1

vl (by expanding the binomial)

=

n∑
i=0

i∑
q=0

q∑
j=0

q+1∑
l=1

si,q,jvl

= w0 + w1 + · · ·+ wn′ (since n is a known integer constant)

where n′ is function of n in O(n4) (the time complexity for
computing Bernoulli numbers up to Bn is in O(n2)).

Because the time and space complexity of the above com-
putation depends on the initial degree n and the degrees of
free variables in the monomials, it is important to understand
how these degrees are affected. Let dl be the initial degree of
the variable present in l in t monomials. Its degree is up to
n in r monomials (because of the binomial expansion with i
being up to n), and thus up to dl +n in s monomials (because
of the multiplication of ti and rq). The variable has degree up
to n + 1 in monomials v, with degree up to dl + 2n + 1 in
the final polynomial. The variable in u keeps its initial degree
du until it is increased by up to n + 1 in v, with final degree
up to du + n + 1. The remaining variables keep their origi-
nal degrees. This means that degrees grow only linearly over
multiple applications of the above. This combines with the
O(n4) per-step complexity to a O(n5) overall complexity for
n the maximum initial degree for any variable.
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