
Sampling-based Lower Bounds for Counting Queries

Vibhav Gogate

Department of Computer Science

The University of Texas at Dallas

Richardson, TX 75080, USA

Email:vgogate@hlt.utdallas.edu

Rina Dechter

Donald Bren School of Information and Computer Sciences

University of California, Irvine

Irvine, CA 92697, USA

Email: dechter@ics.uci.edu

Abstract

It is well known that the problem of computing relative approximations of weighted
counting queries such as the probability of evidence in a Bayesian network, the partition
function of a Markov network, and the number of solutions of a constraint satisfaction
problem is NP-hard. In this paper, we settle therefore on an easier problem of comput-
ing high-confidence lower bounds. We propose to use importance sampling and Markov
inequality for solving it. However, a straight-forward application of the Markov inequality
often yields poor lower bounds. We therefore propose several new schemes for improving
its performance in practice. Empirically, we show that our new schemes are quite powerful,
often yielding substantially higher (better) lower bounds than all state-of-the-art schemes.

1 Introduction

Many inference problems in graphical models such as finding the probability of evidence in a
Bayesian network, the partition function of a Markov network and the number of solutions of
a constraint satisfaction problem are special cases of the following weighted counting problem:
given a function F : D → R

+, find the sum of F over its domain D. Therefore, efficient
algorithms for computing weighted counts are of paramount importance for a wide variety
of applications that use graphical models, such as genetic linkage analysis [20, 1], car travel
activity modeling [34, 25] functional verification [2, 16], target tracking [41], machine vision
[19, 33], medical diagnosis [38, 42] and music parsing [43]. Unfortunately, the weighted count-
ing problem is in #P and therefore there is no hope of designing efficient, general-purpose,
polynomial time algorithms for it. Moreover, even approximations with relative error guaran-
tees are NP-hard [11]. In this paper, we therefore settle on an easier problem of computing
high confidence lower bounds, not insisting on having relative error guarantees.

Previous work on bounding approximations can be classified into two broad types: deter-
ministic approximations (e.g., [18, 32, 3]) and randomized approximations (e.g., [10, 12]). A
bounding algorithm is deterministic if it is always guaranteed to output a lower or an upper
bound. On the other hand, a bounding algorithm is randomized if the approximation fails
with a known probability δ ≥ 0. (For example, if δ = 0.1, the bounds computed in roughly 1
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out of 10 runs will be incorrect.) The work in this paper falls under the class of randomized
approximations.

Existing randomized approximations [10, 12] use known inequalities such as the Chebyshev
and the Hoeffding inequalities [30] for (lower and upper) bounding the weighted counts. These
inequalities bound the deviation of the sample mean of N independent random variables from
the actual mean. The idea which is in some sense similar to importance sampling [46, 21] is to
express the counting problem as the problem of computing the mean (or the expected value)
of independent random variables and then use the mean over the sampled random variables to
bound the deviation from the true mean. The problem is that the number of samples required
to guarantee high confidence bounds is inversely proportional to the true mean (the weighted
counts). Therefore, if the weighted counts are arbitrarily small (e.g., ≤ 10−20), a large number
of samples (approximately 1019) are required to provide high confidence on the result.

We propose to alleviate this difficulty by using the Markov inequality instead of the Hoeffd-
ing inequality. Since the Markov inequality does not depend on N , even a single sample can
yield a lower bound with some confidence. The only caveat is that unlike previous randomized
approaches, our new schemes do not have any relative error guarantees. Recently, the Markov
inequality was used to lower bound the number of solutions of a satisfiability (SAT) formula [29]
showing good empirical results. We adapt and extend this approach as follows. We address
one of the well known concerns in the statistics literature that the Markov inequality is quite
weak and yields bad approximations. We argue that the Markov inequality is weak because it
is based on a single sample and in fact good lower bounds can be obtained by extending it to
multiple samples. Specifically, we propose several new schemes which utilize various statistics
such as the average, the minimum, and the maximum, as well as the Martingale theory [7] to
improve the Markov inequality. Our new schemes guarantee that as more samples are drawn,
the lower bound will likely increase (improve).

We provide a thorough empirical evaluation demonstrating the potential of our new scheme.
We compared against state-of-the-art deterministic approximations such as Variable elimina-
tion and Conditioning (VEC) [14] and bound propagation [32, 4] when computing the proba-
bility of evidence of a Bayesian network. For the task of lower bounding the number of models
of a satisfiability formula, we compared against Relsat [45], which is a deterministic approxi-
mation and SampleCount [29], which is a randomized algorithm. Our results clearly show that
our new randomized approximations based on the Markov inequality are far more scalable than
deterministic approximations such as VEC, Relsat and bound propagation and in most cases
yield far higher accuracy. Our schemes also yield higher lower bounds than SampleCount.

The research presented in this paper is based in part on [24].
The rest of this paper is organized as follows. In Section 2, we describe preliminaries

and previous work. In Section 3, we present our basic lower bounding scheme and several
enhancements. Experimental results are presented in Section 4 and we conclude in Section
5.

2 Notation, Background and Previous work

We denote variables by upper case letters (e.g., X, Y , . . .) and values of variables by lower
case letters (e.g., x, y, . . .). Sets of variables are denoted by bold upper case letters (e.g.,
X = {X1, . . . ,Xn}). We denote by D(Xi) the set of possible values of Xi. D(Xi) is also
called the domain of Xi. Xi = xi or simply xi when the variable is clear from the context,
denotes an assignment of a value xi ∈ D(Xi) to Xi while X = x (or simply x) denotes a
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sequence of assignments to all variables in X, namely x = (X1 = x1, X2 = x2, . . . Xn = xn).
D(X) denotes the Cartesian product of the domains of all variables in X, namely D(X) =
D(X1) × . . . × D(Xn). We denote the projection of an assignment x to a set S ⊆ X by xS.
Given an assignment y and z to the partition Y and Z of X, x = (y, z) denotes the composition
of assignments to the two subsets.∑

x∈D(X) denotes the sum over all possible configurations of variables in X, namely,∑
x∈D(X) =

∑
x1∈D(X1)

×
∑

x2∈D(X2)
× . . . ×

∑
xn∈D(Xn)

. For brevity, we will abuse no-
tation and write

∑
xi∈D(Xi)

as
∑

xi∈Xi
and

∑
x∈D(X) as

∑
x∈X. The expected value ExQ[X] of

a random variable X with respect to a distribution Q is defined as: ExQ[X] =
∑

x∈X xQ(x).
The variance VarQ[X] of X is defined as: VarQ[X] =

∑
x∈X(x − ExQ[X])2. To simplify, we

will write ExQ[X] as Ex[X] and VarQ[X] as Var[X], when the identity of Q is clear from the
context.

We denote (discrete) functions by upper case letters (e.g. F , H, C, I etc.), and the scope
(set of arguments) of a function F by V (F ). Given an assignment y to a superset Y of V (F ),
we will abuse notation and write F (yV (F )) as F (y).

Definition 1. A discrete graphical model or a Markov network denoted by G is a 3-
tuple 〈X,D,F〉 where X = {X1, . . . ,Xn} is a finite set of variables, D = {D(X1), . . . ,D(Xn)}
is a finite set of domains where D(Xi) is the domain of variable Xi and F = {F1, . . . , Fm}
is a finite set of discrete-valued non-negative functions (also called potentials). The graphical
model represents a joint distribution PG over X defined as:

PG(x) =
1

Z

m∏

i=1

Fi(x) (1)

where Z is a normalization constant, often called the partition function. It is given by:

Z =
∑

x∈X

m∏

i=1

Fi(x) (2)

The primary queries over Markov networks are computing the partition function and com-
puting the marginal probability PG(Xi = xi).

We will refer to Z as weighted counts. The weighted counting problem is to compute
the weighted counts.

Each graphical model is associated with a primal graph which depicts the dependencies
between its variables.

Definition 2. The primal graph of a graphical model G = 〈X,D,F〉 is an undirected graph
G(X,E) which has variables of G as its vertices and an edge between two variables that appear
in the scope of a function.

2.1 Bayesian and Constraint networks

Definition 3. A Bayesian network is a graphical model B = 〈X,D,G,P〉 where G = (X,E)
is a directed acyclic graph over the set of variables X. Each function Pi ∈ P is a conditional
probability table defined as Pi(Xi|pai), where pai = V (Pi) \ {Xi} is the set of parents of Xi

in G.

The primal graph of a Bayesian network is also called the moral graph. When the entries
of the CPTs are 0 and 1 only, they are called deterministic or functional CPTs. An evidence
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E = e is an instantiated subset of variables. A Bayesian network represents the following joint
probability distribution:

PB(x) =

n∏

i=1

Pi(x{Xi}|xpai
) (3)

By definition, given a Bayesian network B the probability of evidence PB(e) is given by:

PB(e) =
∑

y∈X\E

n∏

i=1

Pi((y, e){Xi}|(y, e)pai
) (4)

It is easy to see from Equations 2 and 4 that PB(e) is equivalent to the weighted counts
Z over an evidence instantiated Bayesian network. Another important query over a Bayesian
network is computing the conditional marginal probability PB(xi|e) for a query variable Xi ∈
X \E.

Definition 4. A constraint network is a graphical model R = 〈X,D,C〉 where C =
{C1, . . . , Cm} is a set of constraints. Each constraint Ci is a 0/1 function defined over its
scope. Given an assignment x, a constraint is said to be satisfied if Ci(x) = 1. A constraint
can also be expressed by a pair 〈Ri,Si〉 where Ri is a relation defined over the scope of Ci that
contains all tuples for which Ci(si) = 1. The primal graph of a constraint network is called
the constraint graph.

A solution of a constraint network is an assignment x to all variables that satisfies all the
constraints. The primary query over a constraint network is to determine whether it has a
solution and if it does to find one. Another important query is that of counting the number of
solutions K of the constraint network, defined by:

K =
∑

x∈X

m∏

i=1

Ci(x) (5)

K is clearly identical to the weighted counts over a constraint network.

2.2 Previous work

Previous work by Dagum and Luby [12] and by Cheng [10] (these are the only two works that
we are aware of) on randomized bounding algorithms for weighted counting has focused on
providing relative-error guarantees. Their algorithms are based on a Monte Carlo simulation
technique called importance sampling [36]. The main idea in importance sampling is to express
the weighted counts as an expectation using an easy-to-sample distribution Q, which is called
the proposal (or trial or importance) distribution. Then, the algorithm generate samples from
Q and estimates the expectation (which equals the weighted counts) by a weighted average
over the samples, where the weight of a sample x is

∏m
i=1 Fi(x)/Q(x). The weighted average

is often called the sample mean.
Formally, given a proposal distribution Q such that

∏m
i=1 Fi(x) ≥ 0 ⇒ Q(x) ≥ 0, we can

rewrite Equation 2 as follows:

Z =
∑

x∈X

∏m
i=1 Fi(x)

Q(x)
Q(x) = ExQ

[∏m
i=1 Fi(x)

Q(x)

]
(6)
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Given independent and identically distributed (i.i.d.) samples (x1, . . . ,xN ) generated from Q,
we can estimate Z by:

ẐN =
1

N

N∑

k=1

∏m
i=1 Fi(x

k)

Q(xk)
=

1

N

N∑

k=1

w(xk) (7)

where

w(x) =

∏m
i=1 Fi(x)

Q(x)

is the weight of sample x. It is easy to show that ẐN is unbiased, namely ExQ[ẐN ] = Z.
Dagum and Luby [12] provide an upper bound on the number of samples N required to

guarantee that for any ǫ, δ ≥ 0, the estimate ẐN approximates Z with relative error ǫ with
probability at least 1− δ. Formally,

Pr[Z(1− ǫ) ≤ ẐN ≤ Z(1 + ǫ)] ≥ 1− δ (8)

when N satisfies:

N ≥
4

Zǫ2
ln

2

δ
(9)

These bounds were later improved by Cheng [10] yielding:

N ≥
1

Z

1

(1 + ǫ)ln(1 + ǫ)− ǫ
ln

2

δ
(10)

In both these bounds (see Equations 9 and 10 ) N is inversely proportional to Z and therefore
when Z is small, a large number of samples are required to achieve an acceptable confidence
level (1− δ) ≥ 0.99.

A bound on N is required because [12, 10] insist on approximating Z with a known relative
error ǫ. If we relax this relative error requirement, we can use just one sample and the Markov
inequality to obtain a high confidence lower bound on Z. Furthermore, we can improve the
lower bound with more samples, as we demonstrate in the next section.

3 Markov Inequality based Lower Bounds

Proposition 1 (Markov Inequality). For any random variable X and a real number r ≥ 1,
Pr (X ≥ rE[X]) ≤ 1

r .

The Markov inequality states that the probability that a random variable is r times its
expected value is less than or equal to 1/r.

We can apply the Markov inequality for lower bounding the weighted counts in a straight-
forward manner. We can consider the weight of each sample generated by importance sampling
as a random variable. Because the expected value of the weight equals the weighted counts Z
(see Equation 2), by Markov inequality, given a real number r ≥ 1, the probability that the
weight of a sample is greater than r times Z is less than 1/r. Alternately, the weight of the
sample divided by r is a lower bound on Z with probability greater than 1 − 1/r. Formally,
given a sample x drawn independently from a proposal distribution Q, we have:

Pr (w(x) ≥ r × Z) ≤
1

r
(11)
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Rearranging Equation 11, we get:

Pr

(
w(x)

r
≤ Z

)
≥ 1−

1

r
(12)

Equation 12 can be used to probabilistically lower bound Z as shown in the following
example.

Example 1. Let r = 100 and let x be a sample generated using importance sampling. Then
from Equation 12, w(x)

100 is a lower bound on Z with probability greater than 1−(1/100) = 0.99.

The lower bound based on the Markov inequality uses just one sample. In the following four
subsections, we show how the lower bounds can be improved by utilizing multiple samples.

3.1 The Minimum scheme

This scheme due to Gomes et al. [29] uses the minimum over the sample weights to compute
a lower bound on Z. Although this scheme was originally introduced in the context of lower
bounding the number of solutions of a Boolean satisfiability (SAT) problem, we can easily
modify it to compute a lower bound on the weighted counts as we show next.

Theorem 1 (minimum scheme). Given N samples (x1, . . . ,xN ) drawn independently from
a proposal distribution Q such that E[w(xi)] = Z for i = 1, . . . , N and a constant 0 ≤ α ≤ 1,

Pr

[
minN

i=1

[
w(xi)

β

]
≤ Z

]
≥ α, where β =

(
1

1− α

) 1
N

Proof. Consider an arbitrary sample xi. From the Markov inequality, we get:

Pr

[
w(xi)

β
≥ Z

]
≤

1

β
(13)

Since, the generated N samples are independent, the probability that the minimum over them
is also a lower bound is given by:

Pr

[
minN

i=1

[
w(xi)

β

]
≥ Z

]
≤

1

βN
(14)

Rearranging Equation 14, we get:

Pr

[
minN

i=1

[
w(xi)

β

]
≤ Z

]
≥ 1−

1

βN
(15)

Substituting β =
(

1
1−α

) 1
N

in 1− 1
βN , we get:

1−
1

βN
= 1−

1
((

1
1−α

) 1
N

)N

= 1−
1
1

1−α

= 1− (1− α)

= α (16)
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Algorithm 1: Minimum-scheme

Input: A graphical model G = 〈X,D,F〉, a proposal distribution Q, an integer N and a
real number 0 ≤ α ≤ 1

Output: Lower Bound on Z that is correct with probability greater than α
minCount←∞;

β =
(

1
1−α

) 1
N
;

for i = 1 to N do
Generate a sample xi from Q ;

IF minCount ≥ w(xi)
β THEN minCount = w(xi)

β ;

Return minCount;

Therefore, from Equations 15 and 16, we have

Pr

[
mink

i=1

[
w(xi)

β

]
≤ Z

]
≥ α (17)

Algorithm 1 describes the minimum scheme based on Theorem 1. The algorithm first

calculates β based on the value of α and N . It then returns the minimum of w(xi)
β (minCount

in Algorithm 1) over the N samples.
A good property of the minimum scheme is that with more samples the divisor, β =
1

(1−α)
1
N

decreases, thereby (possibly) increasing the lower bound. Its problem is that because

it computes a minimum over the sample weights and thus unless the variance of the weights is
very small, we expect the lower bound to decrease with an increase in the number of samples.
Next, we present the average scheme, which avoids this problem.

3.2 The Average Scheme

An obvious scheme is to use the unbiased importance sampling estimator ẐN given in Equation

7. Because EQ[ẐN ] = Z, from the Markov inequality ẐN

β where β = 1
1−α is a lower bound of

Z with probability greater than α. Formally,

Pr

[
ẐN

β
≤ Z

]
≥ α, where β =

1

1− α
(18)

As more samples are drawn the average is likely to be get larger than the minimum value.
This, in turn, increases the lower bound. However, unlike the minimum scheme in which the
divisor β decreases with an increase in the sample size thereby increasing the lower bound, the
divisor β in the average scheme remains constant. As a consequence, for example, if all the
generated samples have the same weight (or almost the same weight), the lower bound due to
the minimum scheme would be greater than the lower bound output by the average scheme.
However, in practice the variance is typically never close to zero and therefore the average
scheme is likely to be superior to the minimum scheme.
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3.3 The Maximum scheme

We can even use the maximum instead of the average over the N i.i.d samples as shown in the
following Lemma.

Lemma 1 (maximum scheme). Given N samples (x1, . . . ,xN ) drawn independently from
a proposal distribution Q such that E[w(xi)] = Z for i = 1, . . . , N and a constant 0 ≤ α ≤ 1,

Pr

[
maxNi=1w(x

i)

β
≤ Z

]
≥ α, where β =

1

1− α
1
N

Proof. From Markov inequality, we have:

Pr

[
w(xi)

β
≤ Z

]
≥ 1−

1

β
(19)

Given a set of N independent events such that each event occurs with probability ≥ (1 −
1/β), the probability that all events occur is≥ (1−1/β)N . In other words, given N independent
samples such that the weight of each sample is a lower bound on Z with probability ≥ (1−1/β),
the probability that all samples are a lower bound on Z is ≥ (1− 1/β)N . Consequently,

Pr

[
maxNi=1w(x

i)

β
≤ Z

]
≥

(
1

1− β

)N

(20)

Substituting the value of β in
(

1
1−β

)N
, we have:

(
1

1− β

)N

=


 1

1− 1

1−α
1
N




N

= (1− (1− α
1
N ))N

= α (21)

From Equations 20 and 21, we get:

Pr

[
maxNi=1w(x

i)

β
≤ Z

]
≥ α (22)

The problem with the maximum scheme is that increasing the number of samples increases
β and consequently the lower bound decreases. However, when only a few samples are available
and the variance of the weights w(xi) is large, the maximum value is likely to be larger than
the sample average and obviously the minimum.

3.4 Using the Martingale Inequalities

Another approach to utilize the maximum over the N samples is to use the martingale inequal-
ities.

Definition 5 (Martingale). A sequence of random variables X1, . . . ,XN is a martingale
with respect to another sequence Y1, . . . , YN defined on a common probability space Ω iff
E[Xi|Y1, . . . , Yi−1] = Xi−1 for all i.
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It is easy to see that given i.i.d. samples (x1, . . . ,xN ) generated from Q, the sequence

Λ1, . . . ,ΛN , where Λp =
∏p

i=1
w(xi)
Z forms a martingale as shown below:

E[Λp|x
1, . . . ,xp−1] = E

[
Λp−1 ∗

w(xp)

Z
|x1, . . . ,xp−1

]

= Λp−1 ∗ E

[
w(xp)

Z
|x1, . . . ,xp−1

]

Because E[w(xp)
Z |x1, . . . ,xp−1] = 1, we have E[Λp|x

1, . . . ,xp−1] = Λp−1 as required. The ex-
pected value E[Λ1] = 1 and for such martingales which have a mean of 1, Breiman [7] provides
the following extension of the Markov inequality:

Pr(maxNi=1Λi ≥ β) ≤
1

β
(23)

and therefore,

Pr




maxNi=1

i∏

j=1

w(xj)

Z


 ≥ β


 ≤ 1

β
(24)

From Inequality 24, we can prove that:

Theorem 2 (Random permutation scheme). Given N samples (x1, . . . ,xN ) drawn in-
dependently from a proposal distribution Q such that E[w(xi)] = Z for i = 1, . . . , N and a
constant 0 ≤ α ≤ 1,

Pr


maxNi=1


 1

β

i∏

j=1

w(xj)




1/i

≤ Z


 ≥ α, where β =

1

1− α

Proof. From Inequality 24, we have:

Pr




maxNi=1

i∏

j=1

w(xj)

Z


 ≥ β


 ≤ 1

β
(25)

Rearranging Inequality 25, we have:

Pr


maxNi=1


 1

β

i∏

j=1

w(xj)




1/i

≤ Z


 ≥ 1−

1

β
= α (26)

Therefore, given N samples, the following quantity

maxNi=1


 1

β

i∏

j=1

w(xj)




1/i

where β =
1

1− α

is a lower bound on Z with a confidence greater than α. In general one could use any randomly
selected permutation of the samples (x1, . . . ,xN ) and apply inequality 24. We therefore call
this scheme as the random permutation scheme.
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Another related extension of Markov inequality for martingales deals with the order statis-

tics of the samples. Let w(x(1))
Z ≤ w(x(2))

Z ≤ . . . ≤ w(x(N))
Z be the order statistics of the sample.

Using martingale theory, Kaplan [31] proved that the random variable

Θ∗ = maxNi=1

i∏

j=1

w(x(N−j+1))

Z ×
(N
i

)

satisfies the inequality Pr(Θ∗ ≥ k) ≤ 1/k. Therefore,

Pr




maxNi=1

i∏

j=1

w(x(N−j+1))

Z ×
(
N
i

)


 ≥ β


 ≤ 1

β
(27)

From Inequality 27, we can prove that:

Theorem 3 (Order Statistics scheme). Given an order statistics of the weights w(x(1))
Z ≤

w(x(2))
Z ≤ . . . ≤ w(x(N))

Z of N samples (x1, . . . ,xN ) drawn independently from a proposal distri-
bution Q, such that E[w(xi)] = Z for i = 1, . . . , N and a constant 0 ≤ α ≤ 1,

Pr


maxNi=1


 1

β

i∏

j=1

w(x(N−j+1))(N
i

)




1/i

≤ Z


 ≥ α, where β =

1

1− α

Proof. From Inequality 27, we have:

Pr




maxNi=1

i∏

j=1

w(x(N−j+1))

Z ×
(N
i

)


 ≥ β


 ≤ 1

β
(28)

Rearranging Inequality 28, we have:

Pr


maxNi=1


 1

β

i∏

j=1

w(x(N−j+1))(
N
i

)




1/i

≤ Z


 ≥ 1−

1

β
= α (29)

Thus, given N samples, the following quantity

maxNi=1


 1

β

i∏

j=1

w(x(N−j+1))(
N
i

)




1/i

, where β =
1

1− α

is a lower bound on Z with probability greater than α. Because the lower bound is based on
the order statistics, we call this scheme as the order statistics scheme.

To summarize, we have proposed five schemes that generalize the Markov inequality to
multiple samples: (1) The minimum scheme, (2) The average scheme, (3) The maximum
scheme, (4) The martingale random permutation scheme and (5) The martingale order statis-
tics scheme. All these schemes can be used with any sampling scheme that outputs unbiased
sample weights to yield a probabilistic lower bound on the weighted counts.
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4 Empirical Evaluation

In this section, we compare the performance of the probabilistic lower bounding schemes pre-
sented in this paper with other deterministic schemes from literature. We also evaluate the
relative performance of the five lower bounding schemes presented in Section 3. We conducted
experiments on three weighted counting tasks: (a) Satisfiability model counting, (b) computing
probability of evidence in a Bayesian network and (c) computing the partition function of a
Markov network. Our experimental data clearly demonstrates that our new lower bounding
schemes are more accurate, robust and scalable than all other deterministic approximations,
yielding far better (higher) lower bounds on large, hard instances. We provide the details next.

4.1 The Algorithms Evaluated

We experimented with the following schemes. Hence forth, we call our new probabilistic lower
bounding schemes as Markov-LB.

Markov-LB with SampleSearch and IJGP-sampling. As mentioned earlier, we can
combine Markov-LB with any importance sampling scheme. Therefore, in order to compete
and compare fairly with existing deterministic schemes, we combine Markov-LB with state-
of-the-art importance sampling techniques such as IJGP-IS [25, 23] and IJGP-SampleSearch
[27, 26, 22].

IJGP-IS uses the output of a generalized belief propagation scheme called Iterative Join
Graph Propagation (IJGP) to construct a proposal distribution. It was shown that belief
propagation schemes whether applied over the original graph or on clusters of nodes yield very
good approximation to the true posterior than other available choices [17, 39, 55] and thus
sampling from their output is an obvious choice (see [56, 25, 23] for more details).

IJGP [17, 37] is a generalized belief propagation scheme which is parametrized by a constant
i, called the i-bound, yielding a class of algorithms IJGP(i) whose complexity is exponential in
i, that trade-off accuracy and complexity. As i increases, accuracy generally increases. In our
experiments, for every instance, we select the maximum i-bound that can be accommodated
by 512 MB of space as follows. The space required by a message (or a function) is the product
of the domain sizes of the variables in its scope. Given an i-bound, we can create a join graph
whose cluster size is bounded by i as described in [17] and compute, in advance, the space
required by IJGP by summing over the space required by the individual messages1. We iterate
from i = 1 until the space bound (of 512 MB) is surpassed. This ensures that IJGP terminates
in a reasonable amount of time and requires bounded space.

On networks having substantial amount of determinism, we use IJGP-based SampleSearch
(IJGP-SS) [27, 22] instead of IJGP-IS. It is known that on such networks pure importance sam-
pling generates many useless zero weight samples which are eventually rejected. SampleSearch
overcomes this rejection problem by explicitly searching for a non-zero weight sample, yielding
a more efficient sampling scheme in such heavily deterministic databases. It was shown that
SampleSearch is an importance sampling scheme which generates samples from a modification
of the proposal distribution which is backtrack-free w.r.t. the constraints. Thus, in order to
derive the weights of the samples generated by SampleSearch, all we need is to replace the
proposal distribution with the backtrack-free distribution.

To reduce the variance of the weights, we combine both IJGP-IS and SampleSearch with
w-cutset sampling [5](w-cutset sampling uses the Rao-Blackwell theorem [8, 35] to reduce

1Note that we can do this without constructing the messages explicitly.
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variance). The idea is to partition the variables X into two sets K and R such that the
treewidth of the graphical model restricted to R is bounded by a constant w. The set K is
called the w-cutset. Then, we sample only the w-cutset variables and exactly compute the
weighted counts of the graphical models given K. The latter can be computed efficiently using
Bucket elimination [14] (since the treewidth is bounded).

Formally, given a graphical model G = 〈X,D,F〉, a w-cutset K and a sample k generated
from a proposal distribution Q(K), in w-cutset sampling, the weight of k is given by:

wwc(k) =

∑
r∈R

∏m
j=1 Fj(r,K = k)

Q(k)
(30)

where R = X\K. Given a w-cutset K, we can compute the sum in the numerator of Equation
30 in polynomial time (exponential in the constant w) using Bucket elimination [14].

It was demonstrated that the higher the w-bound [5], the lower the sampling variance. Here
also, we select the maximum w such that the resulting bucket elimination algorithm uses less
than 512 MB of space. We can choose the appropriate w by using a similar iterative scheme
to the one described above for choosing the i-bound of IJGP.

Bound Propagation with Cut-set Conditioning. We also experimented with the state
of the art any-time bounding scheme that combines sampling-based cut-set conditioning and
bound propagation [32] and which is a part of Any-Time Bounds framework for bounding
posterior marginals [3]. Given a subset of variables C ⊂ X\E, we can compute P (e) exactly
as follows:

P (e) =

k∑

i=1

P (ci, e) (31)

The lower bound on P (e) is obtained by computing P (ci, e) for h high probability tuples of
C (selected through sampling) and bounding the remaining probability mass by computing a
lower bound PL(c1, ..., cq, e) on P (c1, ..., cq, e), q ≤ |C|, for a polynomial number of partially
instantiated tuples of subset C, resulting in:

P (e) ≥

h∑

i=1

P (ci, e) +

k′∑

i=1

PL
BP (c

i
1, ..., c

i
q, e) (32)

where lower bound PL
BP (c1, ..., cq, e) is obtained using bound propagation. Although bound

propagation bounds marginal probabilities, it can be used to bound any joint probability P (z)
as follows:

PL
BP (z) =

∏

i

PL
BP (zi|z1, ..., zi−1) (33)

where lower bound PL
BP (zi|z1, ..., zi−1) is computed directly by bound propagation. We use

here the same variant of bound propagation described in [4] that is used by the Any-Time
Bounds framework. The lower bound obtained by Equation 32 can be improved by exploring a
larger number of tuples h. After generating h tuples by sampling, we can stop the computation
at any time after bounding p ≤ k′ out of k′ partially instantiated tuples and produce the result.

In our experiments we run the bound propagation with cut-set conditioning scheme until
convergence or until a stipulated time bound has expired. Finally, we should note that the
bound propagation with cut-set conditioning scheme provides deterministic lower and upper
bounds on P (e) while our Markov-LB scheme provides only a lower bound and it may fail with
a probability δ ≤ 0.01.
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Variable Elimination and Conditioning (VEC). When a problem having a high treewidth
is encountered, variable or bucket elimination may be unsuitable, primarily because of its exten-
sive memory demand. To alleviate the space complexity, we can use the w-cutset conditioning
scheme [14]. Namely, we condition or instantiate enough variables or the w-cutset so that
the remaining problem after removing the instantiated variables can be solved exactly using
bucket elimination [14]. In our experiments we select the w-cutset in such a way that bucket
elimination would require less than 1.5GB of space. Again, this is done to ensure that bucket
elimination terminates in a reasonable amount of time and uses bounded space. Exact weighted
counts can be computed by summing over the exact solution output by bucket elimination for
all possible instantiations of the w-cutset. When VEC is terminated before completion, it
outputs a partial sum yielding a lower bound on the weighted counts.

As pre-processing, the algorithm performs SAT-based variable domain pruning that often
yields significant performance gains in practice. Here, we first convert all zero probabilities
and constraints in the problem to a CNF formula F . Then, for each variable-value pair, we
construct a new CNF formula F ′ by adding a clause corresponding to the pair to F and check
using minisat [50] if F ′ is consistent or not. If F ′ is inconsistent then we delete the value from
the domain of the variable. The implementation of this scheme is available publicly from our
software website [15].

Markov-LB with SampleCount. SampleCount [29] is an algorithm for estimating the
number of solutions of a Boolean Satisfiability problem. It is based on the ApproxCount
algorithm of Wei and Selman [54]. ApproxCount is based on the formal result of [51], which
states that if one can sample uniformly (or close to it) from the set of solutions of a SAT
formula F , then one can exactly count (or approximate with a good estimate) the number of
solutions of F . Consider a SAT formula F with S solutions. If we are able to sample solutions
uniformly, then we can exactly compute the fraction of the number of solutions, denoted by
γ that have a variable X set to True or 1 (and similarly to False or 0). If γ is greater than
zero, we can set X to that particular value and simplify F to F ′. The estimate of the number
of solutions is now equal to the product of 1

γ and the number of solutions of F ′. Then, we
recursively repeat the process, leading to a series of multipliers, until all variables are assigned
a value or until the conditioned formula is easy for exact model counters like Cachet [47]. To
reduce the variance, [54] suggest to set the selected variable to a value that occurs more often
in the given set of sampled solutions. In this scheme, the fraction for each variable branching
is selected via a solution sampling method called SampleSat [53], which is an extension of the
well-known local search SAT solver Walksat [48].

SampleCount [29] differs from ApproxCount in the following two ways: (a) SampleCount
heuristically reduces the variance by branching on variables which are more balanced i.e. vari-
ables having multipliers 1/γ close to 2 and (b) At each branch point, SampleCount assigns a
value to a variable by sampling it with probability 0.5 yielding an unbiased estimate of the
solution counts. SampleCount is an importance sampling technique in which the weight of each
sample equals 2k×s, where k is the number of variables sampled and s is the model count of the
SAT formula conditioned on the sampled assignment to the k sampled variables. Therefore, it
can be easily combined with Markov-LB yielding the Markov-LB with SampleCount scheme.

In our experiments, we used an implementation of SampleCount available from the authors
of gomes07. Following the recommendations made in [29], we use the following parameters for
ApproxCount and SampleCount: (a) Number of samples for SampleSat = 20, (b) Number of
variables remaining to be assigned a value before running Cachet = 100 and (c) local search
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cutoff α = 100K.

Relsat. Relsat [45] is an exact algorithm for counting the number of solutions of a SAT for-
mula. When Relsat is stopped before termination, it yields a lower bound on the solution count.
We used an implementation of Relsat available at http://www.bayardo.org/resources.html.

We experimented with four versions of Markov-LB (combined with SampleSearch, Sample-
Count and IJGP-Sampling): (a) Markov-LB as given in Algorithm 1, (b) Markov-LB with
the average scheme, (c) Markov-LB with the martingale random permutation scheme and (d)
Markov-LB with the martingale order statistics scheme. Note that the maximum scheme is
subsumed by the Markov-LB with the martingale order statistics scheme. In all our experi-
ments, we set α = 0.99, namely there is better than 99% chance that our lower bounds are
correct.

4.1.1 Evaluation Criteria

We evaluate the performance using the log relative error between the exact value of probability
of evidence (or the solution counts for satisfiability problems) and the lower bound generated
by the respective techniques. Formally, if Z is the actual probability of evidence (or solution
counts) and Z is the approximate probability of evidence (or solution counts), the log-relative
error denoted by ∆ is given by:

∆ =
log(Z)− log(Z)

log(Z)
(34)

When the exact value of Z is not known, we use the highest lower bound reported by the
schemes as a substitute for Z in Equation 34. We compute the log relative error instead of the
usual relative error because when the probability of evidence is small (≤ 10−10) or when the
solution counts are large (e.g. ≥ 1010) the relative error between the exact and the approximate
weighted counts will be arbitrarily close to 1 and we would need a large number of digits to
determine the best performing scheme.

Notation in Tables The first column in each table (see for example Table 1) gives the name
of the instance. The second column provides raw statistical information about the instance
such as: (i) number of variables (n), (ii) average domain size (d), (iii) number of clauses (c)
or number of evidence variables (e) and (iv) the upper bound on the treewidth of the instance
computed using the min-fill algorithm (w). The third column provides the exact answer for the
problem if available while the remaining columns display the output produced by the various
schemes after the specified time-bound. The columns Min, Avg, Per and Ord give the log-
relative-error ∆ for the minimum, the average, the martingale random permutation and the
martingale order statistics schemes respectively. For each instance, the log-relative error of the
scheme yielding the best performance is highlighted in bold. The final column Best LB reports
the best lower bound.

We organize our results in two parts. We first present results for networks which do not
have determinism and compare Bound propagation and its improvements with IJGP-sampling
based Markov-LB schemes. Then, we consider networks which have determinism and compare
SampleSearch based Markov-LB with Variable elimination and Conditioning for probabilistic
networks and with SampleCount for Boolean satisfiability problems.
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Markov-LB with Bound
IJGP-sampling propa-

Problem 〈n, d, e, w〉 Exact Min Avg Per Ord gation Best

P(e) ∆ ∆ ∆ ∆ ∆ LB

Alarm
BN 3 〈100, 2, 36〉 2.8E-13 0.157 0.031 0.040 0.059 0.090 1.1E-13

BN 4 〈100, 2, 51〉 3.6E-18 0.119 0.023 0.040 0.045 0.025 1.4E-18

BN 5 〈125, 2, 55〉 1.8E-19 0.095 0.020 0.021 0.030 0.069 7.7E-20

BN 6 〈125, 2, 71〉 4.3E-26 0.124 0.016 0.024 0.030 0.047 1.6E-26

BN 11 〈125, 2, 46〉 8.0E-18 0.185 0.023 0.061 0.064 0.102 3.3E-18

CPCS
CPCS-360-1 〈360, 2, 20〉 1.3E-25 0.012 0.012 0.000 0.001 0.002 1.3E-25

CPCS-360-2 〈360, 2, 30〉 7.6E-22 0.045 0.015 0.010 0.010 0.000 7.6E-22

CPCS-360-3 〈360, 2, 40〉 1.2E-33 0.010 0.009 0.000 0.000 0.000 1.2E-33

CPCS-360-4 〈360, 2, 50〉 3.4E-38 0.022 0.009 0.002 0.000 0.000 3.4E-38

CPCS-422-1 〈422, 2, 20〉 7.2E-21 0.028 0.016 0.001 0.001 0.002 6.8E-21

CPCS-422-2 〈422, 2, 30〉 2.7E-57 0.005 0.005 0.000 0.000 0.000 2.7E-57

CPCS-422-3 〈422, 2, 40〉 6.9E-87 0.003 0.003 0.000 0.000 0.001 6.9E-87

CPCS-422-4 〈422, 2, 50〉 1.4E-73 0.007 0.004 0.000 0.000 0.001 1.3E-73

Random
BN 94 〈53, 50, 6〉 4.0E-11 0.235 0.029 0.063 0.025 0.028 2.2E-11

BN 96 〈54, 50, 5〉 2.1E-09 0.408 0.036 0.095 0.013 0.131 1.6E-09

BN 98 〈57, 50, 6〉 1.9E-11 0.131 0.024 0.013 0.024 0.147 1.4E-11

BN 100 〈58, 50, 8〉 1.6E-14 0.521 0.022 0.079 0.041 0.134 8.1E-15

BN 102 〈76, 50, 15〉 1.5E-26 0.039 0.007 0.007 0.012 0.056 9.4E-27

Table 1: Table showing the log-relative error ∆ of bound propagation and four versions of
Markov-LB combined with IJGP-sampling for Bayesian networks having no determinism after
2 minutes of CPU time.
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4.2 Results on networks having no determinism

Table 1 summarizes the results. We ran each algorithm for 2 minutes. We see that our new
strategy of Markov-LB scales well with problem size and provides good quality high-confidence
lower bounds on most problems. It clearly outperforms the bound propagation with cut-set
conditioning scheme. We discuss the results in detail below.

Non-deterministic Alarm networks. The Alarm networks are one of the earliest Bayesian
networks designed by medical experts for monitoring patients in intensive care. The evidence
in these networks was set at random. These networks have between 100-125 binary nodes.
We can see that Markov-LB with IJGP-sampling is slightly superior to the bound propagation
based scheme accuracy-wise. Among the different versions of Markov-LB with IJGP-sampling,
the average scheme performs better than the martingale schemes. The minimum scheme is the
worst performing scheme.

The CPCS networks. The CPCS networks are derived from the Computer-based Patient
Case Simulation system [42]. The nodes of CPCS networks correspond to diseases and find-
ings and conditional probabilities describe their correlations. The CPCS360b and CPCS422b
networks have 360 and 422 variables respectively. We report results on the two networks with
20,30,40 and 50 randomly selected evidence nodes. We see that the lower bounds reported by
the bound propagation based scheme are slightly better than Markov-LB with IJGP-sampling
on the CPCS360b networks. However, on the CPCS422b networks, Markov-LB with IJGP-
sampling gives higher lower bounds. The martingale schemes (the random permutation and
the order statistics) give higher lower bounds than the average scheme. Again, the minimum
scheme is the weakest.

Random networks. The random networks are randomly generated graphs available from
the UAI 2006 evaluation web site. The evidence nodes are generated at random. The networks
have between 53 and 76 nodes and the maximum domain size is 50. We see that Markov-LB
is better than the bound propagation based scheme on all random networks. The random
permutation and the order statistics martingale schemes are slightly better than the average
scheme on most instances.

4.3 Results on networks having determinism

In this subsection, we report on experiments for networks which have determinism. We ex-
perimented with five benchmark domains: (a) Latin square instances, (b) Langford instances,
(c) FPGA routing instances, (d) Linkage instances and (e) Relational instances. The task
of interest on the first three domains is counting solutions while the task of interest on the
remaining domains is computing the probability of evidence.

4.3.1 Results on Satisfiability model counting

For model counting, we evaluate the lower bounding power of Markov-LB with SampleSearch
and Markov-LB with SampleCount [29]. We ran both algorithms for 10 hours on each instance.

Results on the Latin Square instances Our first set of benchmark instances come from
the normalized Latin squares domain. A Latin square of order s is an s× s table filled with s
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Markov-LB with Markov-LB with REL

SampleSearch SampleCount SAT

Problem 〈n, k, c, w〉 Exact Min Avg Per Ord Min Avg Per Ord Best

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ LB

ls8-norm 〈512, 2, 5584, 255〉 5.40E+11 0.387 0.012 0.068 0.095 0.310 0.027 0.090 0.090 0.344 3.88E+11
ls9-norm 〈729, 2, 9009, 363〉 3.80E+17 0.347 0.021 0.055 0.070 0.294 0.030 0.097 0.074 0.579 1.59E+17
ls10-norm 〈1000, 2, 13820, 676〉 7.60E+24 0.304 0.002 0.077 0.044 0.237 0.016 0.054 0.050 0.710 6.93E+24
ls11-norm 〈1331, 2, 20350, 956〉 5.40E+33 0.287 0.023 0.102 0.026 0.227 0.036 0.094 0.034 0.783 7.37E+34
ls12-norm 〈1728, 2, 28968, 1044〉 0.251 0.007 0.045 0.011 0.232 0.000 0.079 0.002 0.833 3.23E+43
ls13-norm 〈2197, 2, 40079, 1558〉 0.250 0.005 0.080 0.000 0.194 0.015 0.087 0.044 0.870 1.26E+55
ls14-norm 〈2744, 2, 54124, 1971〉 0.174 0.010 0.057 0.000 0.140 0.043 0.065 0.026 0.899 2.72E+67
ls15-norm 〈3375, 2, 71580, 2523〉 0.189 0.015 0.080 0.000 0.130 0.053 0.077 0.062 0.923 4.84E+82
ls16-norm 〈4096, 2, 92960, 2758〉 0.158 0.000 0.055 0.001 0.108 0.030 0.053 0.007 X 1.16E+97

Table 2: Table showing the log-relative error ∆ of Relsat and four versions of Markov-LB
combined with SampleSearch and SampleCount respectively for Latin Square instances after
10 hours of CPU time.

Markov-LB with Markov-LB with REL

Ex SampleSearch SampleCount SAT

Problem 〈n, k, c, w〉 act Min Avg Per Ord Min Avg Per Ord Best

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ LB

lang12 〈576, 2, 13584, 383〉 2.16E+05 0.464 0.051 0.128 0.171 0.455 0.067 0.103 0.175 0.000 2.16E+05
lang16 〈1024, 2, 32320, 639〉 6.53E+08 0.475 0.008 0.106 0.131 0.378 0.019 0.097 0.023 0.365 7.68E+08
lang19 〈1444, 2, 54226, 927〉 5.13E+11 0.405 0.041 0.109 0.095 0.420 0.156 0.219 0.200 0.636 1.70E+11
lang20 〈1600, 2, 63280, 1023〉 5.27E+12 0.411 0.031 0.150 0.102 0.424 0.217 0.188 0.123 0.685 2.13E+12
lang23 〈2116, 2, 96370, 1407〉 7.60E+15 0.389 0.058 0.119 0.100 0.418 0.215 0.284 0.211 X 9.15E+14
lang24 〈2304, 2, 109536, 1535〉 9.37E+16 0.258 0.076 0.043 0.054 0.283 0.220 0.203 0.220 X 1.74E+16
lang27 〈2916, 2, 156114, 1919〉 0.261 0.000 0.093 0.107 0.364 0.264 0.291 0.267 X 7.67E+19

Table 3: Table showing the log-relative error ∆ of Relsat and four versions of Markov-LB
combined with SampleSearch and SampleCount respectively for Langford instances after 10
hours of CPU time.

numbers from {1, . . . , s} in such a way that each number occurs exactly once in each row and
exactly once in each column. In a normalized Latin square the first row and column are fixed.
The task here is to count the number of normalized Latin squares of a given order. The Latin
squares were modeled as SAT formulas using the extended encoding given in [28]. The exact
counts for these formulas are known up to order 11 [44].

Table 2 shows the results. The exact counts for Latin square instances are known only up
to order 11. As pointed out earlier, when the exact results are not known, we use the highest
lower bound reported by the schemes as a substitute for Z in Equation 34.

Among the different versions of Markov-LB with SampleSearch, we see that the average
scheme performs better than the martingale order statistics scheme on 5 out of 8 instances
while the martingale order statistics scheme is superior on the other 3 instances. The minimum
scheme is the weakest scheme while the martingale random permutation scheme is between
the minimum scheme and the average and martingale order statistics scheme.

Among the different versions of Markov-LB with SampleCount, we see very similar perfor-
mance.

SampleSearch with Markov-LB generates better lower bounds than SampleCount with
Markov-LB on 6 out of the 8 instances. The lower bounds output by Relsat are several orders
of magnitude lower than those output by Markov-LB with SampleSearch and Markov-LB with
SampleCount.

17



Markov-LB with Markov-LB with REL

Ex- SampleSearch SampleCount SAT

Problem 〈n, k, c, w〉 act Min Avg Per Ord Min Avg Per Ord Best

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ LB

9symml gr 2pin w6 〈2604, 2, 36994, 413〉 0.192 0.000 0.075 0.006 0.087 0.073 0.076 0.075 0.491 2.76E+53
9symml gr rcs w6 〈1554, 2, 29119, 613〉 0.237 0.016 0.117 0.023 0.117 0.060 0.041 0.009 0.000 9.95E+84
alu2 gr rcs w8 〈4080, 2, 83902, 1470〉 0.224 0.097 0.152 0.102 0.000 0.906 0.023 0.345 0.762 1.47E+235

apex7 gr 2pin w5 〈1983, 2, 15358, 188〉 0.158 0.003 0.073 0.000 0.064 0.023 0.047 0.036 0.547 2.71E+93
apex7 gr rcs w5 〈1500, 2, 11695, 290〉 0.228 0.037 0.118 0.038 0.099 0.000 0.028 0.008 0.670 3.04E+139
c499 gr 2pin w6 〈2070, 2, 22470, 263〉 0.262 0.012 0.092 0.000 X X X X 0.376 6.84E+54
c499 gr rcs w6 〈1872, 2, 18870, 462〉 0.310 0.046 0.164 0.043 0.083 0.042 0.062 0.000 0.391 1.07E+88
c880 gr rcs w7 〈4592, 2, 61745, 1024〉 0.223 0.110 0.142 0.110 0.000 0.000 0.000 0.003 0.845 1.37E+278

example2 gr 2pin w6 〈3603, 2, 41023, 350〉 0.112 0.000 0.026 0.000 0.005 0.005 0.005 0.005 0.756 2.78E+159
example2 gr rcs w6 〈2664, 2, 27684, 476〉 0.176 0.050 0.079 0.054 0.056 0.005 0.000 0.005 0.722 1.47E+263
term1 gr 2pin w4 〈746, 2, 3964, 31〉 0.199 0.000 0.077 0.002 X X X X 0.141 7.68E+39
term1 gr rcs w4 〈808, 2, 3290, 57〉 0.252 0.000 0.090 0.017 X X X X 0.175 4.97E+55

too large gr rcs w7 〈3633, 2, 50373, 1069〉 0.156 0.026 0.073 0.000 X X X X 0.608 7.73E+182
too large gr rcs w8 〈4152, 2, 57495, 1330〉 0.147 0.000 0.038 0.020 X X X X 0.750 8.36E+246

vda gr rcs w9 〈6498, 2, 130997, 2402〉 0.088 0.009 0.030 0.000 X X X X 0.749 5.04E+300

Table 4: Table showing the log-relative error ∆ of Relsat and four versions of Markov-LB
combined with SampleSearch and SampleCount respectively for FPGA routing instances after
10 hours of CPU time.

Results on Langford instances Our second set of benchmark instances come from the
Langford’s problem domain. The problem is parameterized by its (integer) size denoted by s.
Given a set of s numbers {1, 2, . . . , s}, the problem is to produce a sequence of length 2s such
that each i ∈ {1, 2, . . . , s} appears twice in the sequence and the two occurrences of i are
exactly i apart from each other. This problem is satisfiable only if n is 0 or 3 modulo 4. We
encoded the Langford problem as a SAT formula using the channeling SAT encoding described
in [52].

Table 3 shows the results. Among the different versions of Markov-LB with SampleSearch,
we see again the superiority of the average scheme. The martingale order statistics and random
permutation schemes are the second and the third best respectively. Among the different
versions of SampleCount based Markov-LB, we see a similar trend where the average scheme
performs better than other schemes on 6 out of the 7 instances.

Markov-LB with SampleSearch outperforms Markov-LB with SampleCount on 6 out of the
7 instances. The lower bounds output by Relsat are inferior by several orders of magnitude
to the Markov-LB based lower bounds except on the lang12 instance which RESLAT solves
exactly.

Results on FPGA routing instances Our final SAT domain is that of the FPGA routing
instances. These instances are constructed by reducing FPGA (Field Programmable Gate
Array) detailed routing problems into a satisfiability formula. The instances were generated
by Gi-Joon Nam and were used in the SAT 2002 competition [49].

Table 4 shows the results for FPGA routing instances. We see a similar behavior to the
Langford and Latin square instances in that the average and the martingale order statistics
schemes are better than other schemes with the average scheme performing the best. Sample-
Search based Markov-LB yields better lower bounds than SampleCount based Markov-LB on
11 out of the 17 instances. As in the other benchmarks, the lower bounds output by Relsat
are inferior by several orders of magnitude.
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Markov-LB with
SampleSearch VEC Best

Problem 〈n, k, c, w〉 Exact Min Avg Per Ord LB

∆ ∆ ∆ ∆ ∆

BN 69.uai 〈777, 7, 78, 47〉 5.28E-54 0.082 0.029 0.031 0.034 0.140 1.56E-55

BN 70.uai 〈2315, 5, 159, 87〉 2.00E-71 0.275 0.035 0.101 0.046 0.147 6.24E-74

BN 71.uai 〈1740, 6, 202, 70〉 5.12E-111 0.052 0.009 0.019 0.017 0.035 5.76E-112

BN 72.uai 〈2155, 6, 252, 86〉 4.21E-150 0.021 0.002 0.004 0.007 0.023 2.38E-150

BN 73.uai 〈2140, 5, 216, 101〉 2.26E-113 0.172 0.020 0.059 0.026 0.121 1.19E-115

BN 74.uai 〈749, 6, 66, 45〉 3.75E-45 0.233 0.035 0.035 0.049 0.069 1.09E-46

BN 75.uai 〈1820, 5, 155, 92〉 5.88E-91 0.077 0.005 0.024 0.019 0.067 1.98E-91

BN 76.uai 〈2155, 7, 169, 64〉 4.93E-110 0.109 0.015 0.043 0.018 0.153 1.03E-111

Table 5: Table showing the log-relative error ∆ of VEC and four versions of Markov-LB
combined with SampleSearch for Linkage instances from the UAI 2006 evaluation after 3 hours
of CPU time.
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Figure 1: A fragment of a Bayesian network used in genetic linkage analysis.

4.3.2 Results on Linkage instances

The Linkage networks are generated by converting biological linkage analysis data into a
Bayesian or Markov network. Linkage analysis is a statistical method for mapping genes
onto a chromosome [40]. This is very useful in practice for identifying disease genes. The input
is an ordered list of loci L1, . . . , Lk+1 with allele frequencies at each locus and a pedigree with
some individuals typed at some loci. The goal of linkage analysis is to evaluate the likelihood
of a candidate vector [θ1, . . . , θk] of recombination fractions for the input pedigree and locus
order. The component θi is the candidate recombination fraction between the loci Li and Li+1.

The pedigree data can be represented as a Bayesian network with three types of random
variables: genetic loci variables which represent the genotypes of the individuals in the pedigree
(two genetic loci variables per individual per locus, one for the paternal allele and one for the
maternal allele), phenotype variables, and selector variables which are auxiliary variables used
to represent the gene flow in the pedigree. Figure 1 represents a fragment of a network that
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Markov-LB with
SampleSearch VEC Best

Problem 〈n, k, c, w〉 Exact Min Avg Per Ord LB

∆ ∆ ∆ ∆ ∆

pedigree18.uai 〈1184, 1, 0, 26〉 7.18E-79 0.062 0.004 0.011 0.016 0.000 7.18E-79

pedigree1.uai 〈334, 2, 0, 20〉 7.81E-15 0.034 0.020 0.020 0.020 0.000 7.81E-15

pedigree20.uai 〈437, 2, 0, 25〉 2.34E-30 0.208 0.010 0.011 0.029 0.000 2.34E-30

pedigree23.uai 〈402, 1, 0, 26〉 2.78E-39 0.093 0.007 0.016 0.019 0.000 2.78E-39

pedigree25.uai 〈1289, 1, 0, 38〉 2.12E-119 0.006 0.022 0.019 0.019 0.024 1.69E-116

pedigree30.uai 〈1289, 1, 0, 27〉 4.03E-88 0.014 0.039 0.039 0.035 0.042 1.85E-84

pedigree37.uai 〈1032, 1, 0, 25〉 2.63E-117 0.031 0.005 0.005 0.006 0.000 2.63E-117

pedigree38.uai 〈724, 1, 0, 18〉 5.64E-55 0.197 0.010 0.024 0.023 0.000 5.65E-55

pedigree39.uai 〈1272, 1, 0, 29〉 6.32E-103 0.039 0.003 0.001 0.007 0.000 7.96E-103

pedigree42.uai 〈448, 2, 0, 23〉 1.73E-31 0.024 0.009 0.007 0.010 0.000 1.73E-31

pedigree19.uai 〈793, 2, 0, 23〉 0.158 0.018 0.000 0.031 0.011 3.67E-59

pedigree31.uai 〈1183, 2, 0, 45〉 0.059 0.000 0.003 0.011 0.083 1.03E-70

pedigree34.uai 〈1160, 1, 0, 59〉 0.211 0.006 0.000 0.012 0.174 4.34E-65

pedigree13.uai 〈1077, 1, 0, 51〉 0.175 0.000 0.038 0.023 0.163 2.94E-32

pedigree40.uai 〈1030, 2, 0, 49〉 0.126 0.000 0.036 0.008 0.025 4.26E-89

pedigree41.uai 〈1062, 2, 0, 52〉 0.079 0.000 0.012 0.010 0.049 2.29E-77

pedigree44.uai 〈811, 1, 0, 29〉 0.045 0.002 0.007 0.009 0.000 2.23E-64

pedigree51.uai 〈1152, 1, 0, 51〉 0.150 0.003 0.027 0.000 0.139 1.01E-74

pedigree7.uai 〈1068, 1, 0, 56〉 0.127 0.000 0.019 0.009 0.101 6.42E-66

pedigree9.uai 〈1118, 2, 0, 41〉 0.072 0.000 0.009 0.009 0.028 1.41E-79

Table 6: Table showing the log-relative error ∆ of VEC and four versions of Markov-LB
combined with SampleSearch for Linkage instances from the UAI 2008 evaluation after 3 hours
of CPU time.

describes parents-child interactions in a simple 2-loci analysis. The genetic loci variables of
individual i at locus j are denoted by Li,jp and Li,jm. Variables Xi,j , Si,jp and Si,jm denote
the phenotype variable, the paternal selector variable and the maternal selector variable of
individual i at locus j, respectively. The conditional probability tables that correspond to the
selector variables are parameterized by the recombination ratio θ. The remaining tables contain
only deterministic information. It can be shown that given the pedigree data, computing the
likelihood of the recombination fractions is equivalent to computing the probability of evidence
on the Bayesian network that model the problem (for more details consult [20]).

Table 5 show the results for linkage instances used in the UAI 2006 evaluation [6]. Here, we
compare Markov-LB with SampleSearch with VEC. The bound propagation scheme [3] does
not work on instances having determinism and therefore we do not report on it here. We clearly
see that SampleSearch based Markov-LB yields higher lower bounds than VEC. Remember,
however that the lower bounds output by VEC are correct (with probability 1) while the lower
bounds output by Markov-LB are correct with probability ≥ 0.99. We see that the average
scheme is the best performing scheme. Martingale order statistics scheme is the second best
while the Martingale random permutation scheme is the third best. The minimum scheme is
the worst performing scheme.

Table 6 reports the results on Linkage instances encoded as Markov networks, used in the
UAI 2008 evaluation [13]. VEC solves 10 instances exactly. On these instances, the lower bound
output by SampleSearch based Markov-LB are quite accurate as evidenced by the small log
relative error. On instances which VEC does not solve exactly, we clearly see that Markov-LB
with SampleSearch yields higher lower bounds than VEC.

Comparing between different versions of Markov-LB, we see that the average scheme is
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Markov-LB with
SampleSearch VEC Best

Problem 〈n, k, c, w〉 Exact Min Avg Per Ord LB

∆ ∆ ∆ ∆ ∆

fs-01.uai 〈10, 2, 7, 2〉 5.00E-01 0.000 0.000 0.000 0.000 0.000 5.00E-01

fs-04.uai 〈262, 2, 226, 12〉 1.53E-05 0.116 0.116 0.116 0.116 0.000 1.53E-05

fs-07.uai 〈1225, 2, 1120, 35〉 9.80E-17 0.028 0.004 0.014 0.016 0.079 1.78E-15

fs-10.uai 〈3385, 2, 3175, 71〉 7.89E-31 0.071 0.064 0.064 0.065 X 9.57E-33

fs-13.uai 〈7228, 2, 6877, 119〉 1.34E-51 0.077 0.077 0.077 0.077 X 1.69E-55

fs-16.uai 〈13240, 2, 12712, 171〉 8.64E-78 0.085 0.019 0.048 0.025 X 3.04E-79

fs-19.uai 〈21907, 2, 21166, 243〉 2.13E-109 0.051 0.050 0.050 0.050 X 8.40E-115

fs-22.uai 〈33715, 2, 32725, 335〉 2.00E-146 0.053 0.006 0.022 0.009 X 2.51E-147

fs-25.uai 〈49150, 2, 47875, 431〉 7.18E-189 0.050 0.005 0.026 0.004 X 1.57E-189

fs-28.uai 〈68698, 2, 67102, 527〉 9.83E-237 0.231 0.017 0.023 0.011 X 4.53E-237

fs-29.uai 〈76212, 2, 74501, 559〉 6.82E-254 0.259 0.101 0.201 0.027 X 9.44E-255

mastermind 03 08 03 〈1220, 2, 48, 20〉 9.79E-08 0.283 0.039 0.034 0.096 0.000 9.79E-08

mastermind 03 08 04 〈2288, 2, 64, 30〉 8.77E-09 0.562 0.045 0.145 0.131 0.000 8.77E-09

mastermind 03 08 05 〈3692, 2, 80, 42〉 8.90E-11 0.432 0.041 0.021 0.095 0.000 1.44E-10

mastermind 04 08 03 〈1418, 2, 48, 22〉 8.39E-08 0.297 0.041 0.072 0.082 0.000 8.39E-08

mastermind 04 08 04 〈2616, 2, 64, 33〉 2.20E-08 0.640 0.026 0.155 0.103 0.034 1.38E-08

mastermind 05 08 03 〈1616, 2, 48, 28〉 5.30E-07 0.625 0.062 0.188 0.185 0.000 5.30E-07

mastermind 06 08 03 〈1814, 2, 48, 31〉 1.80E-08 0.510 0.058 0.193 0.175 0.000 1.80E-08

mastermind 10 08 03 〈2606, 2, 48, 56〉 1.92E-07 0.839 0.058 0.297 0.162 0.058 7.90E-08

Table 7: Table showing the log-relative error ∆ of VEC and four versions of Markov-LB
combined with SampleSearch for relational instances after 3 hours of CPU time.

overall the best performing scheme. The Martingale order statistics scheme is the second best
scheme while the Martingale random permutation scheme is the third best.

4.3.3 Results on Relational instances

The relational instances are generated by grounding the relational Bayesian networks using the
Primula tool [9]. We experimented with ten Friends and Smoker networks and six mastermind
networks from this domain which have between 262 to 76,212 variables.

In Table 7, we report the results on instances with 10 Friends and Smoker networks and
6 mastermind networks from this domain which have between 262 to 76,212 variables. On
the 11 friends and smokers network, we can see that as the problems get larger the lower
bounds output by Markov-LB with SampleSearch are higher than VEC. This clearly indicates
that Markov-LB with SampleSearch is more scalable than VEC. VEC solves exactly six out
of the eight mastermind instances while on the remaining two instances Markov-LB with
SampleSearch yields higher lower bounds than VEC.

4.4 Summary of Experimental Results

Based on our large scale experimental evaluation, we see that applying Markov inequality and
its generalizations to multiple samples generated by SampleSearch and IJGP-Sampling is more
scalable than deterministic approaches such as Variable elimination and conditioning (VEC),
Relsat and improved bound propagation. Among the different versions of Markov-LB, we find
that the average and martingale order statistics schemes consistently yield higher lower bounds
and therefore they should be preferred over the minimum scheme as well as the martingale
random permutation scheme.
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5 Conclusion

In this paper, we proposed a randomized approximation algorithm, Markov-LB for computing
high confidence lower bounds on weighted counting tasks such as computing the probability
of evidence in a Bayesian network, counting the number of solutions of a constraint network
and computing the partition function of a Markov network. Markov-LB is based on impor-
tance sampling and the Markov inequality. Since a straight-forward application of the Markov
inequality may lead to poor lower bounds, we proposed several improved measures such as
the average scheme which utilizes the sample average and martingale schemes which utilize
the maximum values from the sample weights. We showed that Markov-LB combined with
state of-the-art importance sampling approaches such as IJGP-sampling [23], SampleSearch
[22], and SampleCount [29] is substantially superior to all other existing state-of-the-art de-
terministic algorithms such as bound propagation [4], Relsat [45] and variable elimination and
conditioning.
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[20] Maáyan Fishelson and Dan Geiger. Optimizing exact genetic linkage computations. In
Proceedings of the seventh annual international conference on Research in computational
molecular biology, pages 114–121, 2003.

[21] John Geweke. Bayesian inference in econometric models using Monte Carlo integration.
Econometrica, 57(6):1317–39, 1989.

[22] V. Gogate and R. Dechter. SampleSearch: Importance sampling in presence of determin-
ism. Artificial Intelligence, 175(2):694–729, February 2011.

[23] Vibhav Gogate. Sampling Algorithms for Probabilistic Graphical Models with Determin-
ism. PhD thesis, Computer Science, University of California, Irvine, USA, June 2009.

[24] Vibhav Gogate, Bozhena Bidyuk, and Rina Dechter. Studies in lower bounding probability
of evidence using the Markov inequality. In Proceedings of the Twenty Third Conference
on Uncertainty in Artificial Intelligence, pages 141–148, 2007.

[25] Vibhav Gogate and Rina Dechter. Approximate inference algorithms for hybrid Bayesian
networks with discrete constraints. In Proceedings of the Twenty First Annual Conference
on Uncertainty in Artificial Intelligence, pages 209–216, 2005.

[26] Vibhav Gogate and Rina Dechter. Approximate counting by sampling the backtrack-free
search space. In Proceedings of Twenty Second Conference on Artificial Intelligence, pages
198–203, 2007.

23



[27] Vibhav Gogate and Rina Dechter. Samplesearch: A scheme that searches for consistent
samples. Proceedings of the Eleventh Conference on Artificial Intelligence and Statistics,
pages 147–154, 2007.

[28] Carla Gomes and David Shmoys. Completing quasigroups or latin squares: A struc-
tured graph coloring problem. In Proceedings of the Computational Symposium on Graph
Coloring and Extensions, 2002.

[29] Carla P. Gomes, Jörg Hoffmann, Ashish Sabharwal, and Bart Selman. From sampling
to model counting. In Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence, pages 2293–2299, 2007.

[30] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):13–30, 1963.

[31] Harold M Kaplan. A method of one-sided nonparametric inference for the mean of a
nonnegative population. The American Statistician, 41(2):157–158, 1987.

[32] Martijn Leisink and Bert Kappen. Bound propagation. Journal of Artificial Intelligence
Research, 19:139–154, 2003.

[33] Fei-Fei Li and Pietro Perona. A Bayesian hierarchical model for learning natural scene
categories. In Computer Vision and Pattern Recognition (CVPR), volume 2, pages 524–
531, 2005.

[34] Lin Liao, Donald J. Patterson, Dieter Fox, and Henry Kautz. Learning and inferring
transportation routines. Artificial Intelligence, 171(5-6):311–331, 2007.

[35] J.S. Liu. Monte-Carlo strategies in scientific computing. Springer-Verlag, New York, 2001.

[36] A. W. Marshall. The use of multi-stage sampling schemes in Monte Carlo computations.
In Symposium on Monte Carlo Methods, pages 123–140, 1956.

[37] R. Mateescu, K. Kask, V. Gogate, and R. Dechter. Join-graph propagation algorithms.
Journal of Artificial Intelligence Research, 37:279–328, 2010.

[38] Blackford Middleton, S Michael Shwe M., David Heckerman, D Harold Lehmann M.,
and Gregory Cooper. Probabilistic diagnosis using a reformulation of the internist-1/qmr
knowledge base. Medicine, 30:241–255, 1991.

[39] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for ap-
proximate inference: An empirical study. In In Proceedings of the Fifteenth Conference
on Uncertainty in Artificial Intelligence, pages 467–475, 1999.

[40] Jurg Ott. Analysis of Human Genetic Linkage. The Johns Hopkins University Press,
Baltimore, Maryland, 1999.

[41] V. Pavlovic, J. M. Rehg, Tat-Jen Cham, and K. P. Murphy. A dynamic Bayesian network
approach to figure tracking using learned dynamic models. In The Proceedings of the
Seventh IEEE International Conference on Computer Vision, volume 1, pages 94–101,
1999.

24



[42] M. Pradhan, G. Provan, B. Middleton, and M. Henrion. Knowledge engineering for large
belief networks. In Proceedings of the 10th Canadian Conference on Artificial Intelligence,
pages 484–490, 1994.

[43] C. Raphael. A hybrid graphical model for rhythmic parsing. Artificial Intelligence, 137(1-
2):217–238, May 2002.

[44] Terry Ritter. Latin squares: A literature survey. Available online at:
http://www.ciphersbyritter.com/RES/LATSQ.HTM, 2003.

[45] Jr. Roberto J. Bayardo and Joseph Daniel Pehoushek. Counting models using connected
components. In Proceedings of Seventeenth National Conference on Artificial Intelligence,
pages 157–162, 2000.

[46] R. Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley & Sons Inc.,
1981.

[47] Tian Sang, Paul Beame, and Henry A. Kautz. Performing bayesian inference by weighted
model counting. In Proceedings, The Twentieth National Conference on Artificial Intelli-
gence, pages 475–482, 2005.

[48] B. Selman, H. Kautz, and B. Cohen. Noise strategies for local search. In Proceedings of
the Eleventh National Conference on Artificial Intelligence, pages 337–343, 1994.

[49] Laurent Simon, Daniel Le Berre, and E. Hirsch. The SAT 2002 competition. Annals of
Mathematics and Artificial Intelligence(AMAI), 43:307–342, 2005.

[50] Niklas Sorensson and Niklas Een. Minisat v1.13-a SAT solver with conflict-clause mini-
mization. In SAT 2005 competition, 2005.

[51] L. G. Valiant. The complexity of enumeration and reliability problems. Siam Journal of
Computation, 8(3):105–117, 1987.

[52] Toby Walsh. Permutation problems and channelling constraints. In Proceedings of the
8th International Conference on Logic Programming and Automated Reasoning (LPAR),
pages 377–391, 2001.

[53] Wei Wei, Jordan Erenrich, and Bart Selman. Towards efficient sampling: Exploiting
random walk strategies. In Proceedings of the Nineteenth National Conference on Artificial
Intelligence, pages 670–676, 2004.

[54] Wei Wei and Bart Selman. A new approach to model counting. In Proceedings of Eighth In-
ternational Conference on Theory and Applications of Satisfiability Testing (SAT), pages
324–339, 2005.

[55] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Constructing free energy
approximations and generalized belief propagation algorithms. IEEE Transactions on
Information Theory, 51:2282–2312, 2004.

[56] C. Yuan and M. J. Druzdzel. Importance sampling algorithms for Bayesian networks:
Principles and performance. Mathematical and Computer Modeling, 43(9-10):1189–1207,
2006.

25


