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Abstract
Tractable probabilistic models obviate the need
for unreliable approximate inference approaches
and as a result often yield accurate query an-
swers in practice. However, most tractable models
that achieve state-of-the-art generalization perfor-
mance (measured using test set likelihood score)
use latent variables. Such models admit poly-
time marginal (MAR) inference but do not admit
poly-time (full) maximum-a-posteriori (MAP) in-
ference. To address this problem, in this paper,
we propose a novel approach for inducing cutset
networks, a well-known tractable, highly inter-
pretable representation that does not use latent
variables and admits linear time MAR as well as
MAP inference. Our approach addresses a major
limitation of existing techniques that learn cut-
set networks from data in that their accuracy is
quite low as compared to latent variable models
such as ensembles of cutset networks and sum-
product networks. The key idea in our approach
is to construct deep cutset networks by not only
learning them from data but also compiling them
from a more accurate latent tractable model. We
show experimentally that our new approach yields
more accurate MAP estimates as compared with
existing approaches and significantly improves
the test set log-likelihood score of cutset networks
bringing them closer in terms of generalization
performance to latent variable models.

1. Introduction
A fundamental shortcoming of probabilistic graphical mod-
els (PGMs) (Pearl, 1988) such as Bayesian and Markov
networks is that probabilistic inference—the process used
to answer queries—on most models used in practice is in-
tractable. This is not surprising since even the most basic
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inference task of computing the marginal probability of a
variable given observations or evidence—posterior marginal
estimation—is #P-hard (Roth, 1996). To circumvent this
issue, one can either use approximate inference in lieu of
exponential time exact inference approaches or learn mod-
els such that exact inference is tractable, namely takes time
that is polynomial in the number of parameters. Both ap-
proaches are widely used in practice and each has their own
pros and cons. Tractable models are desirable because the
user can always recover accurate, reliable answers accord-
ing to the model. This is a major plus over the approximate
inference approach (e.g., sampling, belief propagation, etc.)
because the latter often exhibits high variability; different
runs and algorithms often yield widely different query an-
swers. However, tractable models typically have slightly
worse test set log-likelihood scores, namely they generalize
poorly, as compared to arbitrary latent PGMs. Therefore
improving the accuracy/fit of tractable models is an active
area of research (Rahman & Gogate, 2016a;b; Di Mauro
et al., 2016; 2017; Rashwan et al., 2016; Liang et al., 2017).

An often overlooked and one of the earliest goals of PGM
research is learning interpretable models (Pearl, 1988; Dar-
wiche, 2009). By interpretable models, we mean PGMs
whose random variables, dependencies (structure) and pa-
rameters are interpretable. To this end, sparse Bayesian
networks having no latent variables are interpretable but
Markov networks are not because parameters of the latter
are not interpretable. Interpretability is desirable, especially
in interactive settings (Kulesza et al., 2015) and explainable
AI applications (Gunning, 2017) such as activity recognition
and medical diagnosis because it helps explain the model,
specifically its assumptions to the user. This allows the user
to update the model if the assumptions are wrong based
on his/her prior knowledge. When the interpretable model
is also tractable, it helps explain why a model made a par-
ticular decision as opposed to a different one to the user.
Thus, learning tractable interpretable models is an impor-
tant research endeavor, especially for building high quality
explainable AI systems (Gunning, 2017).

In this paper, we focus on a particular class of tractable,
interpretable models called cutset networks (Rahman et al.,
2014). At a high level, these networks represent how a cutset
conditioning method (Pearl, 1988) that takes advantage of
determinism (Gogate, 2009), dynamic orderings, context-
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specific independence (Boutilier et al., 1996) and similar
probability values (Chavira & Darwiche, 2008) would ap-
proximate an intractable PGM. Graphically, a cutset network
is an OR tree (Dechter & Mateescu, 2007) in which each
node is labeled with a random variable and each edge is la-
beled with the conditional probability of the child given an
assignment of values from the root to the parent. The leaves
of the cutset network are tree Bayesian networks defined
over the variables not present on the path between the root
and the leaf and therefore can be learned efficiently using
the Chow-Liu algorithm (Chow & Liu, 1968).

Although simple and efficient to learn, a major shortcom-
ing of cutset networks is that their test set log-likelihood
score is worse, often by a significant amount, as compared
to arbitrary PGMs. To alleviate this shortcoming, (Rahman
& Gogate, 2016a; Di Mauro et al., 2016) proposed to learn
mixtures of cutset networks (i.e., introduce a latent variable)
by using various approaches such as the expectation maxi-
mization algorithm, Bagging, random forests and Boosting.
Latent variables are also employed to improve generaliza-
tion performance by other, related tractable models such as
sum-product networks (SPNs) (Poon & Domingos, 2011)
and ensembles of probabilistic sentential decision diagrams
(Kisa et al., 2014; Liang et al., 2017) . Unfortunately, despite
improved generalization performance, in presence of latent
variables (full) maximum-a-posteriori (MAP) inference is
no longer tractable (while marginal inference (MAR) is still
tractable). As a result, application designers have to use
unreliable approximate inference approaches to compute
MAP estimates on these models. In other words, existing
tractable models use latent variables to trade the accuracy
of MAP inference with the accuracy of MAR inference.

The main contribution of this paper is to propose a new
method for improving the accuracy of cutset networks with-
out using latent variables. We propose a two-step, anytime
approach. In the first step, we learn a tractable model having
latent variables from data. In the second step, we take a
generic, heuristic algorithm for learning the structure and
parameters of cutset networks and replace the empirical
statistics computed from data alone by a convex combina-
tion of the empirical statistics and the statistics computed
from a latent tractable model (compilation). The key rea-
son for using latent tractable models instead of Markov and
Bayesian networks is that sufficient statistics can be inferred
efficiently and accurately in the former (by performing poly-
time exact inference). Although, our approach is simple, it
is quite powerful. In particular, we prove that the accuracy
of cutset networks constructed using our approach will in-
crease over time. We demonstrate via experiments on 20
benchmark datasets that our new method achieves test set
log-likelihood scores that are only slightly inferior to state-
of-the-art latent models while substantially outperforming
the latter as well as existing methods that induce tractable

models having no latent variables for MAP inference.

2. Related Work
Our work is related to work in the classification community
by (Towell & Shavlik, 1994; Craven, 1996) who proposed
to learn accurate, interpretable decision trees by overfitting
a decision tree to a highly accurate deep neural network.
Our work is different in that we are interested in modeling
probability distributions that can solve much harder tasks
such as structured prediction and posterior marginal infer-
ence. Our work is also related to the work on approximate
compilation approaches (Gogate & Dechter, 2008; Lowd
& Domingos, 2010; Gogate & Dechter, 2012; Friedman &
Van den Broeck, 2018) that seek to construct an approxi-
mate tractable model from an intractable graphical model.
The difference is that the aforementioned approaches do
not use data and often learn tractable models having latent
variables. Another line of work that is related to our work is
work on learning tractable models without latent variables
directly from data (Rahman et al., 2014; Lowd & Domingos,
2008; Rahman & Gogate, 2016b). Our work is different in
that we leverage more accurate latent models to improve the
performance of non-latent models.

3. Notation and Background
We assume that all random variables used in this paper are
Boolean or binary valued. Note that we make this assump-
tion for simplicity of exposition and the techniques pre-
sented in this paper can be easily extended to multi-valued
random variables. Let X = {X1, . . . , Xn} denote the set
of n Boolean variables where each variable Xi ∈ X takes
values from the domain {0, 1}. Let x denote an assignment
of values to all variables in X. We will denote the assign-
ment Xi = 1 by xi and Xi = 0 by xi. Given a subset U of
X, we denote by xU as the projection of x on U.

3.1. Bayesian Networks

Bayesian networks (BNs) (Pearl, 1988; Darwiche, 2009)
are often used in practice to represent and reason about
uncertainty. At a high level, they can be understood as a
compact graphical representation of a joint probability dis-
tribution over a large number of random variables. Formally,
a Bayesian network, denoted by B is a triple 〈X, G,P〉
where G = (V,E) is a directed acyclic graph such that
V has one node for each variable in X, E is a set of di-
rected edges, and P is a set of conditional probability tables
(CPTs). Each CPT Pi ∈ P is defined as Pi(Xi|pa(Xi))
where pa(Xi) is the set of parents of Xi in G. A Bayesian
network represents the following probability distribution
PB(x) =

∏n
i=1 Pi(x{Xi}|xpa(Xi)). Since the size of each

CPT is exponential in the number of its parents, in practice,



Look Ma, No Latent Variables: Learning Accurate Cutset Networks via Compilation

X1

X2

X3

X4

X5 X6

X4

X5 X6

X3

X4X5X6

X4

X2

X3 X5

X6

X5

X2

X3 X6

X6

X2 X3

0.7

0.1
0.9

0.3

0.60.4

0.2
0.8

0.25 0.75

T1 T2

T3 T4

T5 T6

Figure 1. An example cutset network defined over the set of vari-
ables {X1, X2, X3, X4, X5, X6}.

for computational reasons, we assume that the number of
parents is bounded by a constant.

The two key tasks in Bayesian networks are learning the
structure and parameters from data and inference. We focus
on two typical inference tasks in this paper: marginal infer-
ence (MAR) given evidence and full maximum-a-posteriori
(MAP) inference.1 It is well known that most tasks of inter-
est in practice can be reduced to either MAR or MAP. Let
the variables be partitioned into three (possibly empty) sets:
evidence (or observed), non-evidence (or unobserved) and
latent (or hidden). MAR is defined as finding the marginal
probability distribution over each or a small subset of non-
evidence variables given evidence while MAP is defined as
finding the most probable assignment to all non-evidence
(unobserved) variables given evidence. Both tasks are at
least NP-hard and are computationally infeasible in practice.
We say that a Bayesian network, and a probabilistic model in
general, is MAR-tractable (MAP-tractable) when the MAR
(MAP) task can be solved in time that scales polynomi-
ally with the number of variables. Examples of tractable
Bayesian networks include tree Bayesian networks (Chow-
Liu trees (Chow & Liu, 1968)), bounded treewidth Bayesian
networks (Elidan & Gould, 2008) and networks having
polynomial-sized arithmetic circuits (Darwiche, 2000).

3.2. Cutset Networks

Cutset networks (CNs) combine tree Bayesian networks
with OR trees (probabilistic decision trees) (Dechter & Ma-
teescu, 2007). Graphically, they can be depicted using a
rooted OR tree with a tree Bayesian network at each leaf
of the OR tree. Formally, a CN C is a pair 〈O, T 〉 where O
is an OR Tree having L leaves and T is a collection of L
tree Bayesian networks attached to each of the L leaves. An
OR tree is a rooted binary tree in which internal nodes are
labeled with variables and each of the two edges emanating
from a node represents conditioning of the variable with an
appropriate value (either 0 or 1). We follow the convention

1Full MAP inference is also called most probable explanation
(MPE) inference in the Bayesian network literature.

that the left branch of a node labeled by Xi represents xi
while the right branch represents xi. Each edge is labeled
with the conditional probability of the variable taking the
value given an assignment of values from the root to the par-
ent node. C represents the following probability distribution

PC(x) =

( ∏
(vi,vj)∈pathO(x)

pi,j

)(
Tl(x)(xV (Tl(x)))

)
(1)

where pathO(x) is a unique path (sequence of edges) from
the root to the leaf in O corresponding to the assignment
x, pi,j is the conditional probability attached to the edge
between nodes vi and vj , l(x) is the index of the leaf node
along pathO(x), Tl(x) is the tree Bayesian network in T
at index l(x) and V (Tl(x)) denotes the subset of variables
over which Tl(x) is defined.

Example 1. Figure 1 shows an example cutset network
defined over six variables {X1, . . . , X6}. The probabil-
ity of the assignment (0, 1, 1, 1, 0, 1) to the six variables
(where X1 is assigned to 0, X2 is assigned to 1, etc.) equals
0.3 × 0.8 × P (X3 = 1, X4 = 1, X5 = 0, X6 = 1|X1 =
0, X2 = 1) where 0.3 equals the probability P (X1 = 0)
(left branch of root node labeled by X1), 0.8 equals the con-
ditional probability P (X2 = 1|X1 = 0) (right branch of
X2) respectively and P (X3 = 1, X4 = 1, X5 = 0, X6 =
1|X1 = 0, X2 = 1) is computed from the tree Bayesian
network T3 (right child of the OR node labeled by X2).

A key feature of cutset networks is that they are both MAP-
tractable and MAR-tractable (Rahman et al., 2014; Dechter
& Mateescu, 2007) assuming that all variables in the OR
tree as well as all tree Bayesian networks in T are known or
observed (namely when the network has no latent variables).
Other examples of tractable models that are both MAP- and
MAR-tractable include bounded treewidth Bayesian net-
works (Bach & Jordan, 2002), Bayesian networks having
polynomial sized arithmetic circuits (Lowd & Domingos,
2008) and probabilistic sentential decision diagrams (Liang
et al., 2017). Another important feature of cutset networks is
that their parameters have well-defined probabilistic seman-
tics, i.e., they are interpretable and as a result enable smooth,
reliable human-machine interaction (Gunning, 2017).

CNs can be learned from data by adapting typical top-down
decision tree induction techniques for selecting a variable at
each OR tree node and then using the Chow-Liu algorithm
(Chow & Liu, 1968) for learning a tree Bayesian network at
each leaf node when a pre-defined termination condition is
satisfied. However, despite advances in learning algorithms
(Vergari et al., 2015; Di Mauro et al., 2015), CNs are less
accurate than arbitrary, intractable Bayesian networks.

To address this problem, (Di Mauro et al., 2015; Rahman &
Gogate, 2016a;b) proposed using latent sum-product mix-
tures of cutset networks. In numerous empirical studies, it
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has been shown that these networks achieve state-of-the-art
test set log-likelihood scores. However, a key issue with
these latent models is that they sacrifice MAP-tractability2

while maintaining MAR-tractability.

4. Inducing Accurate Cutset Networks: A
Novel Approach

The main goal of this paper is to improve the accuracy of
cutset networks while maintaining both MAP and MAR
tractability. Our main intuition is the following. Improving
the model fit, measured using test set log-likelihood score,
of MAR tractable models also substantially improves their
MAR inference accuracy. In particular, numerous previ-
ous studies (Rooshenas & Lowd, 2014; Gens & Domingos,
2013) have shown that given two models, say M1 (e.g.,
SPNs) and M2 (e.g., BNs), such that: (1) M1 is MAR-
tractable; (2) M2 is MAR-intractable; and (3) M2 is slightly
better than M1 in terms of model fit, posterior marginal
estimates obtained by performing exact inference onM1 are
far superior to those obtained by performing approximate
inference on M2 when both M1 and M2 are given the same
amount of (reasonably bounded) time. We hope to achieve
similar results for MAP inference, namely by improving the
fit of MAP-tractable cutset networks (i.e., networks with-
out latent variables), we hope to significantly improve the
quality of their MAP estimates.

Next, we present our new method for learning accurate cut-
set networks. The key idea is to first learn a highly accurate
tractable model with latent variables from data. We will de-
note this model by Q. We then combine statistics computed
by performing exact marginal inference on Q with the ones
empirically estimated from data to induce a cutset network.
The main intuition behind this new approach is that we are
unable to learn deep, accurate cutset networks in high di-
mensions from data alone because the variance increases
with increasing depth. In particular, as we increase the depth
d of a cutset network by one, the sufficient statistics used
to estimate the remaining network at depth d + 1 are not
as reliable as the ones at depth d because the former are
based on roughly half the number of training examples as
compared to the latter. Therefore, to improve the accuracy
of deep cutset networks we need to reduce the variance
using an artifact other than the training data. In this paper,
we propose to use Q, an auxiliary latent tractable model to
achieve this objective.

Algorithm 1 describes the main steps in our approach. We
call the algorithm LC-CN which stands for Learn/Compile
Cutset Networks. The algorithm takes as input a dataset

2MAP inference in latent models is also called marginal MAP
(MMAP) inference. MMAP is substantially harder because the
latent variables need to be marginalized out before performing
maximization (Liu & Ihler, 2013; Park & Darwiche, 2004).

Algorithm 1 LC-CN (D,Q)
Input : Training examples D defined over a set of vari-

ables X and a tractable latent model representing
a distribution Q

Output :A Cutset network
1 begin
2 Compute pairwise marginal distribution P (Xi, Xj) for

all pairs (Xi, Xj) from Q and D (see Eq. (4)).
3 if the termination condition is satisfied then
4 return ChowLiuTree(P )
5 else

// Variable selection Heuristic
6 Use P to compute Score(X) for each variable X

using Eq. (3).
7 Xi = variable with the highest Score.
8 Create a new internal node o labeled by Xi

9 Let l and r be the left and right child nodes of o
respectively.

10 Label(o, l) = P (xi)
11 l = LC-CN(D|xi, Q|xi).
12 Label(o, r) = P (xi)
13 r = LC-CN(D|xi, Q|xi).
14 return o
15 end

D defined over a collection of observed variables X and a
tractable latent model representing a distribution Q (learned
from D). The algorithm builds a cutset network via a top-
down decision-tree style induction. At each recursive call,
it outputs a Chow-Liu tree (steps 2-3) if the termination
condition is met. Otherwise, it heuristically selects a variable
Xi to condition on (steps 6-7) and then recurses on the 0
and 1 value assignments to Xi (steps 9-13).

Variable Selection Heuristic. Following previous work
(Rahman et al., 2014; Di Mauro et al., 2015), we propose
to use pairwise mutual information score to select the vari-
able Xi in steps 6 and 7. This scoring function is based on
the following intuition. Ideally, we should condition on a
variable having strong dependencies with other variables,
since conditioning on that variable would help us reach the
termination condition faster. In other words, the condition-
ing operation is highly likely to yield a sparse, tree-like
Bayesian network having fewer dependencies (edges). A
popular approach for measuring dependence between two
sets of variables is the mutual information score I:

I(X,Y) =
∑
x

∑
y

P (x,y) log

(
P (x,y)

P (x)P (y)

)
(2)

However, estimating mutual information between a variable
Xi and the remaining variables X\{Xi} is computationally
intractable because we need to sum over exponential num-
ber of combinations. Therefore, we approximate it using
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the following, computationally efficient, pairwise mutual
information score and select a variable having the largest
score (breaking ties arbitrarily).

Score(Xi) =
∑
j:j 6=i

I(Xi, Xj) (3)

A key sub-step in computing Score(Xi) is computing the
marginal distribution P (Xi, Xj) for all pairs of variables.
When cutset networks are learned from data, we estimate
P (Xi, Xj) from data. Namely, counts of (Xi = a,Xj = b)
where a, b ∈ {0, 1} in the data is the sufficient statistic.
Since these counts will exhibit high variance as the depth
increases, we propose to estimate P (Xi, Xj) by combining
the counts with estimates computed from the latent tractable
model. More formally, we use

P (Xi, Xj) = αQ(Xi, Xj) + (1− α)S(Xi, Xj) (4)

where α ∈ [0, 1] is a constant (hyper-parameter),Q(Xi, Xj)
is computed from the distribution Q represented by the la-
tent tractable model and S(Xi, Xj) is the empirical distri-
bution computed from the data counts. In general, comput-
ing Q(Xi, Xj) is NP-hard. However, on tractable models,
computing Q(Xi, Xj) is poly-time and thus efficient. The
hyper-parameter α controls the relative importance of S and
Q. When α = 0, P equals S and the latent model is not
used. Similarly, when α = 1, P equals Q and the data is
ignored. In other words, the cutset network is learned from
data when α = 0 and compiled from Q when α = 1. In
practice, α can be set using the validation set.

Note that the Chow-Liu algorithm also uses pairwise mu-
tual information to construct a tree Bayesian network. We
propose to use P (Xi, Xj) (see Eq. (4)) to compute pairwise
mutual information for use in the Chow-Liu algorithm.

After selecting a variable Xi having the highest score, the
algorithm conditions on it by creating an internal node o
in the OR tree (step 8) and then recursively builds its left
and right subtrees (steps 10–13). In the algorithm, the no-
tation D|xi (similarly D|xi) denotes the dataset obtained
by deleting all examples in which Xi equals 0 (similarly 1)
and then removing the column for Xi. Also, the notation
Q|xi (similarly Q|xi) denotes the conditional distribution
obtained by settingXi to 1 (similarly 0) inQ. Finally in step
14, the algorithm returns the new internal node o constructed
in steps 6-13.

Termination Condition. Algorithm 1 can be easily mod-
ified to yield an anytime scheme by carefully setting the
termination condition. In particular, we can perform an it-
erative deepening search by using a parameter and progres-
sively increasing or decreasing the value of the parameter
until a user-defined time bound is reached. One option is
to use a bound on the maximum depth of the OR tree as
a parameter and terminate the recursion when the bound

is reached. A second option is to stop the recursion when
the KL divergence between Q and P at a particular node is
bounded by a small constant ε. In our experiments, we use
the former approach.

Theoretical Properties of LC-CN. Next we formally de-
scribe the anytime properties of Algorithm 1 in Theorem 1.
Specifically, the theorem shows that under the assumption
that the latent tractable model (its distribution Q) is a more
accurate approximation of the data generating distribution
than the cutset network learned from data, the accuracy of
the cutset network output by LC-CN can only increase or
remain the same with increasing depth.
Theorem 1. Let α = 1 and Rd denote the distribution
associated with the cutset network output by Algorithm LC-
CN having maximum depth d, then D(Q,Rd) ≥ D(Q,Rj)
where j ≥ d and D(Q,R) denotes the KL divergence be-
tween the distributions Q and R.

Proof of Theorem 1 is presented in the supplementary mate-
rial. Theorem 1 shows that learning deep cutset networks is
a good idea because as the depth increases their performance
will approach that of a superior latent model (Q).

We conclude this section by showing that each recursive step
of LC-CN has only polynomial time complexity. In other
words, LC-CN is a general-purpose, scalable algorithm for
learning cutset networks.
Proposition 1. The time complexity of Algorithm LC-CN is
O(n2 × V × (I +N)) where n is the number of variables,
V is the number of nodes in the cutset network, I is the
inference complexity to compute Q(Xi, Xj), and N is the
number of training examples.

5. Experiments
5.1. Setup

We evaluated the performance of cutset networks along
two dimensions: (1) Model fit measured using the test set
log-likelihood score and (2) MAP estimation quality mea-
sured using the log-likelihood of the MAP assignment. We
used 20 benchmark datasets used in numerous prior studies
(Rooshenas & Lowd, 2014; 2013; Gens & Domingos, 2013;
Vergari et al., 2015) to evaluate our new algorithm. All the
datasets are defined over binary valued variables with the
number of variables ranging from 16 to 1556 (see Table 1).

We used mixtures of Chow-Liu trees (MTs) (Meila & Jordan,
2000) and bags of cutset networks (BCNs) as our choice
of latent tractable models (Q) in Algorithm 1. Although
any tractable model could have been used in Algorithm
1, for example SPNs, we chose MTs and BCNs because
they admit faster inference and learning algorithms and on
many datasets are as accurate as state-of-the-art methods.
Moreover, since the complexity of each recursive call to our
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Table 1. Average test set log-likelihood scores. Bold values indicate best scores obtained by CN, CNxD, CNR, ACBN, ACMN or PSDD.

Dataset Dataset Characteristics Test-set Log-Likelihood
No Latent Variables Latent Variables

#Var Train Valid Test CNxD CN CNR ACBN ACMN PSDD MT BCN
nltcs 16 16181 2157 3236 -6.01 -6.05 -5.97 -6.01 -6.00 -6.03 -6.01 -6.01
msnbc 17 291326 38843 58265 -6.07 -6.05 -6.03 -6.04 -6.04 -6.05 -6.04 -6.08
kdd 64 180092 19907 34955 -2.15 -2.19 -2.16 -2.16 -2.17 -2.16 -2.13 -2.14
plants 69 17412 2321 3482 -12.73 -13.25 -15.00 -12.85 -12.80 -14.96 -12.80 -12.32
audio 100 15000 2000 3000 -40.69 -41.97 -41.97 -41.13 -40.32 -42.53 -40.11 -40.09
jester 100 9000 1000 4116 -53.67 -55.26 -54.66 -54.43 -53.31 -57.57 -53.04 -52.69
netflix 100 15000 2000 3000 -57.48 -58.72 -59.15 -57.75 -57.22 -58.92 -56.67 -56.11
accidents 111 12758 1700 2551 -30.12 -30.66 -38.54 -27.15 -27.11 -34.13 -29.60 -29.88
retail 135 22041 2938 4408 -10.84 -10.98 -11.27 -10.87 -10.88 -11.13 -10.83 -10.84
pumsb* 163 12262 1635 2452 -23.57 -24.28 -36.16 -25.00 -23.55 -34.11 -23.64 -23.50
dna 180 1600 400 1186 -87.98 -87.50 -96.63 -80.23 -80.03 -89.11 -85.43 -82.17
kosarek 190 33375 4450 6675 -10.74 -11.07 -11.97 -10.92 -10.84 -10.99 -10.64 -10.76
msweb 294 29441 3270 5000 -9.76 -10.12 -11.12 -9.81 -9.77 -10.18 -9.83 -9.74
book 500 8700 1159 1739 -35.31 -37.51 -37.22 -36.02 -35.56 -35.90 -35.15 -34.94
movie 500 4524 1002 591 -54.61 -57.71 -65.95 -56.36 -55.80 -56.43 -54.02 -53.17
webkb 839 2803 558 838 -155.77 -161.58 -172.13 -159.85 -159.13 -163.42 -155.37 -155.10
reuters 889 6532 1028 1540 -85.89 -87.64 -101.16 -89.27 -90.23 -94.94 -85.76 -84.72
20newsg 910 11293 3764 3764 -155.66 -161.68 -164.34 -159.65 -161.13 -161.41 -154.45 -155.28
bbc 1058 1670 225 330 -253.50 -260.55 -271.98 -260.07 -257.10 -260.83 -259.15 -237.40
ad 1556 2461 327 491 -15.40 -16.14 -52.74 -16.47 -16.53 -30.49 -15.97 -15.34

Average -55.40 -57.05 -62.81 -56.10 -55.78 -59.06 -55.33 -53.91

(a) 20newsg (b) movie (c) reuters

Figure 2. Average test set log-likelihood as a function of running time on three randomly chosen datasets. In the plots, “Best Model”
indicates the best performing model between MT and BCN in terms of test set log-likelihood score.

algorithm is at least quadratic in the number of variables,
inference time over the latent tractable models is a major
bottleneck for learning deep cutset networks (see Theorem
1). As a result, MTs and BCNs offer the best alternative in
terms of complexity and accuracy in single CPU settings.3

We learned MTs using the expectation-maximization algo-
rithm (Meila & Jordan, 2000) and BCNs using the algorithm
described in (Rahman & Gogate, 2016a). We varied the num-
ber of mixture components from 2 to 50 and bags from 2
to 40. We used a depth-bound of 5 in each bag for cutset
networks. We used the validation set to choose the number
of mixture components and bags for each dataset.

3If parallel architectures or GPUs are used, complex architec-
tures (e.g. SPNs) will be practically feasible in our algorithm and
we leave this for future work.

We evaluated three variants of cutset networks: (1) CN: net-
works learned from data using the algorithm described in
(Rahman et al., 2014; Rahman, 2016) ; (2) CNxD: cutset
networks learned using Algorithm 1 by exact inference over
MTs or BCNs (Q) and data; and (3) CNR: randomly gener-
ated deep cutset networks, namely we use a random struc-
ture for both the OR tree and tree Bayesian network with
BCNs used for parameter learning. The purpose of using
CNRs is to evaluate whether structure learning is beneficial
or not (or is parameter learning on a random deep cutset net-
work sufficient for achieving state-of-the-art performance).
CNRs are much faster to learn than CNxDs because the
complexity of computing single variable marginals (param-
eter learning) is much lower than computing all pairwise
marginals (required for structure learning in Algorithm 1).
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Table 2. Average log-likelihood of the MAP completion of evidence over the test set (prediction accuracy) of CNxDs, CNs, CNRs, MTs
and BCNs. Bold values indicate the best score obtained on a particular dataset and evidence settings by the model.

Datasets
20% Evidence 50% Evidence 80% Evidence

MAP Tractable MAP Intractable MAP Tractable MAP Intractable MAP Tractable MAP Intractable
CNxD CN CNR MT BCN CNxD CN CNR MT BCN CNxD CN CNR MT BCN

nltcs -3.32 -3.32 -3.22 -3.35 -3.36 -4.73 -4.72 -4.80 -4.80 -4.75 -5.58 -5.58 -5.51 -5.62 -5.59
msnbc -3.56 -3.57 -3.50 -3.74 -3.57 -4.56 -4.63 -4.43 -4.65 -4.64 -5.67 -5.75 -5.68 -5.77 -5.74
kdd -0.77 -0.77 -0.75 -0.77 -0.77 -1.31 -1.31 -1.39 -1.32 -1.32 -1.79 -1.79 -1.82 -1.79 -1.80
plants -7.54 -8.02 -8.90 -8.52 -8.18 -10.18 -10.52 -11.61 -10.77 -10.49 -11.63 -11.83 -12.56 -11.88 -11.74
audio -19.29 -19.49 -19.35 -19.72 -19.55 -29.64 -29.78 -30.30 -30.41 -30.14 -35.92 -35.97 -36.44 -36.31 -36.17
jester -27.61 -28.73 -27.65 -28.72 -28.07 -42.04 -42.98 -42.45 -42.73 -42.88 -48.39 -48.81 -48.66 -48.60 -48.71
netflix -38.47 -39.41 -42.01 -40.09 -40.16 -47.01 -47.61 -48.73 -49.13 -48.29 -52.51 -53.01 -54.36 -53.69 -53.30
accidents -17.86 -18.40 -23.86 -19.83 -19.11 -23.67 -24.20 -29.63 -25.59 -25.48 -27.47 -27.98 -34.36 -28.71 -28.16
retail -4.34 -4.44 -4.39 -4.47 -4.45 -6.92 -7.03 -7.15 -7.07 -7.10 -8.78 -8.89 -8.96 -8.90 -8.94
pumsb* -15.81 -16.06 -23.55 -17.34 -16.42 -19.79 -20.16 -30.40 -20.96 -20.39 -21.86 -22.30 -28.74 -22.62 -22.38
dna -68.32 -74.57 -76.14 -88.63 -81.02 -74.25 -78.33 -74.70 -82.50 -82.24 -70.25 -71.50 -68.53 -71.66 -71.65
kosarek -4.98 -4.99 -5.41 -5.11 -5.12 -7.28 -7.37 -7.74 -7.39 -7.45 -8.73 -8.81 -9.03 -8.81 -8.05
msweb -4.32 -4.48 -4.19 -4.51 -4.56 -6.55 -6.68 -7.16 -6.76 -6.73 -8.16 -8.27 -8.42 -8.33 -8.30
book -12.00 -12.33 -12.30 -12.26 -12.38 -21.18 -21.85 -20.91 -21.68 -21.83 -26.68 -27.05 -27.54 -26.99 -27.31
movie -25.28 -28.01 -29.38 -27.20 -23.76 -38.14 -41.38 -42.61 -40.18 -36.63 -46.33 -48.22 -48.82 -48.43 -45.75
webkb -58.22 -58.91 -65.83 -60.65 -60.16 -99.68 -100.82 -106.47 -103.05 -102.68 -115.27 -116.20 -123.16 -116.93 -116.47
reuters -31.86 -32.41 -41.89 -36.28 -34.07 -54.38 -54.97 -68.11 -56.46 -55.88 -66.19 -67.00 -69.25 -67.52 -67.09
20newsg -55.71 -56.66 -59.57 -57.88 -58.81 -96.45 -98.19 -98.57 -98.14 -99.42 -121.48 -122.71 -126.85 -122.65 -122.96
bbc -104.08 -105.08 -104.88 -106.48 -117.11 -158.26 -160.27 -165.78 -161.97 -166.17 -177.10 -178.42 -180.74 -180.17 -179.00
ad -9.74 -9.96 -19.36 -10.81 -9.99 -12.17 -12.64 -25.58 -13.23 -12.62 -13.19 -13.67 -20.52 -13.96 -13.65
Average -25.65 -26.48 -28.81 -27.82 -27.53 -37.91 -38.77 -41.43 -39.44 -39.36 -43.65 -44.19 -46.00 -44.47 -44.14

For all algorithms evaluated, we used a time bound of 48
hours and space bound of 4 GB. We used iterative deepening
search for cutset networks, namely we start with a depth
bound of 1 and progressively increase it until the time or
space bound is reached. At each recursive call in Algorithm
1, we set the hyperparameter α (see Eq. (4)) using the vali-
dation set. We varied α from 0.0 to 1.0 in increments of 0.1.
If the validation set or training set is empty at a particular re-
cursive call (this happens frequently as the depth increases),
we set α to 1, namely we use the latent model to compute
the sufficient statistics.

5.2. Density Estimation

As a baseline, we also include results for three powerful
tractable models that do not have latent variables: ACBNs
(Lowd & Domingos, 2008), ACMNs (Rooshenas & Lowd,
2014) and PSDDs (Liang et al., 2017). We followed the
prescription given in (Lowd & Domingos, 2008) and the
libra toolkit (Lowd & Rooshenas, 2015) for learning ACBNs
and ACMNs. For PSDDs, since the code is not publicly
available, we report results from (Liang et al., 2017).

Table 1 shows the test set log-likelihood scores achieved by
the individual models on each of the 20 datasets. We ob-
serve that CNxD performs better than CN on 18 out of the
20 datasets. CNxD also outperforms ACBNs, ACMNs and
PSDDs on 16, 12 and 19 out of the 20 datasets respectively.
Moreover, CNxDs are significantly better than CNRs (ran-
dom deep cutset networks) especially as the dimensionality

of the data increases. This demonstrates the power of our
structure learning scheme.

Figure 2 shows the test set log-likelihood scores achieved
by CNxD and CNR as a function of time for three datasets
(The plots for the remaining datasets are presented in the
supplementary material.). We see that as the depth (time)
increases, the accuracy of CNxDs typically improves and
approaches that of MTs and BCNs. CNs, on the other hand
have much lower log-likelihood scores than MTs and BCNs.
This shows that dependence on data restricts CNs; the latter
performs a search over a much smaller, high variance hy-
pothesis space resulting in shallow, inexpressive networks
that generalize poorly on high-dimensional data. Combining
estimations from latent models with data allows us to induce
more accurate models.

5.3. Prediction Accuracy

We evaluate the prediction accuracy of cutset networks and
latent tractable models by comparing the quality of their
maximum-a-posteriori (MAP) estimates. To recap, in MAP
estimation, we are interested in computing the most probable
assignment to all the non-evidence (unobserved) variables
given evidence. Since cutset networks are MAP-tractable,
we can solve this task exactly and efficiently over them. In
latent models (MTs and BCNs), this task is equivalent to a
much harder marginal MAP inference task since the latent
variable needs to be marginalized out before performing the
maximization operation (Park & Darwiche, 2004) (MTs and
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(a) 20% Evidence; audio (b) 50% Evidence; msweb (c) 80% Evidence; reuters

Figure 3. Average log-likelihood score of the MAP completion of evidence output by various algorithms as a function of the depth of the
model on randomly chosen datasets and evidence percentages.

BCNs are MAR-tractable but not MAP-tractable). A popular
approach that is used in practice (Liu & Ihler, 2013; Poon
& Domingos, 2011) to approximate this intractable task in
latent models is to replace the summation by maximization:

max
y

∑
h

P (y, h, e) ≈ max
y

max
h

P (y, h, e) (5)

where e is the evidence, y is an assignment of values to
all the non-evidence (query) variables and h denotes an
assignment of a value to the latent variable.

In our experiments, we compare the quality of the MAP
assignment output by this approximate marginal MAP in-
ference algorithm on latent models with the one output by
performing exact inference on cutset networks for each test
example given evidence. We use the following experimental
setup. Once models are learned, at test time, we randomly
select 20%, 50% and 80% variables as evidence (observed)
variables and the rest as query (unobserved) variables. We
repeat this procedure over 5 runs and compute the average
(the standard deviation was quite low).

We measure the quality of the MAP estimates using the
following “oracle method.” We treat BCNs learned by com-
bining the training, validation and test set as an oracle. Let
E and Y denote the set of evidence and query variables
respectively such that E ∪ Y = X and E ∩ Y = ∅. For
each test example x, we set the evidence xE and run an
exact inference algorithm on each MAP-tractable model or
the approximate inference technique described in Eq. (5) on
each MAP intractable model to yield a MAP assignment
y to the query variables. We define MAP completion of
evidence as the full assignment (xE,y) and compute the
log-likelihood of (xE, y) with respect to the distribution
represented by the oracle. Under this measure, the network
yielding the highest log-likelihood according to the oracle is
the best one. We also evaluated F1 score and hamming loss
of the MAP estimates and we report them in the supplement
for lack of space. Note that unlike F1 score and hamming
loss which score each variable independently, the “oracle

method” models relationships between the query variables
and is therefore more robust.

Table 2 and Figure 3 show the results. The plots in Figure
3 show the prediction accuracy of CNxDs as a function of
the number parameters (depth) on three randomly chosen
datasets (remaining plots are included in the supplement).
We observe from Table 2 that CNxDs outperform CNs,
CNRs, MTs and BCNs on a majority of datasets and evi-
dence settings. CNs is the second best performing scheme
while CNRs is the worst performing method. BCNs are
slightly better than MTs. Our results clearly show the utility
of ensuring MAP tractability as well as the utility of im-
proving the fit of MAP tractable models. Specifically, MAP
tractable models (CNs and CNxDs) are superior in terms of
estimation quality to MAP intractable models (BCNs and
MTs) and MAP tractable models having higher test set log-
likelihood scores (CNxDs) yield better MAP estimates than
models having lower test set log-likelihood scores (CNs).

6. Conclusion
In this paper, we presented a new approach for learning
the structure of tractable, interpretable models called cut-
set networks. Unlike traditional data driven approaches for
learning these models, we proposed to incorporate estimates
computed from a highly accurate, latent tractable model.
We showed via large scale experimental evaluation on high
dimensional datasets that our unified approach that utilizes
both the data and a superior latent model, learning from the
former and compiling from the latter, significantly outper-
forms previous approaches on the MAP estimation task.

Future work includes using samples from latent Bayesian
and Markov networks as Q in Eq. (4); applying our ap-
proach to arithmetic circuits, feature trees (Gogate et al.,
2010), AND/OR graphs and probabilistic sentential deci-
sion diagrams; performing human subject studies to evaluate
the interpretability of cutset networks; etc.
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