
The Inclusion-Exclusion Rule and its Application to the Junction Tree Algorithm

David Smith
Department of Computer Science
The University of Texas at Dallas

Richardson, TX, 75080, USA
dbs014200@utdallas.edu

Vibhav Gogate
Department of Computer Science
The University of Texas at Dallas

Richardson, TX, 75080, USA
vgogate@hlt.utdallas.edu

Abstract
In this paper, we consider the inclusion-exclusion
rule – a known yet seldom used rule of probabilistic
inference. Unlike the widely used sum rule which
requires easy access to all joint probability values,
the inclusion-exclusion rule requires easy access to
several marginal probability values. We therefore
develop a new representation of the joint distri-
bution that is amenable to the inclusion-exclusion
rule. We compare the relative strengths and weak-
nesses of the inclusion-exclusion rule with the sum
rule and develop a hybrid rule called the inclusion-
exclusion-sum (IES) rule, which combines their
power. We apply the IES rule to junction trees,
treating the latter as a target for knowledge com-
pilation and show that in many cases it greatly re-
duces the time required to answer queries. Our ex-
periments demonstrate the power of our approach.
In particular, at query time, on several networks,
our new scheme was an order of magnitude faster
than the junction tree algorithm.

1 Introduction
Popular probabilistic inference algorithms such as bucket
elimination [Dechter, 1999], recursive conditioning [Dar-
wiche, 2001] and Belief propagation [Murphy et al., 1999;
Yedidia et al., 2005] leverage only the sum and product rules
of probability theory. In this paper, we consider the inclusion-
exclusion rule, a known yet seldom used rule of probabilistic
inference, and show that it presents several new opportunities
for scaling up inference, specifically in the context of knowl-
edge compilation [Darwiche and Marquis, 2002].

Knowledge compilation is a popular approach for tackling
the intractability of probabilistic inference. The key idea is
to compile the probabilistic graphical model (PGM) into a
tractable structure such that several desired classes of queries
can be answered in time that is polynomial (linear) in the size
of the structure. The bulk of the computational overhead is
thus pushed into the offline, compilation phase while queries
can be answered quickly in an online manner. Tractable lan-
guages (e.g., junction or join trees [Lauritzen and Spiegelhal-
ter, 1988; Dechter and Pearl, 1989], Arithmetic circuits [Dar-
wiche, 2003], AND/OR multi-valued decision diagrams [Ma-

teescu et al., 2008], etc.) developed in the knowledge com-
pilation community are also receiving increasing attention
in the machine learning community. In particular, recently,
there has been a push to learn tractable models directly
from data instead of first learning a PGM and then compil-
ing it into a tractable model (cf. [Bach and Jordan, 2001;
Poon and Domingos, 2011]).

In this paper, we focus on junction trees (a tree of clus-
ters of variables) – one of the oldest yet most widely used
tractable subclass of PGMs – and seek to improve their query
complexity. One of the main drawbacks of using junction
trees as a target for knowledge compilation is that the time
required to process each cluster is exponential in the num-
ber of variables in the cluster. Thus, when the cluster size is
large (e.g., a few Gigabytes), even for easy queries, such as
computing the marginal distribution over a subset of variables
in a cluster, the method can be prohibitively expensive. We
envision that such large junction trees will be stored on ex-
ternal storage devices such as hard disk drives or solid state
drives [Kask et al., 2010; Kyrola et al., 2012]. Since disk
I/O is much slower than RAM I/O, we want to minimize it.
The method described in this paper will minimize disk I/O in
many cases by allowing us to safely ignore large portions of
each cluster, which in turn will reduce the query complexity.

We achieve this reduction in query complexity by consid-
ering alternate representations of potentials and developing
efficient manipulation algorithms for these representations.
Traditionally, each cluster potential in a junction tree is rep-
resented as a weighted truth table: each row in the table rep-
resents a truth assignment to all variables in the potential and
is associated with a non-negative real number (weight). Al-
though this representation enables efficient message passing
algorithms, which require taking the product of potentials and
summing out variables from potentials, it has a significant dis-
advantage. Inferring the probability of a conjunctive (proba-
bility of evidence) query defined over a subset of variables in
a cluster is exponential in the number of variables not men-
tioned in the query and therefore queries that mention only a
few variables are computationally expensive.

To remedy this problem, we propose an alternate repre-
sentation. Given a truth assignment to all variables in a po-
tential, considered as a set of literals (e.g., the assignment
A = 0, B = 1 is the set {¬a, b}), we represent the poten-
tial using the power set of this set of literals. Namely, we

represent the potential by attaching a weight to each subset
of the set of literals. We develop an alternate inference rule,
based the inclusion-exclusion principle, that uses this repre-
sentation (we call it the inclusion-exclusion representation)
to efficiently compute the probability of conjunctive queries.
The main virtue of this new rule is that the probability of the
conjunctive query can be computed in time that is exponential
only in the number of literals in the query that are not present
in the represented set of literals. Thus, when the number of
query variables is small or when most literals in the query
are present in the represented set of literals, the inclusion-
exclusion rule is exponentially more efficient than the con-
ventional approach.

However, a key drawback of the inclusion-exclusion repre-
sentation is that computing products of potentials represented
in the inclusion-exclusion format is very inefficient. As a re-
sult, we cannot use it for representing potentials in junction
trees because the Belief propagation algorithm that is used
to answer queries over the junction tree requires computing
products of potentials. We therefore develop a hybrid repre-
sentation (and a hybrid inference rule) which combines the
power of the conventional truth-table representation with the
inclusion-exclusion representation, and apply it to the junc-
tion tree algorithm. Our new algorithm takes variables that
are exclusive to a cluster and instead of storing their assign-
ments using a truth-table, uses the inclusion-exclusion ap-
proach to represent their most likely assignment. As a result,
our most common queries have smaller complexity than our
least common queries.

We evaluated the efficacy of our new approach, compar-
ing it with the junction tree algorithm on several randomly
generated and benchmark PGMs. Our results show that in
many cases, at query time, our new algorithm was signifi-
cantly faster than the junction tree algorithm, clearly demon-
strating its power and promise.

2 The Sum Rule
Notation. LetD denote a discrete probability distribution de-
fined over a set X = {X1, . . . , Xn} of binary variables that
take values from the domain {True, False }. (We assume
binary variables for convenience. Our method is general and
can be easily extended to multi-valued variables.) A literal is
a variable or its negation. We will denote literals of a variable
by corresponding small letters. For example, a and ¬a denote
literals of A which are true iff A is assigned the value True
and False respectively. A conjunctive feature is a conjunc-
tion of literals (e.g., a, ¬a ∧ ¬b, etc.). It is true when all of
its literals are true and false otherwise. We will use the let-
ters f , g, and q to denote the features; all other small letters
denote literals. We will use Greek letters φ, ψ, etc., to denote
functions and potentials.

To demonstrate our main idea, we will assume that the
distribution D is specified using just one function or poten-
tial, denoted by φ. (Using just one (giant) potential to spec-
ify the joint distribution is clearly a bad idea. We will re-
lax this requirement when we apply our approach to junc-
tion trees.) φ can be specified in a number of ways. The
most widely used approach is to delineate all possible assign-

ments to all variables in X . Since each full assignment cor-
responds to a full conjunctive feature, we can also think of
φ as a mapping between full conjunctive features and R+.
For instance, a function over {A,B} can be specified using
φ : {(¬a ∧ ¬b), (¬a ∧ b), (a ∧ ¬b), (a ∧ b)} → R+. We will
use the term weight to describe the real number associated
with each conjunctive feature. For the rest of the paper, when
φ is specified using full conjunctive features, we will say that
φ is specified using the sum-format.

The probability distribution associated with φ is P (f) =
φ(f)/Z where f is a full conjunctive feature and Z is the nor-
malization constant, often called the partition function. As-
suming that the partition function is known (computed offline
and stored), we can infer the probability of any conjunctive
query using the sum rule of probability theory:

Pr(q) =
1

Z

∑
f∈F(X\V ars(q))

φ(q ∧ f)

where V ars(q) denotes the set of variables mentioned in q
and F(X \ V ars(q)) is the set of full conjunctive features of
X \ V ars(q). We assume that q is non-trivial in that no two
literals in q mention the same variable.
Example 1. Fig. 1(a) shows how the sum rule can be used to
compute the probability of various queries.
Proposition 1. Assuming that Z is known and the distribu-
tion is represented using full conjunctive features of X , the
time complexity of computing the probability of a conjunctive
query containing k literals is O(exp(|X | − k)).

Since the complexity of inference using the sum rule is ex-
ponential in |X | − k, marginal queries over a small number
of variables (i.e., k is small) are computationally expensive.
In this paper, we argue that alternate descriptions ofD can, in
many cases, provide computationally cheaper alternatives.

3 The Inclusion-Exclusion (IE) Rule
Instead of describing φ in terms of weights attached to full
conjunctive features over X , we can describe it in terms of
weights attached to all possible positive conjunctive fea-
tures over X (we say that a conjunctive feature is positive
if none of its literals are negated). For example, to describe
a probability distribution over the set of random variables
{A,B}, one would define the function δ : {(a), (b), (a ∧
b),⊥} → R+, where ⊥ denotes the null feature and δ(⊥) =
Z. Such a description has the same size (2|X |) as the con-
ventional description. Moreover, it completely specifies the
distribution; the probability of any conjunctive query can still
be retrieved, but now, instead of performing inference using
the sum rule, it is more efficient to use the inclusion-exclusion
rule [Knuth, 2005], which is based on the inclusion-exclusion
principle. This is because many weights needed by the sum
rule are not easily accessible in this alternative representation.

Formally, the inclusion-exclusion rule can be described as
follows. Let δ be a mapping between positive conjunctive fea-
tures over X and R+, let q be a conjunctive feature defined
over some subset E of variables, let E− be the set of variables
associated with negative literals in q, let q+ denote a conjunc-
tion of positive literals in q and let P(E−) be the set of all

φ : {(¬a ∧ ¬b), (¬a ∧ b), (a ∧ ¬b), (a ∧ b)} → R+

P (a) =
φ(a∧b)+φ(a∧¬b)

Z
; P (a ∧ ¬b) = φ(a∧¬b)

Z
;

P (b) = φ(a∧b)+φ(¬a∧b)
Z

; P (¬a ∧ ¬b) = φ(¬a∧¬b)
Z

.

(a)

δ : {(a), (b), (a ∧ b),⊥} → R+

P (a) =
δ(a)
Z

; P (a ∧ ¬b) = δ(a)−δ(a∧b)
Z

;

P (b) = δ(b)
Z

; P (¬a ∧ ¬b) = δ(⊥)−δ(a)−δ(b)+δ(a∧b)
Z

.

(b)

ψ : {(a), (¬a), (a ∧ b), (¬a ∧ b)} → R+

P (a) =
ψ(a)
Z

; P (a ∧ ¬b) = ψ(a)−ψ(a∧b)
Z

;

P (b) = ψ(a∧b)+ψ(¬a∧b)
Z

; P (¬a ∧ ¬b) = ψ(¬a)−ψ(¬a∧b)
Z

.

(c)

Figure 1: Demonstration of (a) the sum rule, (b) the inclusion-exclusion rule, (c) the hybrid inclusion-exclusion-sum rule. In the hybrid rule
A is stored in sum-format and B is stored in IE-format.

possible positive conjunctive features over E− (including the
null feature). Then:

Pr(q) =
1

Z

∑
f∈P(E−)

(−1)|V ars(f)|δ(q+ ∧ f)

For the rest of the paper, when δ is specified using positive
conjunctive features, we will say that φ is specified using the
inclusion-exclusion-format or IE-format in short.

Example 2. Fig. 1(b) demonstrates how to use the inclusion-
exclusion rule to answer queries.

Proposition 2. Assuming that Z is known and the distribu-
tion is represented using positive conjunctive features, the
time complexity of computing the probability of a conjunc-
tive query using the inclusion-exclusion rule is exponential in
the number of negative literals in the query.

Propositions 1 and 2 elucidate the trade-offs between the
sum and inclusion-exclusion rules. For classes of queries in-
volving a number of variables that is relatively small com-
pared to the number of variables over which the distribution
is defined, or for classes of queries that contain large number
of positive literals, the inclusion-exclusion rule is much more
efficient than the sum rule. Conversely, on classes of queries
that contain large numbers of variables or negative literals,
the sum rule is much more efficient.

There is no a priori reason, however, to describe the dis-
tribution using only positive conjunctive features and we as-
sume this specification for convenience and simplicity. In
principle, one can choose any full conjunctive feature and
specify the distribution using the power set of the set of liter-
als in the feature. For example, again suppose that we have
a distribution over the random variables {A,B}, but now we
have prior knowledge that most of the time our queries will
ask about a and about ¬b. Then, we can specify the distribu-
tion using δ : {(a), (¬b), (a∧¬b),⊥} → R+. Now our most
likely queries are more efficient than our less likely queries.

4 Hybrid Inclusion-Exclusion-Sum Rule
The discussion in the previous section lends itself readily
to a hybrid approach that combines the power of inclusion-
exclusion and sum rules. The key idea is to leverage prior
knowledge about query types to achieve substantial reduction
in complexity by switching between the two rules. For ex-
ample, consider again our distribution over random variables
{A,B}, but now suppose that we have prior knowledge that
A will be commonly queried and both a and ¬a are equally
likely to appear in the query. Also, suppose that B will be
rarely queried, but b is much more likely to appear in the
query than ¬b. In this case, we can specify the distribution

using ψ : {(a), (a∧b), (¬a), (¬a∧b)} → R+, representingA
using the sum-format and B using the IE-format. Again, our
most common queries are now computationally easier than
our less common queries. In this case however, we have to
use the hybrid inclusion-exclusion-sum (IES) rule, which we
describe formally next.

Let V ⊆ X denote the set of variables stored in sum-
format, let E = X \ V denote the set of variables stored in
IE-format, let E− be the subset of variables in E that appear
negated in q, let qe+ be the conjunction of all positive literals
in q projected on the set E and let qv denote the conjunction
of literals in q projected on the set V . Then:

Pr(q) =
1

Z

∑
f∈F(V\V ars(q))

∑
g∈P(E−)

(−1)|V ars(g)|δ(qe+∧f∧g∧qv)

Example 3. Fig. 1(c) demonstrates how to use the hybrid
inclusion-exclusion-sum rule to answer queries.
Proposition 3. Assuming that the distribution is represented
using the IES format, the time complexity of computing the
probability of a conjunctive query q using the IES rule is
O(exp (|E−|+ |V \ V ars(q)|)).

The IES rule allows many more choices in how to repre-
sent a distribution. In particular, for a distribution with n ran-
dom variables, we can represent k variables in the sum-format
and then we have 2(n−k) ways to choose a consistent assign-
ment over the remaining variables (i.e., in the IE-format).
So the total number of ways to represent the distribution is∑n
k=0

(
n
k

)
2n−k = 3n, where the equality follows from the

Binomial theorem. Each of these representations has its own
computational advantages and disadvantages, and with some
foreknowledge of the content queries, we can build distribu-
tions to leverage the advantages and avoid the disadvantages.

5 Hybrid IES Junction Trees
In the previous section, we showed that if we combine the
inclusion-exclusion and sum rules, then there exist possi-
bly several representations of a given probability distribu-
tion, each of which are equivalent in terms of size but dif-
fer in inference complexity at query time. However, distri-
butions specified in such a fashion still require exponential
space. Fortunately, in practice, one can leverage conditional
independence to achieve compactness as well as tractability.
For example, probabilistic graphical models exploit condi-
tional independence to achieve compactness while junction
trees use it to not only achieve compactness but also guaran-
tee tractability of inference. In this section, we show how to
apply the results from the previous section to junction trees,
treating them as a target for knowledge compilation.

We begin with some required definitions.

A B C φA,B,C

0 0 0 1
0 0 1 2
0 1 0 3
0 1 1 4
1 0 0 1
1 0 1 2
1 1 0 3
1 1 1 4

C D E φC,D,E

0 0 0 1
0 0 1 2
0 1 0 1
0 1 1 2
1 0 0 1
1 0 1 2
1 1 0 1
1 1 1 2

(a)

A

B

C

D

E

ABC CDE
C

(b)

δA,B,C

c 12
¬c 8
a ∧ c 6
a ∧ ¬c 4
b ∧ c 8
b ∧ ¬c 6
a ∧ b ∧ c 4
a ∧ b ∧ ¬c 3

δC,D,E

c 6
¬c 6
c ∧ d 3
¬c ∧ d 3
c ∧ e 4
¬c ∧ e 4
c ∧ d ∧ e 2
¬c ∧ d ∧ e 2

(c)

Figure 2: (a) Two potentials defining a Markov network; (b) Primal graph and a possible junction tree for the Markov network given in (a);
and (c) Potentials associated with the IES junction tree.

Definition 1. A probabilistic graphical model (PGM) or a
Markov network, denoted by M, is a pair 〈X ,Φ〉 where
X is a set of variables and Φ is a set of positive real-valued
functions (potentials), each defined over a subset of variables.
The probability distribution represented by M is given by
PM(f) =

∏
φ∈Φ φ(f)/Z where f is a full conjunctive fea-

ture over X and Z is the partition function. The primal
graph ofM has variables ofM as its vertices and an edge
connects any two variables that appear in the same function.
Definition 2. Given a primal graph associated with a Markov
networkM = 〈X ,Φ〉, a junction tree is a tree T (V,E) of la-
beled clusters that satisfies the following properties: (1) Each
cluster v ∈ V and each edge e ∈ E is labeled with a subset
of variables, denoted by L(v) and L(e) respectively; (2) Each
variable is present in at least one cluster; (3) Both variables
in each edge of the primal graph are present in at least one
cluster; and (4) If a variable appears in two clusters, then it
must be present in the labels of all edges on the unique path
between the two clusters in T .
Example 4. Fig 2(a) shows two potentials that define a
Markov network. Fig 2(b) shows the primal graph as well
as a possible junction tree for the Markov network.

We can use junction trees for knowledge compilation in
the following way (cf. [Dechter and Pearl, 1989; Shenoy and
Shafer, 1990; Park and Darwiche, 2004]). In the offline com-
pilation phase, we associate each cluster v ∈ V in the junc-
tion tree with a function, denoted by ψv and initialize it to 1.
Then, we multiply each function φ ∈ Φ in the PGM with ex-
actly one cluster function, say ψv , such that all variables in φ
are present in v, storing the result in ψv . Finally, we calibrate
the junction tree by selecting a cluster as the root and per-
forming sum-product message passing in two passes: from
the leaves to the root (collect pass) and then from the root to
the leaves (distribute pass). Formally, the message sent from
cluster u to cluster v, denoted by mu→v , is given by

mu→v(f) =
∑

g∈F(L(u)\L(v))

ψu(f ∧ g)
∏

w∈N(u);w 6=v
mw→u(f ∧ g)

(1)
where N(u) is the set of neighbors of u in T .

The partition function of the Markov network can be com-
puted at any cluster u using the following equation

Z = Z(u) =
∑

f∈F(L(u))

ψu(f)
∏

v∈N(u)

mv→u(f) (2)

Algorithm 1: Junction-Tree Query Answering
Input: A Calibrated Junction Tree T (V,E) and a query q
Output: Pr(q)
begin
T ′(V ′, E′) = Any rooted subtree of T containing all clusters
in the set {v | L(v) ∩ V ars(q) 6= ∅}
Let (e1, . . . , el) be the reverse depth-first ordering of edges
from the leaves to the root of T ′

for each v′ ∈ V ′ do
/∗ Set the weight of every feature in ψv′
that is inconsistent with q to zero ∗/
Instantiate-evidence(ψv′ , q)

for i = 1 to l do
Let ei = (ui, vi)
Update the message mui→vi using Eq. (1)

return Z(vl)/Z
/∗ Z(vl) is computed using Eq. (2). ∗/

Algorithm 1 outlines the procedure for answering queries
in an online manner using a calibrated junction tree. The al-
gorithm performs message passing only over the portion of
the tree that is relevant to the query – the sub-tree T ′ that
contains the variables V ars(q) that constitute our query q. To
perform message passing, the algorithm (a) instantiates evi-
dence by projecting the query on each cluster function in T ′,
(b) finds an appropriate (reverse depth-first) ordering of edges
from the leaves to the root of T ′ and (c) updates the messages
along the order. After message passing, the root node has
enough information to calculate the probability of query, and
the algorithm calculates and returns this probability value.

Next, we formally present the inclusion-exclusion-sum
(IES) junction tree algorithm. The main idea in this algo-
rithm is to represent each cluster in the calibrated junction
tree using the hybrid IES representation and then at query
time perform message passing by taking advantage of this
representation using the hybrid IES rule. Before proceeding
we introduce some additional notation: let q \ P denote the
feature obtained by deleting all literals of the variable P from
q. For example, (a ∧ b) \A = b and (¬b ∧ c) \B = c.

Algorithm 2 shows how to convert a calibrated junction
tree into a IES junction tree. Because computing a product
of two functions requires mutually exclusive and exhaustive
delineation of common variables, we propose to leave the
separator variables in traditional sum-format, while convert-

Algorithm 2: Convert JT to IES-JT
Input: A Junction Tree T (V,E)
Output: A IES Junction Tree TS(VS , ES)
begin
VS = V ; ES = E;
for each v ∈ VS do
δv = ψv
for each variable P that is exclusive to L(v) do

Replace every entry q in δv in which ¬p appears by
δv(q \ P) = δv((q \ P) ∧ ¬p) + δv((q \ P) ∧ p)

return TS(VS , ES)

ing those variables that occur exclusively in a cluster into the
subset format. The algorithm implements this proposal by
replacing each entry q in the the original potential in which
the exclusive variable, say P , appears negated by q \ P .
δ(q \ P) is calculated by applying the sum rule, namely,
δv(q \ P) = δv((q \ P) ∧ ¬p) + δv((q \ P) ∧ p). The op-
eration requires O(s exp(n)) time for each cluster, where n
is the number of variables in the cluster and s is the number
of variables that occur exclusively in that cluster, and hence
need to be converted.

Example 5. Fig. 2(c) shows the result of applying Algo-
rithm 2 to the potentials given in Fig. 2(a).

The algorithm for answering queries in IES junction trees
is identical to Algorithm 1, with two differences (we exclude
the pseudo-code for brevity). First, evidence is projected only
on variables stored in sum-format. Namely, we first project
the query on the variables stored in the sum-format. Let us
denote this projected query on the cluster v by qv . Then, we
set to zero the weight of every feature in δv that is inconsistent
with qv . Second, in the message passing phase, we compute
messages using the hybrid IES rule. Formally, the message
mu→v is computed using the following equations:

χu(f ∧ q+) =
∑

g∈P(Eu−)

(−1)|V ars(g)|δu(f ∧ q+ ∧ g) (3)

where Eu ⊆ L(u) is the set of variables that are exclusive to
u, Eu− is the set of variables whose literals appear negated
in q, and q+ is the projection of the conjunction of positive
literals in q on Eu

mu→v(f) =
∑

g∈F(V(u)\L(v))

χu(f ∧ g)
∏

w∈N(u);w 6=v
mw→u(f ∧ g)

(4)
where V(u) is the set of variables stored in the sum-format in
u and χu(f ∧ g) is given by Eq. (3).

Note that even though a junction tree and its equivalent IES
junction tree have the same space complexity, the time com-
plexity for the same probability of evidence query will, in
general, be significantly different on each structure. For ex-
ample, the full negative assignment to all variables in X has
a complexity linear in the number of clusters on the junction
tree (as does any other full assignment query), whereas it has
complexity that is exponential inmax(|Ev|) over each cluster

v on the equivalent IES junction tree. Conversely, the proba-
bility of evidence query q, in which q is equal to the positive
assignment to all separator variables in T , has complexity lin-
ear in the number of clusters on the IES junction tree, whereas
the standard junction tree algorithm has complexity exponen-
tial in max(|Ev|) over all clusters v ∈ V .

6 Modifying the Junction Tree to take
advantage of the IES rule

The IES-JT query answering algorithm performs well in
those cases in which clusters in the junction tree contain large
numbers of variables exclusive to a single cluster. Standard
variable ordering heuristics (e.g., minfill) tend to produce
junction trees with relatively few variables exclusive to any
cluster. Therefore, it is often necessary to modify the junction
trees (by merging clusters) output by the standard heuristics
in order to take full advantage of the hybrid IES rule. Mod-
ifying the junction tree may increase its width. However, in
some cases, the junction tree may yield substantial reductions
in query complexity. For example,

CDEFG DEFGH

ABC HIJ

DEFG

C H

(a)

CDEFGH

ABC HIJ

C H

(b)

Figure 3: (a) A junction tree of width 5, and (b) a junction tree of
width 6 obtained by merging clusters CDEFG and DEFGH of
the junction tree in (a). Bold variables occur exclusively in a cluster.

Example 6. Consider the junction tree given in Figure 3a.
The junction tree has a width of 5, but it has no variables
exclusive to its maximum width clusters. Therefore, ev-
idence queries that involve these maximum width clusters
(e.g., Pr(a ∧ j)) will still require performing a standard sum
operation that is exponential in 5. Now consider the junction
tree given in Figure 3b, which is obtained from the junction
tree in Figure 3a by merging its two largest clusters. The new
tree has a width of 6 and therefore its worst-case query com-
plexity is exponential in 6. However, IES-JT query answering
can now leverage the fact that variables D,E, F and G occur
exclusively in a cluster. As a result, the query Pr(a ∧ j) will
require time that is exponential in 2 rather than 6.

Algorithm 3 presents a greedy cluster merging procedure
that takes as input a junction tree and modifies it so that is
optimized for IES-JT query answering. The algorithm also
takes as input a cluster bound C which limits the maximum
cluster size. The cluster bound ensures that the worst-case
query complexity as well as the space complexity of the junc-
tion tree is bounded by exp(max(C,width(T))). At each
iteration, the algorithm greedily selects the variable Xi that
yields the largest increase in the maximum number of exclu-
sive variables in any cluster without (a) increasing the maxi-
mum number of non-exclusive variables in any cluster or (b)
creating a cluster larger than the cluster bound C. This proce-
dure is repeated until merging on every variable Xi either (a)

Algorithm 3: Merging Clusters
Input: A junction tree T (V,E), an integer cluster bound C
Output: A modified Junction Tree
begin
V ars = {L(v)|v ∈ V } ; maxscore = 1;
while (V ars 6= ∅) ∧ (maxscore > 0) do
maxscore = 0 ; Xmax = null; Tmax = emptygraph
for each X ∈ V ars do
VT (X) = {v ∈ V |X ∈ L(v)}
/∗ Let E(v) and N(v) denote the set of
variables in L(v) that are exclusive
and not exclusive to v respectively ∗/
e = maxv∈VT (X) |E(v)|
n = maxv∈VT (X) |N(v)|
T ′ = Tree obtained from T by merging all clusters that
mention X
/∗ Let v′ be the cluster in T ′ that
contains X ∗/
if (width(T ′) ≤ C) ∧ (|N(v′)| ≤ n) then

if (|E(v′)| − e) > maxscore then
maxscore = (|E(v′)| − e)
Xmax = X ; Tmax = T ′

else
Remove X from V ars

Remove Xmax from V ars
T = Tmax

return T

creates a tree whose merged cluster has a width larger than
C, (b) increases the maximum number of non-exclusive vari-
ables in some cluster or (c) yields no increase in the number
of variables exclusive to any cluster.

Note that Algorithm 3 is a naive, greedy approach to merg-
ing clusters. It will often yield junction trees that are far from
optimal for IES-JT query answering. The development of an
optimal merging algorithm is a priority of our future work.

7 Experiments
We conducted experiments on a number of randomly gener-
ated and benchmark PGMs, comparing the IES junction tree
algorithm (IES-JT) with the conventional junction tree algo-
rithm (JT). For lack of space, we only present a part of our
results. We constructed the junction trees using the min-fill
heuristic. For IES-JT, we then modified these junction trees
using Algorithm 3.

7.1 Experiments on Chain Junction Trees
Our first set of results are on randomly generated chain junc-
tion trees with the cluster size k varying from 12 to 21. We
randomly generated queries; each variable in the network par-
ticipates in a query with probability p, where p ranges over
[0.1, 0.2, . . . , 1.0]. If a variable participates, it appears with
a true assignment with probability 0.5. For each clique, we
randomly generated potential weights; for each query proba-
bility we randomly generated 1000 queries. We measured the
computation time of these queries using both the IES-JT and
JT algorithms. The results are given in Figure 4.

p k=12 k=15 k=18 k=21
0.1 0.66 (20.74) 1.91 (173.89) 22.24 (1527.59) 176.75 (11846.5)
0.2 0.78 (14.07) 1.78 (89.9) 24.33 (726.67) 203.82 (4449.33)
0.3 0.85 (7.69) 1.75 (40.08) 20.03 (297.25) 191.61 (1463.92)
0.4 0.78 (4.41) 1.78 (16.63) 17.73 (92.53) 150.61 (372.73)
0.5 0.88 (2.31) 1.78 (6.73) 18.02 (33.65) 136.14 (108.69)
0.6 0.89 (1.44) 1.91 (2.99) 18.26 (8.01) 131.08 (19.02)
0.7 0.95 (1.03) 2.14 (1.48) 18.94 (2.69) 132.47 (4.93)
0.8 1 (0.8) 2.49 (0.93) 19.59 (1.41) 138.22 (1.61)
0.9 1.05 (0.73) 2.73 (0.78) 21.82 (1.04) 145.36 (1.1)
1 1.09 (0.65) 3.18 (0.76) 25.61 (0.94) 154.69 (0.88)

Figure 4: Average query time (in ms) required by IES-JT and
JT on chain junction trees having 10 clusters with cluster size
k ∈ {12, 15, 18, 21}. In each column the time taken by JT is en-
closed in parentheses while the one taken by IES-JT is not.

 1

 2

 3

 4

 5

 6

 7

 8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ln
(m

s)

Probability of Variable in Query

 Ln(Query Time) v Query Size

IES-JT-a=0.8
JT-a=0.8

IES-JT-a=0.85
JT-a=0.85

IES-JT-a=0.9
JT-a=0.9

Figure 6: Log of average query time versus query size for random
small world graphs.

The results show the strength of the IES-JT algorithm; as
the clique size grows, JT suffers an exponential slowdown on
queries over a small percentage of the variables, whereas IES-
JT handles them extremely well. Conversely, JT outperforms
IES-JT on queries involving large number of variables. How-
ever, the difference in performance remains relatively small,
because on average only half of the literals in the query will
be negated. Figure 5(a) visualizes the relationship for k = 15.

7.2 Experiments on small-world graphs
Our second method of problem generation is intended to
model the structure of small-world networks. Such networks
are characterized by the properties that (i) the average short-
est path length is small compared to the size of the network,
and yet (ii) the clustering coefficient (which measures degree
to which nodes in a graph tend to cluster together) is large
[Watts and Strogatz, 1998]. They are known to arise naturally
from a wide variety of phenomena including social networks,
Internet connectivity, road maps and network of neurons.

We generated small-world, power-law graphs using the fol-
lowing procedure. The procedure takes as input three integers
p, r1, and r2, and a real number a ∈ (0, 1] where p is the num-
ber of potentials, r1 is a soft-bound on the potential size, and
r2 is a soft-bound on connectivity between potentials. We
begin with a single potential with one variable. We then iter-
atively add p potentials to the graph. At each step, we add n
new variables to the new potential as determined by the power
law n = dr1×x−loga(r1)e, in which x is generated uniformly
at random from the real-interval (0,1]. Each new variable is
added to k = dr2×x−loga(r2)e existing potentials. We evalu-

-1

 0

 1

 2

 3

 4

 5

 6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ln
(Q

ue
ry

 T
im

e)

Probability of Variable in Query

 Ln(Query Time) v Query Size

IES-JT-pp=0.5 JT-pp=0.5

(a)

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ln
(Q

ue
ry

 T
im

e)

Probability of Variable in Query

 Ln(Query Time) v Query Size

or_chain_148 - Width: 18 - Cluster: 23
IES-JT-pp=0.1

JT-pp=0.1
IES-JT-pp=0.5

JT-pp=0.5
IES-JT-pp=0.9

JT-pp=0.9

(b)

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ln
(Q

ue
ry

 T
im

e)

Probability of Variable in Query

 Ln(Query Time) v Query Size

or_chain_176 - Width: 12 - Cluster: 23
IES-JT-pp=0.1

JT-pp=0.1
IES-JT-pp=0.5

JT-pp=0.5
IES-JT-pp=0.9

JT-pp=0.9

(c)

 5

 5.5

 6

 6.5

 7

 7.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ln
(Q

ue
ry

 T
im

e)

Probability of Variable in Query

 Ln(Query Time) v Query Size

or_chain_18 - Width: 11 - Cluster: 20
IES-JT-pp=0.1

JT-pp=0.1
IES-JT-pp=0.5

JT-pp=0.5
IES-JT-pp=0.9

JT-pp=0.9

(d)

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ln
(Q

ue
ry

 T
im

e)

Probability of Variable in Query

 Ln(Query Time) v Query Size

or_chain_168 - Width: 13 - Cluster: 20
IES-JT-pp=0.1

JT-pp=0.1
IES-JT-pp=0.5

JT-pp=0.5
IES-JT-pp=0.9

JT-pp=0.9

(e)

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ln
(Q

ue
ry

 T
im

e)

Probability of Variable in Query

 Ln(Query Time) v Query Size

or_chain_180 - Width: 6 - Cluster: 20
IES-JT-pp=0.1

JT-pp=0.1
IES-JT-pp=0.5

JT-pp=0.5
IES-JT-pp=0.9

JT-pp=0.9

(f)

Figure 5: (a) Log of average query time versus query size on a chain junction tree having 10 clusters with the cluster size k bounded by 15;
(b–f) Log of average query time versus query size for various Promedas networks. For the Promedas networks, each plot caption shows the
width of the junction tree used as well as the “cluster bound” used in Algorithm 3 to construct the IES-JT.

ated our algorithms for large values for a, because these lead
to larger clustering coefficients. We generated queries using
the same procedure outlined in the previous subsection.

Figure 6 shows the average query times as a function of the
query size for randomly generated power-law graphs with pa-
rameters p = 50, r1 = 20, r2 = 3, and a ∈ {0.8, 0.85, 0.90}.
For each value of a, we generated 100 random networks and
1000 queries. IES-JT significantly outperforms JT when the
query size is small, and JT outperforms IES-JT, but only
marginally, when the query size is large.

7.3 Experiments on medical diagnosis networks
We also compared the JT and IES-JT algorithms on the
Promedas medical diagnosis networks [Wemmenhove et
al., 2008] (freely available from the UAI 2008 evaluation
repository). For lack of space, we only report on results
for five benchmark networks or chain 148.fg.uai,
or chain 176.fg.uai, or chain 18.fg.uai,
or chain 168.fg.uai, and or chain 180.fg.uai.
For each network, we randomly generated queries using
the following approach: each variable in the network
participates in the query with probability pm, where
pm ∈ {0.1, 0.2, . . . , 1.0}, and is assigned the value true with
probability pp, where pp ∈ {0.1, 0.2, . . . , 1.0}.

Figures 5b through 5f show the results for various values
of pp and pm. We observe that IES-JT is superior to JT when
either pm is small or pp is large. As expected, JT tends to
outperform IES-JT in those cases where pm is large and pp is
small. IES-JT performs extremely well in those cases when
the clustering algorithm successfully merges the largest clus-

ters in the associated join-tree, but it is worth noting that even
in cases where it does not (e.g., Figure 5b) IES-JT can still
offer performance gains because queries on its modified junc-
tion tree require fewer total products.

8 Summary
In this paper, we showed how the inclusion-exclusion rule and
its combination with the widely used sum rule can be used to
reduce the query complexity in junction trees, when the latter
is used as a target for knowledge compilation. The key idea
in our approach is to leverage prior knowledge about query
types to yield a tractable model that admits fast inference for
the most common queries at the expense of admitting slightly
slower inference for the least common queries. Our experi-
mental analysis was preliminary but clearly demonstrated the
power and promise of our approach.

Directions for future research include: developing effi-
cient algorithms for merging clusters (cf. [Kask et al., 2005])
trading time with space; applying the hybrid IES rule to
other tractable models such as arithmetic circuits [Darwiche,
2003]; learning IES junction trees directly from data; using
external memory to store junction trees; using the IES rule in
generalized Belief propagation; etc.

Acknowledgements
This research was partly funded by the ARO MURI grant
W911NF-08-1-0242. The views and conclusions contained
in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, ei-
ther expressed or implied, of ARO or the U.S. Government.

References
[Bach and Jordan, 2001] F. R. Bach and M. I. Jordan. Thin

Junction Trees. In Advances in Neural Information Pro-
cessing Systems, pages 569–576. MIT Press, 2001.

[Darwiche and Marquis, 2002] A. Darwiche and P. Marquis.
A knowledge compilation map. Journal of Artificial Intel-
ligence Research, 17:229–264, 2002.

[Darwiche, 2001] A. Darwiche. Recursive conditioning. Ar-
tificial Intelligence, 126:5–41, February 2001.

[Darwiche, 2003] A. Darwiche. A Differential Approach to
Inference in Bayesian Networks. Journal of the ACM,
50:280–305, 2003.

[Dechter and Pearl, 1989] R. Dechter and J. Pearl. Tree
clustering for constraint networks. Artificial Intelligence,
38(3):353–366, 1989.

[Dechter, 1999] R. Dechter. Bucket elimination: A unifying
framework for reasoning. Artificial Intelligence, 113:41–
85, 1999.

[Kask et al., 2005] K. Kask, R. Dechter, J. Larrosa, and
A. Dechter. Unifying tree decompositions for reasoning in
graphical models. Artificial Intelligence, 166(1):165–193,
2005.

[Kask et al., 2010] K. Kask, R. Dechter, and A. Gelfand.
BEEM : Bucket elimination with external memory. In Pro-
ceedings of the Twenty-Sixth Conference on Uncertainty in
Artificial Intelligence, pages 268–276, Corvallis, Oregon,
2010. AUAI Press.

[Knuth, 2005] K. H. Knuth. Lattice duality: The origin of
probability and entropy. Neurocomputing, 67:245–274,
2005.

[Kyrola et al., 2012] A. Kyrola, G. Blelloch, and
C. Guestrin. Graphchi: Large-scale graph computa-
tion on just a pc. In Proceedings of the 10th USENIX
Symposium on Operating Systems Design and Implemen-
tation, Hollywood, October 2012.

[Lauritzen and Spiegelhalter, 1988] S. L. Lauritzen and D. J.
Spiegelhalter. Local Computations with Probabilities on
Graphical Structures and Their Application to Expert Sys-
tems. Journal of the Royal Statistical Society. Series B
(Methodological), 50(2):157–224, 1988.

[Mateescu et al., 2008] R. Mateescu, R. Dechter, and
R. Marinescu. AND/OR Multi-Valued Decision Diagrams
(AOMDDs) for Graphical Models. Journal of Artificial
Intelligence Research, 33:465–519, 2008.

[Murphy et al., 1999] K. P. Murphy, Y. Weiss, and M. I. Jor-
dan. Loopy Belief Propagation for Approximate Infer-
ence: An Empirical Study. In Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence, pages
467–475, 1999.

[Park and Darwiche, 2004] J. D. Park and A. Darwiche. A
differential semantics for jointree algorithms. Artificial In-
telligence, 156(2):197 – 216, 2004.

[Poon and Domingos, 2011] H. Poon and P. Domingos.
Sum-Product Networks: A New Deep Architecture. In

Proceedings of the Twenty-Seventh Conference on Un-
certainty in Artificial Intelligence, pages 337–346. AUAI
Press, 2011.

[Shenoy and Shafer, 1990] P. Shenoy and G. Shafer.
Valuation-based systems for discrete optimization. In
Proceedings of the Sixth Conference on Uncertainty in
Artificial Intelligence, pages 334–343, Corvallis, Oregon,
1990. AUAI Press.

[Watts and Strogatz, 1998] D. Watts and S. Strogatz. Collec-
tive dynamics of small-world networks. Nature, 393:440–
442, 1998.

[Wemmenhove et al., 2008] B. Wemmenhove, J. Mooij,
W. Wiegerinck, M. Leisink, and H. J. Kappen. Inference
in the promedas medical expert system. In Proceedings of
the 11th Conference on Artificial Intelligence in Medicine
(AIME 2007). Springer, July 2008.

[Yedidia et al., 2005] J. S. Yedidia, W. T. Freeman, and
Y. Weiss. Constructing free-energy approximations and
generalized Belief propagation algorithms. IEEE Trans-
actions on Information Theory, 51(7):2282–2312, 2005.

