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Abstract

We consider the problem of computing r-th or-
der statistics, namely finding an assignment having
rank 7 in a probabilistic graphical model. We show
that this problem is NP-hard even when the graph-
ical model has no edges (zero-treewidth models)
via a reduction from the number partitioning prob-
lem. We use this reduction, specifically pseudo-
polynomial time algorithms for number partition-
ing, to yield a pseudo-polynomial time approxima-
tion algorithm for solving the r-th order statistics
problem in zero-treewidth models. We then extend
this algorithm to general graphical models by gen-
eralizing it to tree decompositions, and demonstrate
via experimental evaluation on various datasets that
our proposed algorithm is more accurate than sam-
pling algorithms for computing r-th order statistics.

1 Introduction

We explore a novel complex query type for probabilistic
graphical models (PGMs) [Pearl, 1988; Darwiche, 2009],
which we call r-th order statistics. Given a discrete PGM
M which compactly represents a joint probability distribu-
tion over a large number of random variables and an integer
r, the query seeks to find a configuration of variables that
has the r-th smallest probability. It includes the popular most
probable explanation (MPE) query (also called maximum-a-
posteriori (MAP) estimation) which seeks to find the highest
ranked configuration as a special case and is thus NP-hard in
general.

Our motivation for addressing the r-th order statistics prob-
lem is that a solution to it as well as a related problem of de-
termining the rank of a given assignment will enable a num-
ber of interesting applications. First, it will enable us to get a
deeper understanding of the underlying probability distribu-
tion (cf. [Ermon er al., 2013]). For example, by answering
a linear number of order statistics queries, we can construct
a piece-wise approximation of a complex probability distri-
bution (see Figure 1). Such approximations can be useful for
performing exploratory statistical analysis, understanding the
shape of the distribution and visually comparing two proba-
bility distributions. Second, it will enable us to derive mul-
tiple, diverse explanations for evidence. Such explanations
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Figure 1: A toy probability distribution over 6 Boolean variables (64
assignments). The assignments are sorted in the order of increasing
probability. Dotted red lines show the piece-wise linear approxima-
tion of the distribution, obtained by answering six order-statistics
queries.

are extremely useful in interactive settings where users can
provide feedback on the model and help correct its errors
[Kulesza et al., 2015] (also see the recent DARPA Explain-
able Al program).

The r-th order statistic problem has received surprisingly
little attention in the PGM literature. The problem has
been shown to be PP complete by reduction to Kth SAT
[Kwisthout, 2008]. A closely related problem, that of enu-
merating all the m best solutions in a graphical model, has
been investigated more thoroughly, with work extending back
almost half a century [Lawler, 1972]. Work on the problem
is ongoing; recent approaches include modifications of best-
first search [Flerova et al., 2016] and formulation as a linear
program [Fromer and Globerson, 2009].

The paper makes two contributions: (i) it theoretically an-
alyzes the computational complexity of the r-th order statis-
tics problem; and (ii) it introduces novel pseudo-polynomial
time approximation algorithms for solving it. Specifically, we
show that the r-th order statistics problem is NP-hard even
when the graphical model has no edges (zero-treewidth or in-
dependent models). We prove this via a reduction from the
number partitioning problem. Our reduction enables us to
adapt pseudo-polynomial algorithms developed in the num-
ber partitioning literature for efficiently approximating the r-
th order statistics task in zero-treewidth models. To make
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this algorithm widely applicable, we extend it to general tree-
decompositions, which yields a practical algorithm for low-
treewidth graphical models. ! The latter is non-trivial because
unlike standard max and sum operators, arbitrary r-th order
statistics operators such as the median are not associative.

We experimentally compared our new algorithm with a
baseline sampling algorithm over randomly generated graph-
ical models as well as Chow-Liu trees [Chow and Liu, 1968]
computed over three benchmark datasets. We found that our
new algorithm significantly outperforms the sampling algo-
rithm, especially when r is not extreme (either too small or
too large).

2 Preliminaries and Notation

Let X = {Xy,...,X,} denote a set of n Boolean random
variables, namely each variable X; takes values from the set
{0, 1}. We denote the assignments X; = 1 and X; = 0 by z;
and T; respectively. Let ® = {¢1, ..., ¢, } denote a set of m
non-negative real-valued functions (called potentials) where
each ¢; is defined over a subset of variables of X’ called its
scope and denoted by vars(¢;). Then, the pair M = (X, D)
is called a Markov network. M represents the following prob-
ability distribution:

N

pw) = 5 [[orten) m

where w is a full (0/1) assignment to all variables in X, w; is
the projection of w on vars(¢;), and Z = >_ [~ ¢i(w;)
is the partition function. We will denote the set of assign-
ments to all variables in the set vars(¢) by Q(vars(¢)). Of-
ten, we will abuse notation and denote (X)) by 2. We will
use w to denote the assignment in which all variable assign-
ments in w are flipped. For example, if w = (21, T3, 23) then
w = (Z71,x2,T3). For convenience, throughout the paper, we
will assume Boolean variables noting that extension to multi-
valued variables is straightforward.

2.1 r-Order Statistics Query

Definition. Given a Markov network M (X', ®) and an as-
signment w to all variables in X, the rank of w is r, denoted
by rank(w) = r, if there are exactly r assignments having
lower or equal probability than w in M. The r-order statistics
query is to find an assignment having rank 7 in M.

A related query is finding the rank r given an assignment
w. We define the max (or min or median) assignment of a
Markov network M (X, ®) as the assignment w having the
maximum (or minimum or median) rank. (For convenience,
we always assume smaller of the two medians as the median.)
The r-order statistics query is NP-hard in general because it
includes the NP-hard most probable explanation (MPE) query
of finding the max assignment as a special case.

'In practice, if the treewidth of the graphical model is large, we
can induce an accurate low-treewidth approximation of the model
using variational inference methods such as mean field inference
[Jordan et al., 1999] and Belief propagation [Yedidia et al., 2005].
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3 Computational Complexity of r-Order
Statistics on Independent Markov Networks

In this section, we analyze the computational complexity of
computing order statistics on independent or zero-treewidth
Markov networks, namely Markov networks, in which all po-
tentials are univariate. Formally, V¢ € ®,|vars(¢)| = 1.
It is well known that max and the min assignments on such
Markov networks can be computed in linear time. Surpris-
ingly, as we show next, computing other order statistics,
specifically finding the median assignment is intractable for
these relatively simple models. Formally

Theorem 1. Given an independent Markov network
M(X, ®), finding the median assignment w,y.q is NP-hard.

Proof. Sketch. We reduce the optimization version of the
number partition problem to the problem of computing the
median assignment. Given a multiset S = {s1,...,s,} of
positive integers, the number partitioning problem is to find
a partition (S, S2) of Ssuch that |0 g g — > jcs, bl is
minimized. Given S, we construct an independent Markov
network M = (X, ®) and show that given a median assign-
ment to M, we can recover optimal (51, S2) and vice versa.
M is constructed from S as follows. We have one Boolean
variable X; for each integer s; in S. We have n univariate
functions ® = {¢1, ..., ¢, } such that the scope of ¢; is { X;}

and .
e IfX; =1
(X)) = 1+e®i v
d)l (Xi) { 1+les7j If X7, =0 (2)

Our two claims, which we prove below are that (1) given an
optimal partition (S, S2) of S, the median assignment of M
is the assignment having the smallest probability among the
following two assignments: (a) the assignment obtained by
setting all variables X; such that s; € S; to 1 and the re-
maining variables to 0, and (b) the assignment obtained by
setting all variables X; such that s; € S to 1 and the re-
maining variables to 0; and (2) given a median assignment w
to all variables of M, the optimal partition (Sq,S2) of S is
S1 = {s;|lz; € w}and Sy = {s;|z; € w}.

To prove our claims, we use the following two properties of
independent Markov networks. First, we can re-parameterize
each network so that there are exactly n univariate potentials,
one for each variable, and each potential is normalized such
that ¢;(x;) = 1 — ¢;(7;). For this re-parameterization, the
partition function equals 1. For convenience, we will use the
parameter p; to denote ¢;(x;). Thus, ¢;(Z;) = 1 — p;. Sec-
ond,

Proposition 1. Given an independent Markov network M
there exists a constant . such that Vw p(w)p(@) = p.

The proof is straightforward:

I IT=p) [P

T Ew T;Ew T;EW

Hpi(l —pi) =4
=1

We can use Proposition 1 to prove Lemma 1, thus proving the
main claim in Theorem 1.

(1 —pi)

T €W

pwp@) =

(a constant)
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Lemma 1.

> 9-> n B

geS heSsy

arg min
(S1,S2)€Paritions(S)

Wmed =

Proof. Without loss of generality, let us assume that
> ges; 9 = D pes, h then Eq. (3) can be written as:

dg-> h @&

gESL he€S2

Wmed = arg max

(S1,S2)€Paritions(S)

We will first prove that wy,eq = argmax,cq_ p(w) where

Q< = {wlp(w) < \/i}. Suppose that Vwy,wy € Q,p(w1) #
p(wa). Then |Q<| = 2771, because for every pair (w,®),
exactly one assignment is less than ,/u and exactly one is
greater than /p. Therefore the median assignment must be
the w € Q< with the largest probability. In the general case,
|Q<| > 271, because for some pairs (w, ), its is possible
that p(w) = p(@) = /- In this case, bothw € Q< and W €
Q<. We can then partition ()< into sets 2. and Q_, where
Q<] <2 Land [Qc|+[Q=] > 2771, S0, Wined € =, and
hence wy,cq € < in this case as well.

Using Proposition 1, we can
arg max,cq_ p(w) as follows:

rewrite Wyeq =

2
Wmed = argmaxp ) = arg max p(w) ®))
wEQS /‘L wGQS /,L/p((/.))
= argmax p<i) (6)
weN< p(w)
= argerélaX{log(p(w))—log(p(w))} (7

Next, we will simplify log(p(w)) —
make Eq. (7) equivalent to Eq. (4).

log(p(w)), which will

log(p()) — log(p(@)
zze;bg<1—pz> 2 () ®

= s;. Thus,
we can use Eq. (8) and Eq. (2) to rewrite Eq. (7) as:

> s )

TiEw T EW

From Eq. (2), it is easy to see that log (121

Wmed = argmax E S —
UJEQ<

Assigning all s; such that z; € w to S; and s; such that
x; € wto S respectively, as described in Theorem 1, Eq. (9)
is equivalent to Eq. (4) and the proof follows. O

4 Estimating the Median in Independent
Markov Networks

The relationship between the median finding problem in inde-
pendent Markov networks and the partition problem gives in-
sight into approaches we can use to compute order statistics.
The good news is that the partition problem is “the easiest
hard problem” [Hayes, 2002]; it is weakly NP-hard because
it’s time complexity is pseudo-polynomial, i.e. it is a polyno-
mial function in the problem dimensionality and size of the
integer inputs rather than the logarithm of the inputs.
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Algorithm 1 Find Median Independent Markov Network

1: Input:A set of n probabilities {p1 . .. pn}, a precision, ¢ > 0.
2: Output: An estimate of the median assignment.

w

: function COMPUTEBIN(Z, j)
ifi < 0V j < 1 then return null

4
5
6: ifi =0Aj =0 then
7
8

be=1
for p; € M do
9: bw. X, =T;

10:  bfaise = COMPUTEBIN(%, j — 1)

11:  bgrye = COMPUTEBIN(Z — 84,5 — 1)

12: btme.w.Xi =T;

13: b.c=b.c+ braise.c + birue-C

14:  bw=arg AKX Ch o b oo wibtrue p(w)
15:  returnb

16:

17: S ={}

18: for p; € M do

19: S =SU{|e(logpi — log(1 —p;)) + 3}
20: T = [Zess®]

21: while COMPUTEBIN(T |S|).c =0do

22 T=T-1

23: return COMPUTEBIN(T, |S]).w

The classical approach to solving the partition problem

constructs a table with L%j rows and |S|+1 columns, in
which cell b; ; tracks if there is an assignment to any subset
of {s1...s;} that sums to 7. The algorithm populates each
cell by a recurrence relation, whereby b; ; is true if and only
if b; j_1 is true (there is a subset of {s; ... s;_1} that sums to
i), or b, j—1 is true (there is a subset of {s;...s;_1} that
sums to ¢ — s;). Once constructed, the optimal solution can be
retrieved by finding the largest row index for which the cell
in the rightmost column is true.

For a Markov network M in which V¢; € @, log ¢;(x;) —
log ¢;(T;) = s; is integral, we can directly apply the dynamic
programming approach to the multiset S = {s1...s,} to
find the exact value of the median. This condition will never
be met in practice; in general we can quantize the difference
log ¢i(x;) — log ¢;(;) to obtain a median estimator with ac-
curacy (and complexity) determined by the quantization size.

Algorithm 1 details our proposed approach. The algorithm
accepts n parameters between 0.5 and 1, along with a pre-
cision € (without loss of generality we assume that p; is the
largest value in the normalized potential ¢;). For each p;,
it computes a corresponding s; by multiplying the quantity
logp; — log(1 — p;) by € and then rounding to the nearest
integer. It computes an integer 1" as the ceiling of the sum
of S divided by 2. Lines 4 — 15 define the recurrence rela-
tion. Ateach cell b; ;, we record two values; b; ;.c records the
number of subsets of the first j variables that sum to 4; b; ;.
records the subset that corresponds to the maximum proba-
bility assignment. The algorithm computes the rightmost cell
in descending row order until discovering a cell with a non-
empty bin; it returns the maximal assignment in that bin as its
estimate of wy,eq.
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5 Estimating arbitrary Ranks in Independent
Markov Networks

Given an independent Markov network M, Algorithm 1 es-
timates the median by binning the assignments in the bottom
half of ) according to some quantization of their log-odds,
and then returning the assignment with the largest probability
in the largest bin. We can generalize this procedure in order to
estimate the rank of any assignment in M by tracking more
information in each bin; in addition to the max probability
assignment, we modify Algorithm 1 to track the minimum
probability assignment and the total number of assignments
in each bin. We now run computeBin(i, |S|) for every value
i € [0...3,cg5] toretrieve a set of bins B representing
a partition of the assignments of M, in which each b € B
contains b.c assignments w such that p(b.min) < p(w) <
p(b.max). We refer to this data structure as a rank sum-
mary of M because it can be used to estimate the rank of
any w € .

Given a rank summary B and an assignment w, we can
partition B into 3 sets:

1. B« ={be B|p(b.maz) < p(w)}

2. By ={be B |p(b.min) > p(w)}

3. B ={b e B| p(b.min) < p(w) < p(b.maz)}

We know that 3, 5 b.c > ranknm(w) > > pcp_b.c
however, for each b € B—, we do not know how many of
the b.c assignments have a smaller probability than w. We
can estimate this number by assuming the assignments in b

are uniformly distributed between p(b.min) and p(b.mazx).
Algorithm 2 details this proposed approach.

Algorithm 2 Estimate Rank

1: Input: A rank summary B computed using Algorithm 1 by
tracking min, max and counts and an assignment w € 2

: Output: an estimate of rankns(w)

r=0

: for b € Bdo

if p(w) > p(b.max) then
r=r+b.c

else if p(b.min) < p(w) < p(b.mazx) then

_ p(w)—p(b.min)
r=r+ p(b.maxz)—p(b.min) X b.c

D Al

: return r

6 Rank Variable Elimination

Algorithms 1 and 2 describe a method for estimating the rank
of assignments in independent Markov networks. In this sec-
tion, we generalize this procedure to arbitrary Markov net-
works by combining it with the variable elimination algo-
rithm for MPE inference [Dechter, 1999]. We describe the
resulting algorithm, Rank Variable Elimination (RVE) next.
Variable elimination (VE) [Dechter, 1999] is a dynamic
programming algorithm that accepts a Markov network M =
(X, ®) and an ordering O of X as input. For each X along
the order O, VE: (1) discovers the set of potentials ®x that
mention X, (2) computes ¢x» =M gea, ¢, the join of the po-
tential functions in ® x (a product operation), (3) computes
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Algorithm 3 Rank Variable Elimination

1: Inmput:A set of potential functions ¢ with scope X, an ordering
of X, O, a quantization function q(x)

: Output: A rank summary of assignments w € {2

: Convert each potential ¢ in ® to a rank potential . Let ¥ de-
note the set of rank potentials

: for each X along the order O do

U ={v eV |X ¢vars(y)}

¥ =x(¥x);

v =&y, X);

U=Ug - Vg U{y'}

: return ¥

W N

R ARl

ox = D(¢dxr,X), the projection of the function ¢ onto
¢x with X removed from its scope (a max operation), and
(4) updates the set of potentials by & = & — Ox U {¢px}.
When the algorithm terminates, ¢ will contain a single po-
tential with an empty scope and a single weight, which repre-
sents the MPE value of the input Markov network.

Algorithm 4 Rank VE x Step

1: Input:A set of rank potentials ¥
2: Output: A rank potential P

3: Y =Ugewvars(y); ¢ = {}

4: for w € Q(Y) do

5 for ¢; € ¥ do

6: let ((v1,b1) ... (Um,bm)) = ¥i[a;]
7. V=01 X ... X Um

8: b.c:bl.cx...xbm.c

9: b.wWmin = b1.Wmin U ... Ubm.Wmin
10: b.Wmaz = b1.Wmaz U ... Ubm.Wmaz
11: b.Umin = bl.’l}min X ... X bm.vmm
12: b.Vmaz = b1.Vmaz X ... X by Umag
13: ' [w][v] = COMBINEBIN(b, ¥’ [w][v])
14: return )’

Algorithm 5 Rank VE & Step

1: Input:A rank potential 1), an elimination variable X
2: Output' A rank potential )’
3y =
4: for (w,v,b) € ¢ do
50 W=w—{X
6:  '[w'][v] = COMBINEBIN(b, ¢’ [w’][v])
return )’

Each step of VE produces a simpler model by remov-
ing/maxing out one variable, thereby ‘forgetting” information
about weights that cannot be the max. The high-level idea
behind Rank Variable Elimination (RVE) is to, at each step,
group assignments with similar weights into a user-controlled
number of bins via quantization, and then perform the max
operation over each bin rather than over all possible assign-
ments. Doing so lets us retain order statistics information that
is traditionally discarded by VE.

In order to track this additional information, we define
a new data structure, called a rank potential. A potential
(function) is a map from all possible assignments to the
variables in its scope to a non-negative real number; i.e.,
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Figure 2: Rank error on the Infer Rank of Tuple problems as a function of true rank on Chow-Liu trees learned from datasets. Datasets and
quantization function constant alphas are (in order from top row to bottom row): NLTCS {1,3,5}, KDD Cup {1,3,5}, Plants {10,15,20}.

Algorithm 6 Rank Variable Elimination Combine Bin Step

1: Input:Two bins by, bs

2: Output: One bin b

3: b.ce=bi.c+bs.c

4: if b1 . Vmin < b2.Umin Or bo = null then
5: b~wmin = b1~wmin; b-vmin = bl-vmin
6: else

7: b~wmin = b2~wmin; b-vmin = b2-vmin
8: if b1 . Vmaz > b2.Vmaz OF bo = null then
9: b.wmam =b Wmazx) b-vmaac = b1~Umaac
10: else

11: b.Wmaz = bo Wmaz} b.Vmaz = b2.Vmaq
12: returnb
¢ = {{w1,v1)...{wn,v,)} where w; € Q(vars(e)),v; €

RTU{0},andn = 2lvars(4)l 1In a rank potential, we replace
each v; with a function, called a binning function. A binning
function maps from integral-valued ‘quantizations’ of the in-
termediate weights generated during VE to a data structure
we call a bin, which tracks information needed to estimate
order statistics throughout RVE. We define this data structure
next.

Definition. A quantization function q(x) : RT U{0} — Zis
a function such that Vz, y € R, ¢()q(y) = q(zy).

Definition. A binning function b(z) : Z — B is a func-
tion that maps from the integers to the set of bins, B
{(wmiru Wmazxy Umin, Umazxs C> | Wmin, Wmae € VY,V

X, Vmiin, Vmaz € R+U{0}, ce N}

-

Definition. A rank potential is a set of pairs

{{w1,01(2)).. {wn, bn(2))}, where w; € Q(vars(y)) and
each b; is a function b;(z) : Z—B.

Algorithm 3 describes the steps in RVE. Given a set of
potentials, an ordering, and a quantization function, line 3
constructs one rank potential 1) from each potential ¢ in the
Markov network. Specifically, for each potential value (w, v)
in ¢, we construct a bin by setting its min and max values
of to v, its min and max assignments to w, and the count to
1. Lines 9 — 11 of Algorithm 3 mirror traditional VE. The
difference is that the product (x) and project (6) operators
are defined over rank potentials. We describe these operators
next.

Product Operator. Algorithm 4 describes the product op-
eration for rank potentials. It first computes ), the union
of the scopes of all input rank potentials, ¥. For each
possible assignment w to all variables in )/, it retrieves
{t1]w], ... 9¥m[w]}, the binning function from each ¢ € ¥
consistent with w. Next, it computes a new binning func-
tion, 9’ [w], by taking the cartesian product of they key-value
pairs in {¢1[w],...9¥mn[w]}. Each created bin requires up-
dating 5 values; assignments are computed as union of the
assignments of each bin in the product (assignments are guar-
anteed to be consistent over shared variables), values are up-
dated as products of values (as in the product step of VE),
and counts are updated as the product of counts. Algorithm
4 computes the new bin key v as the product of bin keys;
because q(x)q(y) = q(zy), we expect this value to be ap-
proximately the quantization of all assignments in our newly
created bin. Line 13 inserts the new bin to the binning func-
tion for ¢’ [w] under quantized key v (after checking for colli-
sions, discussed below). Once completed for all assignments

~
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Figure 3: Rank error on the Infer Tuple at Rank problem as a func-
tion of number of edges on randomly generated 20 variable models.

w, the algorithm returns v’.

Project Operator. Algorithm 5 describes the project opera-
tion for rank potentials. For each triple (w, v, b) € 1), where
w € Qvars(y)),v € Z,and b € B, it ‘forgets’ the assign-
ment to elimination variable X by creating a new assignment
w' = w — {X}, and adding b to the new rank potential v’
under assignment w’ with binning key v (after checking for
collisions). Once done for all triples, the returns new rank
potential 7', where vars(y’) = vars(y) — {X}.

When creating new rank potentials, Algorithms 4 and 5
must check for bin collisions. Bin collisions occur when two
different bins quantize to the same binning key. Algorithm
6 describes the combine operation for colliding bins. Again,
5 values must be updated. The max and min values of the
combined bin become the max of the max values and the min
of the min values, respectively. The max and min assignments
become the assignments corresponding to the max of the max
values and the min of the min values, respectively. Finally,
the count of the combined becomes the sum of the counts of
the colliding bins.

Upon completion, Algorithm 3 returns ¥ = {¢}, where
¥ = {{({},q(z))}, ie. it returns a single binning function,
q(z) : Z — B. Every assignment to X’ has been placed in
some binin B, i.e. ), p b.count = 21*|. Given an arbitrary
assignment, the rank of that assignment can be estimated by
the same process described in Algorithm 2.

Analysis of Algorithms 3, 5, 4, and 6 yields the following:

Theorem 2. Given a Markov network M having n variables,
an ordering O having width w, and a quantization function
that generates a maximum of k bins at every elimination step,
the time and space complexity of Algorithm 3 is O(n X k x

exp(w)).

7 Experimental Results

In this section, we aim to evaluate the performance of Al-
gorithms 1 and 3. We use the RVE algorithm to estimate
solutions to two types of queries: (1) Infer Rank given an as-
signment. and (2) Infer the assignment given a rank. To solve
the latter query using RVE we apply Algorithm 2 to the min
and max tuple stored in each bin, and return the assignment
whose rank estimate 7 minimizes |r — 7|.
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Because of the lack of established approximation algo-
rithms for the order statistics query, we use the following
straightforward sampling-based approach as a baseline. We
first sample a multiset 7" of assignments from the uniform
distribution. Given a Markov network M having n variables
and an assignment w, let I be the number of samples that
have smaller (or equal) probability than w according to M,
then our estimate of the rank of w is %2". Similarly, the
estimate of the assignment having rank r is the assignment
having rank | 5= |T'|] in T".

7.1 Inferring Rank of an Assignment

We evaluate the infer rank query on 3 benchmark datasets
commonly used for evaluating learning algorithms for
tractable probabilistic models: NLTCS, KDD Cup, and Plants
[Lowd and Davis, 2010; Rahman and Gogate, 2016; Gens and
Domingos, 2013]. We first learn a Chow-Liu tree for each
dataset. For each model, we generate 1000 random assign-
ments to all variables. For each assignment, we run RVE on
the corresponding model to estimate its rank and record the
time taken to compute the estimate. We give the sampling
algorithm the same amount of time to compute an estimate.
For NLTCS (16 variables), we find the true rank of each
assignment by computing the probability of all complete as-
signments and sorting them. For the KDD Cup and Plants
datasets (with 64 variables and 69 variables, respectively),
we estimate the true rank of each assignment by running
the sampling algorithm for 600 seconds. We compute rank

error for each assignment as ‘Tz_,f‘, where n is the num-
ber of variables in the model. We use quantization function
q(z,a) = |alog x|, and run the experiment for varying set-
tings of . For each model and «, we plot the error in rank
as a function of the normalized true rank of the assignment.
From the set of 1000 random samples, we generate 100 data
points by rounding each true rank to its nearest percentile
value and averaging the errors.

Figure 2 shows the results. We observe that sampling tends
to perform well towards the extreme values of the distribu-
tion, but struggles to accurately predict rank for assignments
near the middle of the distribution. Its accuracy appears to de-
pend only on time and number of variables in the model. RVE
outperforms sampling by a significant margin in all tested dis-
tributions for all choices of «.. The variance in its accuracy (as
a function of true rank) appears to be distribution dependent;
for example, on the NLTCS dataset, increasing « improves
the overall accuracy of the algorithm, but its highest error re-
mains in the same range of ranks in each case (normalized
ranks in [0.5,0.8]). In general, RVE will perform the worst
in the ranges of the distribution that are most densely popu-
lated because the bins corresponding to these locations will
contain more assignments. Dynamic binning strategies might
be effective in such cases and we leave this for future work.

7.2 Inferring Assignment having a given Rank

We evaluate infer assignment at rank queries on synthetic
models generated by the following procedure. For each
e € [0,80], we generate 100 Markov networks on 20 vari-
ables with e pairwise potentials having randomly generated
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scopes. The weights of each potential are randomly gener-
ated from A/ (0, 1). For each Markov network, we use RVE to
estimate the the tuple at normalized rank [0.05, 0.50, 0.95%].
We then run the sampling algorithm for the same queries for
the same amount of time. We calculate the true rank of the
assignments returned by each algorithm, and report the error.

Figure 3 shows the results. We observe that RVE outper-
forms sampling by a significant margin for sparse models, but
that sampling becomes more viable as we increase the num-
ber of edges. Because RVE is a VE-based algorithm, its com-
plexity is exponential in treewidth, whereas the accuracy of
the sampling algorithm is determined only by the number of
variables in the model and the number of samples generated.
Thus, the sampling approach becomes more viable the more
densely connected the models become. For randomly gener-
ated models, both algorithms perform better when searching
for assignments at the extremes of the distribution; however,
the sampling approach has higher variance than RVE when
its accuracy is viewed as a function of the rank.

8 Conclusion

In this work, we have introduced a new query type for the
graphical model domain, namely, computing the order statis-
tics of a PGM. We have shown that the task is NP-hard even
for zero-treewidth models. To our knowledge, we have pre-
sented the first deterministic algorithm for estimating the or-
der statistics problem by combining a well-known approach
to solving the Partition Problem with the standard variable
elimination algorithm for PGMs. We have demonstrated that
our approach can return better results than sampling on a
number of synthetic and real-world problems.
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