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Abstract
We address the problem of scaling up local-
search or sampling-based inference in Markov
logic networks (MLNs) that have large shared sub-
structures but no (or few) tied weights. Such un-
tied MLNs are ubiquitous in practical applications.
However, they have very few symmetries, and as a
result lifted inference algorithms–the dominant ap-
proach for scaling up inference–perform poorly on
them. The key idea in our approach is to reduce the
hard, time-consuming sub-task in sampling algo-
rithms, computing the sum of weights of features
that satisfy a full assignment, to the problem of
computing a set of partition functions of graphical
models, each defined over the logical variables in
a first-order formula. The importance of this re-
duction is that when the treewidth of all the graphi-
cal models is small, it yields an order of magnitude
speedup. When the treewidth is large, we propose
an over-symmetric approximation and experimen-
tally demonstrate that it is both fast and accurate.

1 Introduction
Markov logic networks [Domingos and Lowd, 2009] use
weighted first-order logic formulas to specify large Markov
networks with repeated sub-structures compactly. The use
of first-order logic makes them especially amenable to ex-
pressing prior or domain knowledge, which can be easily
translated from natural language to first-order logic formu-
las. As a result, they are routinely used to model prior
knowledge in a wide variety of application domains includ-
ing natural language processing [Venugopal et al., 2014;
Riedel and McCallum, 2011], computer vision [Tran and
Davis, 2008] and social network analysis [Chen et al., 2013].

Although the MLN representation is compact, it is now
well-known that inference in them can be quite challenging
and is often a major bottleneck. Specifically, the ground
Markov network which is obtained by grounding or propo-
sitionalizing the first-order formulas is often so large that
even approximate probabilistic inference methods such as
Gibbs sampling, Belief Propagation, and MaxWalkSAT are
computationally infeasible. To address this issue, several
lifted inference algorithms that exploit symmetries in the

MLN, and avoid constructing the ground Markov network
as much as possible, have been proposed in previous work
(cf. [Van den Broeck et al., 2012; Singla et al., 2014;
Gogate and Domingos, 2011; Venugopal and Gogate, 2014;
Kersting et al., 2010]). However, these methods do not func-
tion well on arbitrary MLN structures and in the presence
of evidence or observations [Van den Broeck and Darwiche,
2013]. As a result, in practice, ground inference is often un-
avoidable.

Recently there has been growing interest in developing
approaches that perform efficient inference over the ground
network. Popular approaches include performing lazy in-
ference which constructs the ground network incrementally
[Singla and Domingos, 2006b], reducing the size of the net-
work by leveraging evidence [Shavlik and Natarajan, 2009],
and using fast, approximate counting approaches that ground
the predicates but not the formulas [Venugopal et al., 2015;
Sarkhel et al., 2016; Das et al., 2016]. The approach pro-
posed in this paper is related and addresses the following fun-
damental difficulty associated with the approximate counting
approach: it is scalable only on MLNs having both shared
sub-structures and weights (MLNs in which all groundings
of a first-order formula have the same weight).

In this paper, we consider inference in MLNs having
shared sub-structures but no shared weights (we call them
untied MLNs), namely MLNs in which different ground-
ings of a first-order formula have different weights. Such
MLNs are more common in real-world applications [Singla
and Domingos, 2006a; Venugopal et al., 2014] since using
the same weight for all groundings of a first-order formula
often yields a biased, inaccurate model. For example, to spec-
ify that a word in a web-page determines the topic of a web-
page, we can specify the formula Word(w, p) ⇒ Topic(p,
t) with a single weight w. However, this model is unre-
alistic since it assumes that the dependency between every
word and every topic is identical. A more practical solution
will have m · n different weights, where m is the number of
words and n is the number of topics. In the MLN nomencla-
ture, this is represented as a variable preceded by a ‘+’ sign.
Thus, for our running example, we would write Word(+w, p)
⇒ Topic(p, +t), and associate a different weight for each
grounding (combination) of the ‘+’ variables.

This paper addresses the problem of scaling up inference
in untied MLNs and makes the following contributions.
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1. We develop a novel graphical model encoding for untied
MLN formulas and prove that our new encoding is exact,
i.e., the partition function of the graphical model is equal
to the sum of the weights of the satisfied groundings in a
given world, and exact inference over it is more efficient
than the encoding proposed in [Venugopal et al., 2015].

2. We propose an approximate graphical model encoding
for untied MLN formulas. This is useful when the exact
encoding has large treewidth. The key idea is to cluster
together groundings of a formula having similar weights
to yield a graphical model with smaller treewidth.

We evaluate our proposed exact and approximate encod-
ings on several MLN benchmarks and compare their perfor-
mance to [Venugopal et al., 2015]. Our results clearly demon-
strate that our new encodings, both exact and approximate,
substantially improve the scalability, convergence, and accu-
racy of Gibbs sampling and MaxWalkSAT.

2 Notation and Background
First-order Logic. The language of first-order logic (cf.
[Genesereth and Kao, 2013]) consists of quantifiers (∀ and
∃), logical variables, constants, predicates, and logical con-
nectives (∨, ∧, ¬, ⇒, and⇔). A predicate is a relation that
takes a specific number of arguments as input and outputs ei-
ther TRUE (synonymous with 1) or FALSE (synonymous with
0). The arity of a predicate is the number of its arguments.
A term is either a logical variable or a constant. We denote
predicates by strings in typewriter font (e.g., R, Smokes) fol-
lowed by a parenthesized list of terms.

A first-order formula is recursively defined as fol-
lows:(i) An atomic formula (atom) is a predicate; (ii) Nega-
tion of an atom is a formula; (iii) If f and g are formulas
then connecting them by binary connectives such as ∧ and ∨
yields a formula; and (iv) If f is a formula and x is a log-
ical variable then ∀xf and ∃xf are formulas. A first-order
knowledge base (KB) is a set of first-order formulas.

We assume that each argument of each predicate is typed
and can only be assigned to a finite set of constants. By exten-
sion, each logical variable in each formula is also typed. We
assume that our language does not contain the equality sym-
bol and function symbols. We further assume that all first-
order formulas are disjunctive (clauses), have no free logical
variables, have only universally quantified logical variables
(namely, the KB is in conjunctive normal form (CNF)), and
have no constants. Note that all first-order formulas can be
easily converted to this form.

A ground atom is an atom that contains no logical vari-
ables. A ground formula is a formula containing only ground
atoms. The grounding of a first-order formula f is the set of
all possible ground formulas that can be obtained from f by
substituting all the logical variables in it by constants in their
domain. A ground KB is obtained from a first-order KB by
grounding all of its first-order formulas. A possible world,
denoted by ω, is a truth assignment to all possible ground
atoms in the first-order KB.
Markov Logic Networks (MLNs). An issue with first-order
logic is that it cannot represent uncertainty: all worlds that
violate even one ground formula are considered inconsistent.

MLNs soften the constraint expressed by each formula, by
attaching a weight to it. The higher the weight, the higher
the probability of the clause being satisfied, all other things
being equal. MLNs can also be seen as a first-order template
for generating large Markov networks. Formally, an MLN
is a set of pairs (fi, θi) where fi is a formula in first-order
logic and θi is a real number. Given a set of constants, an
MLN represents a ground Markov network which has one
random variable for each grounding of each predicate and
one propositional feature for each grounding of each formula.
The weight associated with the feature is the weight attached
to the corresponding formula. The ground Markov network
represents the following probability distribution:

Pθ(ω) =
1

Zθ
exp

(∑
i

θiNi(ω)

)
(1)

where Ni(ω) is the number of groundings of fi that evaluate
to TRUE given ω and Zθ is the normalization constant. We
call this the #SG problem. Important inference queries over
MLNs such as computing the partition function, finding the
marginal probability of a variable given evidence (where ev-
idence is an assignment to a subset of variables), and finding
the most probable assignment to all variables given evidence,
also called the MAP inference problem, require solving the
#SG problem at every iteration.
Solving the #SG problem. The main computational bottle-
neck in many inference algorithms for MLNs such as Gibbs
sampling for marginal inference and MaxWalkSAT [Kautz et
al., 1997] for MAP inference is computing Ni(ω). Until re-
cently, the #SG problem was solved using the following naive
method: given a clause fi and a world ω, generate all possi-
ble ground clauses of fi and count only those that are satis-
fied in ω. [Venugopal et al., 2015] showed that the problem
could be solved efficiently by reducing it to the problem of
computing the number of solutions of a constraint satisfac-
tion problem (i.e., a Markov network in which all potentials
have just two values: 0 or 1). Formally, given a first-order
clause fi and a world ω, the corresponding constraint net-
work Ci has a variable for each (universally quantified) log-
ical variable in fi. The domain of each variable in Ci is the
set of constants in the domain of the corresponding logical
variable. For each atom R(x1, . . . , xu) in fi, we have a con-
straint φ in C defined as follows: φ(xu) = ωR(X1,...,Xu) if R is
negated in f and φ(xu) = 1− ωR(X1,...,Xu) otherwise. Here,
xu = (x1 = X1, . . . , xu = Xu) denotes an assignment to
the variables in the constraint network and ωR(X1,...,Xu) is the
projection of the world ω on the ground atom R(X1, . . . , Xu).
Thus, ωR(X1,...,Xu) = 1 if R(X1, . . . , Xu) is true in ω and 0
otherwise.
Example 1. Fig. 1 shows the constraint network for a for-
mula f and a world ω.

[Venugopal et al., 2015] showed that if #Ci denotes
the number of solutions of the constraint network Ci as-
sociated with a clause fi and world ω then: Ni(ω) =∏

xj∈V (fi)
|∆(xj)| − #Ci where V (fi) denotes the set of

logical variables in fi and ∆(xj) is the set of constants in
the domain of xj . Thus, if a junction tree algorithm is used to
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y x

z

(a)

x y val
A A 0
A B 1
B A 1
B B 0

(b) φ1(x, y)

y z val
A A 1
A B 0
B A 1
B B 1

(c) φ2(y, z)

Figure 1: (a) Constraint network associated with f =
∀x, ∀y, ∀z ¬R(x, y) ∨ S(y, z). The domain of each logical variable
is {A,B}; (b) and (c): Constraints φ1(x, y) and φ2(y, z) corre-
sponding to the possible world in which the ground atoms R(A,B),
R(B,A), and, S(A,B) are true and the rest are false.

compute #Ci, then its time and space complexity is exponen-
tial in treewidth plus one and treewidth respectively. Since
the treewidth can be much smaller than the number of log-
ical variables, the complexity of Venugopal et al.’s method
can be exponentially smaller than the naive approach, which
is exponential in the number of logical variables.
Untied MLN. An MLN formula represents a template for
generating ground formulas (obtained by replacing logical
variables with domain objects). Often in the Markov Logic
literature, it is assumed the weight of each of these ground-
ing is the same, i.e. they are tied. However, in many realistic
settings (e.g., for many information extraction tasks such as
event extraction [Venugopal et al., 2014]), the parameter ty-
ing assumption is too strong. MLNs relax this constraint us-
ing the ‘+’ operator, which learns a separate weight for each
grounding of each logical variable associated with a ‘+’ sign.

Example 2. Let f = ∀x, ∀y, ∀z ¬R(x, y) ∨ S(y, z) be an
MLN formula. Then to specify that different weights are at-
tached to different groundings of x and z of f , we use the
formula: f ′ = ∀x, ∀y, ∀z ¬R(+x, y) ∨ S(y,+z)

We will use X+ to denote the set of logical variable associ-
ated with the “+” operator. To denote the weights (or param-
eters) associated with f we will use θf . A complete assign-
ment to all the variables in X+ (denoted by x+) corresponds
to exactly one parameter from the parameter set θ. Hence,
we will denote each such individual parameter by θx+

. In the
above example if ∆(x) = {A,B} and ∆(y) = {C,D} then
the parameter set is, θf = {θA,C , θB,C , θA,D, θB,D}.

For these MLNs we can rewrite Equation 1 as follows:

P (ω) =
1

Z
exp

(∑
i

Wfi(ω)

)
(2)

where, Wfi =
∑

x+
θx+Nx+(ω), is the total weight of the

satisfied groundings of a first order formula fi. We will refer
the task of computing the expressionWfi as #WSG (short for,
total weight of satisfied groundings). Since, #WSG general-
izes #SG (which is #P-complete), it is obvious that no efficient
algorithm can exist for solving the #WSG problem.

3 Exact Encoding for untied formulas
[Venugopal et al., 2015] and [Sarkhel et al., 2016] used a con-
straint network to solve the #SG problem. In this section, we
extend their approach to untied MLNs. Since untied MLNs

y x

z

(a) dMRF

x y val
A A 0
A B 1
B A 1
B B 0

(b) φ1(x, y)

y z val
A A 1
A B 0
B A 1
B B 1

(c) φ2(y, z)

x z val
A A θA,A

A B θA,B

B A θB,A

B B θB,B

(d) φ3(x, z)

Figure 2: (a) dMRF associated with f = ∀x, ∀y, ∀z ¬R(+x, y) ∨
S(y,+z). The domain of each logical variable is {A,B}; (b) and
(c): Constraints φ1(x, y) and φ2(y, z) corresponding to the possible
world in which the ground atoms R(A,B), R(B,A), and, S(A,B)
are true and the rest are false. (d) φ3(x, z) corresponds to the pa-
rameters θx,z associated with the formula

have different weights for each combination of the “+” vari-
ables, we will use a dynamic Markov Random Field (dMRF)1

instead of constraint network for each first-order formula and
show that the partition function of the dMRF corresponds to
the #WSG problem. It should be noted that our approach gen-
eralizes Venugopal et al.’s approach because a constraint net-
work is an MRF having only 0/1 potentials.

We demonstrate our proposed dMRF encoding on the fol-
lowing clause: f = ∀x, ∀y, ∀z ¬R(+x, y)∨S(y,+z). Let the
domain of each logical variable be {A,B}. The formula has
a different parameter (instead of only one parameter) for each
grounding of the variables x and z (denoted by θx,z). Our
task here is to compute the total weight of false groundings
of f given ω. To solve the task, we create a MRF having three
random variables (see Fig. 2), one for each logical variable
x, y, and z, and having three potentials, φ1(x, y), φ2(y, z),
and, φ3(x, z). Here, φ1(x, y) and φ2(y, z) are exactly same
as the functions φ1 and φ2 in the Fig. 1. For φ3(x, z) each
potential entry indexed by x, z is equal to the parameter θx,z .

Given the above set up, notice that if we take a product of
the three functions φ1(x, y), φ2(y, z), and, φ3(x, z), then the
resulting function φ(x, y, z) will have θx,z associated with an
entry (x, y, z) iff R(x, y) is true and S(y, z) is false. Since
the weight of a ground formula, indexed by (x, y, z), is given
by θx,z and it evaluates to false iff R(x, y) is true and S(y, z)
is false, by extension φ(x, y, z) = θx,z implies that the
ground formula (x, y, z) is false. Therefore, we can compute
the total weight of groundings of f that evaluate to false, by
simply summing over all the entries in φ(x, y, z), which is the
same as computing the partition function of the constructed
MRF. To compute the total weight of true groundings we
need to compute the total weight of all possible groundings,
which in this case, equals to (|∆(y)| ×

∑
x,z θx,z). Subtract-

ing the obtained partition function from this quantity will give
us the total weight of true groundings.

Next, we will precisely define how to encode the #WSG
problem as a partition function computation problem.
MRF Encoding. Given a first-order clause f and a world ω,
the corresponding dMRF G has a variable for each (univer-
sally quantified) logical variable in f . The domain of each
variable in G is the set of constants in the domain of the cor-
responding logical variable. For each atom R(x1, . . . , xu) in

1We refer to the constructed MRF as dynamic because the poten-
tial entries depend on the given world ω.
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f , we have a potential φ in G defined as follows:

φ(xu) =

{
ωR(X1,...,Xu) if R is negated in f
¬ωR(X1,...,Xu) Otherwise

where xu = (x1 = X1, . . . , xu = Xu) denotes an assign-
ment to the dMRF variables and ωR(X1,...,Xu) is the projection
of the world ω on the ground atom R(X1, . . . , Xu), namely
the truth-value of the ground atom R(X1, . . . , Xu) in ω. Fi-
nally if xi, . . . , xj are variables associated with the ‘+’ oper-
ator and if the corresponding parameters are θxi,...,xj

then we
have a potential ψ in G defined as:

ψ(xi, . . . , xj) = θxi,...,xj

By generalizing the arguments presented for the example
MLN given above, we can show that:
Theorem 1. Let f be a first-order clause, {x} be logical
variables in f , X+ ⊆ {x} be logical variables associated
with ‘+’ operators, {θx+

} be parameters attached to f , ω
be a world and let ZG denote the partition function of the
dMRF G obtained from (f, ω) using the MRF encoding. Then,
Wf (ω) =

∏
x/∈X+

|∆(x)|.
∑

x+
θx+
−ZG where ∆(x) is the

set of constants in the domain of x.
Since we have reduced the #WSG problem to the partition

function calculation problem, we can use any graphical model
inference algorithm such as the junction tree algorithm [Lau-
ritzen and Spiegelhalter, 1988] and leverage its advances and
guarantees to compute the former efficiently. Thus, the time
and space complexity of solving #WSG using the junction tree
algorithm is exponential in the treewidth of G.

An important property of our MRF encoding is that junc-
tion tree inference over it is guaranteed to have either the
same or smaller complexity than inference in the constraint
network encoding proposed by [Venugopal et al., 2015]. This
is because unlike the constraint network encoding which
grounds all the ‘+’ variables, the MRF encoding takes ad-
vantage of the structure induced by the ‘+’ variables and
this can yield significant reductions in complexity. For ex-
ample, the treewidth of the MRF encoding of the formula
f = ∀x, ∀y, ∀z ¬R(+x, y) ∨ S(y, z) (notice that unlike our
running example there is no + sign associated with z) is 1,
while one will have to create O(n) constraint networks hav-
ing treewidth 1 each in order to solve the #WSG problem us-
ing Venugopal et al.’s approach. Thus, inference on the MRF
encoding will be more efficient by a factor of O(n) over the
constraint network encoding. In summary,
Theorem 2. The time and space complexity for solving #WSG
using the junction tree algorithm is no-worse (i.e., at least the
same or better) than solving #SG using same algorithm.

Since, local-search based algorithms such as MaxWalkSAT
and Gibbs sampling require solving #WSG at every iteration,
we can efficiently implement them using our encoding. This
will significantly improve their computational complexity.

4 Approximate Encoding for untied formulas
In the encoding described in the previous section, we added a
new potential to account for the fact that different groundings
corresponding to the ‘+’ variables have different weights.

𝜃" 𝜃#
𝜃$ 𝜃%

A B C D
A
B
C
D

𝑥

𝑧
𝜃′

P Q
R
S

𝑥′

𝑧′

Figure 3: An example of clustering parameters associated with a
full assignment to (x, z). The highlighted cells of the parameter
matrix shows an example of clustering. After clustering we have
θ′ = (θ1 + θ2 + θ3 + θ4)/4

This encoding is impractical if the treewidth of the graphi-
cal model or the number of objects is large. Therefore, in
order to improve the computational complexity, we propose
to reduce the number of weights associated with each formula
by replacing weights which are close to each other by a single
weight. We illustrate this idea next.

Consider the formula in our running example: f =
∀x, ∀y, ∀z ¬R(+x, y) ∨ S(y,+z). Assume now that the
domain of each logical variable is {A,B,C,D}. There
are 16 different parameters associated with f , each corre-
sponding to a full assignment to (x, z). Now assume that
θA,C , θA,D, θB,C , θB,D, are almost the same. In that case
we can combine the four (partially) ground formulas asso-
ciated with these parameters into a single formula f ′ =
∀x′, ∀y, ∀z′ ¬R(x′, y) ∨ S(y, z′) having a single parameter
θ′ and ∆(x′) = {A,B}, ∆(z′) = {C,D} and ∆(y) =
{A,B,C,D}. Similarly we can combine the other formulas
yielding the four parameters given in Fig. 3.

The above idea can be set up as a clustering problem. How-
ever, in order to reduce the complexity, care must be taken to
ensure that each cluster is the Cartesian product of subsets
of domains of the ‘+’ variables. In two dimensions, this is
equivalent to biclustering [Hartigan, 1972]. For instance, in
the above example, putting the diagonal elements of the ma-
trix in Fig. 3 into one cluster will not yield reductions in the
computational complexity. This is because all constants in the
domain of x and z will be involved in the computations. On
the other hand, consider the cluster given by x ∈ {A,B} and
z ∈ {C,D} shown in Fig. 3. In this case, only two constants
in each domain will be involved in computations.

Formally, we are interested in finding the optimal joint
clustering over all the ‘+’ variables. Since the parameters
associated with an untied formula can be arranged in a tensor
(i.e., a multi-dimensional array), where each logical variable
represents one dimension or order, we define this problem as
a tensor clustering problem.

Definition 1. [Tensor Quantizer]: Given two order-p tensors,
A = {(ai1i2...ip) ∈ Rn1×n2×...×np} andB = {(bj1j2...jp) ∈
Rk1×k2×...×kp}, a function Q, called a tensor quantizer, is a
surjective function Q : A� B, such that |A| ≥ |B|.

A tensor qunatizer Q induces a partition (P(l)) on the set
of values (∆(il)) for each dimension (il) of the tensor, and
hence reduces its size. For example, in Fig. 3, a quantizer
reduced the 4 × 4 matrix into a 2 × 2 matrix. Here the in-
duced partitions are P(x) = {P,Q} = {{A,B}, {C,D}}
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Algorithm 1 Cluster-Param
(Parameter tensor θX+ , Cluster sizes kX+)

Select a random ordering O of X+.
for each variable x ∈ X+ chosen according to O do

Create a random partition P(x) of size kx of ∆(x)
/* The set {P(x)} defines the initial cluster assignment */
while the cluster assignment changes do

for each variable x ∈ O do
Find the optimum partition P(x) that minimizes Eq. (3)
assuming that partitions associated with other variables
are fixed.

and P(z) = {R,S} = {{A,B}, {C,D}}. We are interested
in finding a quantizer having minimum quantization error:∑

a∈A

||a−Q(a)||22 (3)

where Q(a) is the cluster mean.
Solving the joint clustering problem is computationally

hard. A naive approach which searches for all possible par-
titions of a given domain is not scalable since the number of
possible partitions of size k for a set of size n (also known as
the Stirling numbers of the second kind) grows exponentially
with n. Hence, to solve this optimization problem we propose
a greedy approach. Our method is described in Algorithm 1.
It begins by selecting an ordering O of variables. For each
variable, the algorithm assigns each of its domain values to a
random cluster. Then for each variable x along the ordering
O, it determines the best possible cluster assignment for x as-
suming that the assignments of the other variables are fixed.
The algorithm repeats the assignment process until conver-
gence. Since the cluster assignment step for each variable
always reduces the objective function given in Eq. (3), Algo-
rithm 1 is guaranteed to reach a local optima. Formally,

Theorem 3. Algorithm 1 is guaranteed to converge to a local
minima.

Once we have obtained the joint-clusters, we can use Al-
gorithm 2 to create a collection of Markov networks for each
formula f , each of which has smaller treewidth as well as
variables with smaller domain size than the Markov network
obtained using the encoding described in the previous section.
This reduces the complexity of the junction tree algorithm.
The basic idea in Algorithm 2 is to create one first-order for-
mula f ′ for each cluster and attach to it a weight equal to the
cluster center. The formula represents a subset of ground-
ings of f , the partition function of which can be computed
efficiently by ignoring the weight potential. We summarize
the computational complexity of using the junction tree algo-
rithm for inference on the encoding returned by Algorithm 2
in the following theorem:

Theorem 4. Let f be a MLN formula having n +-variables,
d be the number of values in the domain of each + variable,
k be the number of clusters, and w be the treewidth of the
Markov network associated with f ′ in Algorithm 2. Then, the
time and space complexity of junction tree inference on the
encoding returned by Algorithm 2 is O

(
kn
(
d
k

)w+1
)

.

Algorithm 2 Partition-Network
(MLN function f , Set of partitions {P(l)})

Let, G = {}.
Let, X+ = {x1, . . . , xm} be the set of ‘+’ variables
Create a set of ordered tuples O = {(P (1)

i1
, . . . ,P

(m)
im

)}
from P(1) × . . .× P(m).

foreach tuple (P
(1)
i1
, . . . ,P

(m)
im

) in O do
Create a formula f ′ by replacing each xl ∈ X+

by a new logical variable x′l such that ∆(x′l) = P
(l)
il

.
The weight of f ′ is given by µC

(P
(1)
i1

,...,P
(m)
im

)

Encode f ′ as a Markov network G, and Add G to G.
return G.

5 Experiments
5.1 Setup
We evaluate the graphical model encodings proposed in our
paper by using them within two inference algorithms: (1)
Gibbs sampling to compute marginal probabilities and (2)
MaxWalkSAT for MAP inference. Specifically, we perform
the counting sub-step within both inference algorithms using
our new graphical model encodings for the counting prob-
lem. We compare our exact encoding as well as approximate
encoding methods with the encoding approach proposed in
Venugopal et al. (we refer to this as ‘#SG’). We conducted
our experiments on the following three datasets:

(i) Student MLN having the formula ¬Student(x, +p) ∨
¬Publish(x, z) ∨Cited(z, +u)

(ii) WebKB MLN from the Alchemy web page
(iii) Citation Information-Extraction (IE) MLN form the

Alchemy web page
The primary goal of our experimental evaluation is to test the
accuracy and scalability of our new encodings.

In our experiments, we implemented our system on top
of the publicly available Magician system [Venugopal et al.,
2016] that uses #SG. That is, we used the same counting sub-
routines as the ones used by Magician, but replaced the graph-
ical model encoding used in Magician with our proposed ex-
act and approximate encoding methods respectively.

5.2 Results for MaxWalkSAT.
Fig. 4 shows the ‘cost’ of the MAP solution returned by each
solver (the cost is typically reported when the MAP problem,
which is a maximization problem, is solved as a minimiza-
tion problem) as a function of time. The smaller the cost, the
better the solver. Each solver was given 200 seconds for each
dataset. We tested four versions of our solvers against ‘#SG.’
They are ‘#WSG,’ which is the exact encoding approach and
three different ‘C-p’s which are obtained by using the clus-
tering approach described in section 4, where the number of
clusters equals p% of the number of constants in the domain.

We observe that our new approaches are better than ‘#SG’
and ‘C-10’ which compresses the parameter space to 10%
of the original is the best performing solver. We conjecture
that this is because, when p is small, MaxWalkSAT performs
more flips/second which results in a better exploration of the
state-space, which in turn improves its accuracy.
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Figure 4: Cost vs Time: Cost of unsatisfied clauses(smaller is better) vs time for different domain sizes. Notation used to label each figure:
MLN(numvariables, numclauses). Note: the quantities reported are for ground Markov network associated with the MLN. Standard deviation
is plotted as error bars.

5.3 Results for Gibbs Sampling
For Gibbs sampling, we evaluate the convergence of the sam-
pler and the accuracy of the computed marginals.

For measuring convergence of the Gibbs sampler, we use
the Gelman-Rubin (G-R) Statistic [Gelman and Rubin, 1992].
For a well-mixed sampler, the G-R statistic should ideally de-
crease over time illustrating that the MCMC chain has mixed.
To compute the G-R statistics, we set up five Gibbs sam-
plers from random initialization and measure within chain
and across chain variances for the marginal probabilities for
1000 randomly chosen ground query atoms. We compute the
G-R statistics for each of these query atoms and report the
mean G-R statistic.

For measuring accuracy, we use the KL-divergence be-
tween the average true marginal probabilities of ground query
atoms and the average approximate marginal probability
computed by the Gibbs sampler using our encodings. Note
that obtaining the true marginal probabilities is infeasible for
arbitrary evidence. Therefore, for this experiment, we did not
use evidence, in which case, the average true marginal prob-
ability is equal to 0.5.

Fig. 5 compares the convergence of the Gibbs sampler for
#SG as well as different clustering based approximations. We
observe that C-10 has the best convergence, and as we in-

crease the number of clusters, the convergence gradually be-
comes worse. When we have fewer clusters, the complexity
of weighted counting is smaller, which helps us draw more
samples and achieve faster convergence.

Fig. 6 compares the accuracy of Gibbs sampler when used
with #SG as well as different clustering based approxima-
tions. As before, for a smaller number of clusters, we get
higher accuracy within a fixed time (since we can collect
more samples/second). As we increase the number of clus-
ters, for the same time interval we collect fewer samples,
and therefore, the accuracy of computing the marginals is re-
duced.

In both Fig. 5 and Fig. 6, the performance of #WSG was
almost identical to C-90. Therefore, for readability, we do
not show the curves for #WSG.

6 Conclusion
In this paper, we developed two novel graphical model en-
codings for MLN formulas that have different weights for
different subsets of groundings. Both these encodings are
useful in solving a computationally complex counting prob-
lem that manifests itself in several sampling and local-search
based MLN inference algorithms. Namely, counting the sum
of weights of the groundings of an MLN formula that are sat-
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Figure 5: Convergence of the Gibbs Sampler.
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Figure 6: Accuracy of the Gibbs Sampler.

isfied in a given world. The first encoding was an exact en-
coding such that the partition function of the graphical model
corresponds exactly to the number of satisfied groundings
in the MLN formula. The second was an approximate en-
coding that clustered formula groundings with approximately
similar weights together, which in several cases, reduces the
treewidth of the encoded graphical model. We incorporated
our encoding in two well-known inference algorithms, the
Gibbs sampling, and the MaxWalkSAT. We demonstrated
through experiments that both of our encoding techniques re-
sult in more scalable and accurate inference algorithms.

Although our approach achieves scalability for the infer-
ence task of the untied MLNs, the greatest challenge is to
learn these models from the data. Since inference is a substep
of many popular learning methods, in future, we will focus
on developing a scalable learning algorithm for untied MLNs
by extending our current work. We will also explore other ef-
ficient encodings (e.g., variational inference based encoding)
for solving the counting task. Finally, since our cluster-based

encoding introduces symmetry in the otherwise asymmetric
untied MLNs, in future, we will implement novel lifted infer-
ence algorithms for these MLNs by leveraging our clustering
idea.
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