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Abstract
Recently there has been growing interest in learn-
ing probabilistic models that admit poly-time in-
ference called tractable probabilistic models from
data. Although they generalize poorly as compared
to intractable models, they often yield more accu-
rate estimates at prediction time. In this paper, we
seek to further explore this trade-off between gen-
eralization performance and inference accuracy by
proposing a novel, partially tractable representation
called cutset Bayesian networks (CBNs). The main
idea in CBNs is to partition the variables into two
subsets X and Y , learn a (intractable) Bayesian
network that represents P (X) and a tractable con-
ditional model that represents P (Y |X). The hope
is that the intractable model will help improve gen-
eralization while the tractable model, by leveraging
Rao-Blackwellised sampling which combines ex-
act inference and sampling, will help improve the
prediction accuracy. To compactly model P (Y |X),
we introduce a novel tractable representation called
conditional cutset networks (CCNs) in which all con-
ditional probability distributions are represented us-
ing calibrated classifiers—classifiers which typically
yield higher quality probability estimates than con-
ventional classifiers. We show via a rigorous experi-
mental evaluation that CBNs and CCNs yield more
accurate posterior estimates than their tractable as
well as intractable counterparts.

1 Introduction
A major issue in using probabilistic graphical models such
as Bayesian networks for solving real-world tasks is the
intractability of probabilistic inference [Darwiche, 2009;
Dechter, 2013]; the latter is NP-hard in general and com-
putationally infeasible in practice. One approach to tackle
the intractability of exact inference is to use poly-time ap-
proximate inference approaches such as likelihood weighting
and belief propagation. However, approximate techniques
are unreliable; specifically even if the model has excellent
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test set log-likelihood scores, its predictions can be way off
because the approximate inference schemes used to make
predictions are often inaccurate. An alternative approach for
tackling the intractability of inference is to learn tractable
probabilistic models—models that admit exact poly-time in-
ference—from data. However, tractable models generalize
poorly as compared to the intractable models where gener-
alization performance is measured using the average test set
log-likelihood score. Despite poor generalization, tractable
models are preferred over the approximate inference approach
because numerous experimental studies have demonstrated
that query answers derived from the former are often more
accurate than the ones derived from the latter [Rooshenas and
Lowd, 2014].

In this paper, we seek to learn probabilistic models that
balance the trade-off between generalization performance and
inference accuracy by leveraging Rao-Blackwellised (or cut-
set) sampling [Casella and Robert, 1996; Doucet et al., 2000;
Gogate and Dechter, 2005; Bidyuk and Dechter, 2006; Bidyuk
and Dechter, 2007]. At a high level, Rao-Blackwellised sam-
pling combines exact inference schemes with sampling tech-
niques as follows. It partitions the set of variables into two
subsets, say X and Y , performs sampling-based inference
on X and exact inference on Y for each sampled assign-
ment X = x. Using the Rao-Blackwell theorem [Casella
and Robert, 1996], it is easy to show that Rao-Blackwellised
sampling will yield higher quality estimates as compared to
pure sampling schemes (e.g., Gibbs sampling) that sample all
variables in the model.

Thus, a straight-forward approach for learning models that
admit efficient, poly-time Rao-Blackwellised sampling is to
heuristically partition the variables into two subsets X and
Y , learn a (potentially intractable) Bayesian network that
represents P (X) and a tractable model that represents the
conditional distribution P (Y |X). However, an issue with
this approach is that P (Y |X) needs to be defined for each
assignment X = x and is thus exponential in the number of
variables in X . To address this issue, we propose a novel rep-
resentation for P (Y |X) which is both compact and tractable
called conditional cutset networks (CCNs).

CCNs are based on a popular class of tractable models
called AND/OR cutset networks or CNs in short [Rahman et
al., 2014] that compactly model large joint probability dis-
tributions. These networks take advantage of fine-grained



properties of probability distributions such as context-specific
independence [Boutilier et al., 1996], identical probabil-
ity values and determinism [Chavira and Darwiche, 2008;
Gogate, 2009] as well as coarse properties such as condi-
tional independence to yield compact, yet rich models that can
faithfully model complex dependencies in many application
domains (e.g., computer vision, natural language processing,
etc.). At a high level, an AND/OR cutset network [Mateescu
and Dechter, 2005] is a rooted, directed acyclic graph which
consists of alternating levels of OR/sum and AND/product
nodes with tree Bayesian networks as leaf nodes. OR nodes
model conditioning while AND nodes model decomposition.

A CCN extends a CN to compactly represent P (Y |X) as
follows. It attaches a calibrated classifier1 [Niculescu-Mizil
and Caruana, 2005] to each OR node and each conditional
probability distribution in each tree Bayesian network. These
classifiers take an assignment X = x as input, treat Y ∈ Y
as a class variable and output a well-calibrated probability
distribution over Y . Compactness is achieved because the
number of parameters used by the classifiers typically scales
polynomially with |X|. Tractability is achieved because given
X = x, CCNs yield a (tractable) cutset network.

This paper makes three contributions. First, we propose a
novel representation called cutset Bayesian networks (CBNs)
that admits efficient Rao-Blackwellised sampling schemes.
CBNs combine Bayesian networks and CCNs by partitioning
the variables into two subsets X and Y , using a Bayesian net-
work to model P (X) and a CCN to model P (Y |X). Second,
we propose a novel structure learning algorithm for inducing
CCNs (and thus CBNs) from data. Finally, we demonstrate
via a thorough experimental evaluation that CBNs have su-
perior generative as well as discriminative performance as
compared to state-of-the-art CNs and Bayesian networks.

2 Background
Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Ym} denote sets
of Boolean variables where each variable Xi ∈ X and Yj ∈
Y takes values from the domain {0, 1}. Let x denote an
assignment of values to all variables in X . Given a subset S
of X , we denote the projection of x on S by xS .
AND/OR cutset networks [Rahman and Gogate, 2016b],
which we call CNs in short, are probabilistic models for repre-
senting large, multidimensional discrete probability distribu-
tions. Graphically, a CN is a rooted directed AND/OR tree (or
acyclic graph) with a tree Bayesian network attached to each
leaf node of the AND/OR tree. A CN over a set of variables
Y is defined recursively as follows:
• A tree Bayesian network over Y is a CN.
• An OR node labeled by a variable Yi ∈ Y such that
|Y | > 1 with two child CNs, each defined over the set
Y \{Yi} is a CN. The arcs from the OR node to its child
nodes are labeled with probability values in R+ such that
they sum to 1.
• Let (Y1,Y2) be a partition of Y (i.e., Y1 ∪ Y2 = Y and
Y1 ∩ Y2 = ∅) such that |Y | > 1. Then, an AND node

1Calibrated classifiers yield higher quality probability estimates
over the class variables as compared with conventional classifiers.

Y1

× ×

Y2 → Y5 Y3 Y3 → Y4 → Y6 Y5 → Y2

Y4 → Y6 Y4 → Y6

0.667 0.333

0.574 0.426

Figure 1: A cutset network defined over six variables {Y1, . . . , Y6}.
OR nodes are denoted by ovals, AND nodes by squares and leaf
nodes (tree Bayesian networks) by dotted rectangles. Left and right
arcs emanating from an OR node labeled by Yi indicate conditioning
over Yi = 1 and Yi = 0 respectively and are labeled with conditional
probabilities.

with two child CNs, one defined over Y1 and the second
defined over Y2 is a CN.

In CNs, OR nodes represent conditioning over the labeled vari-
able while AND nodes represent decomposition or conditional
independence—the probability distribution associated with an
AND node is the product of the probability distribution at its
children. Each edge emanating from an OR node is labeled
with the conditional probability of the variable taking the par-
ticular value given an assignment of values from the root to the
parent node. Let C denote a CN defined over a set of variables
Y . The probability of y w.r.t. C is given by

PC(y) =
∏

T∈TC(y)

T (yV (T ))
∏

pj∈pC(y)

pj (1)

where TC(y) is the set of tree Bayesian networks and PC(y)
is the set of conditional probability values respectively on the
sub-tree corresponding to the assignment y in C, and V (T )
denotes the variables of T . Fig. 1 shows an example cutset
network defined over the set {Y1, . . . , Y6} of variables.

CNs are tractable in that they admit linear time algorithms
(linear in the number of parameters) for two popular infer-
ence tasks: posterior marginal estimation (MAR) and (full)
maximum-a-posteriori estimation (MAP). MAR is defined as
the task of computing the marginal probability distribution
over all non-evidence variables in a probabilistic model given
evidence where evidence is defined as an assignment of values
to a subset of variables. MAP is defined as the task of finding
the most likely assignment to all non-evidence variables given
evidence. Both tasks can be solved by performing two-passes
over the CN [Dechter and Mateescu, 2007].

3 Conditional Cutset Networks
In this section, we propose a novel framework called con-
ditional cutset networks (CCNs) for compactly representing
conditional probability distributions P (Y |X). We also de-
scribe an algorithm for inducing the structure (and parameters)
of CCNs from data. We will use this representation and the
associated structure learning algorithm in the next section to
define and learn cutset Bayesian networks, a novel representa-
tion for multidimensional joint probability distributions.

A naive approach for representing and learning P (Y |X) us-
ing cutset networks is to learn a cutset network over Y for each



Y1

× ×

Y2 → Y5 Y3 Y3 → Y4 → Y6 Y5 → Y2

Y4 → Y6 Y4 → Y6

σ1(x) 1− σ1(x)

σ2(x) 1− σ2(x)

Figure 2: A conditional cutset network defined over 6 variables
{Y1, . . . , Y6} given X = {X1, X2, X3}. Parameters of the sig-
moid σ1(x) are (0.39,-0.5,0.3,0.305) and that of σ2(x) are (0.1,-
0.7,-0.9,0.2). The first weight in each sigmoid function is the bias
term. Sigmoids on the tree Bayesian network are not shown for
brevity. The cutset network obtained by instantiating the CCN with
the assignment (X1 = 0, X2 = 0, X3 = 1) is given in Fig. 1.

assignment X = x. Unfortunately, this approach is infeasible,
especially when |X| is large. To address this issue, we propose
to template the cutset networks as follows. We replace each
conditional probability distribution in the cutset network—at
each OR node and at each variable in each tree Bayesian
network—with a function of X such that the function has
polynomial (in |X|) number of parameters. Specifically, we
propose to represent each conditional distribution P (Y |X, πo)
at an OR node o using calibrated classifiers [Niculescu-Mizil
and Caruana, 2005] where Y ∈ Y , πo ∈ Πo and Πo is the set
of assignments on all paths from root of the CCN to o. Unlike
conventional classifiers, calibrated classifiers yield accurate
conditional probability estimates over the class variable Y .
For instance, if we use a calibrated logistic regression clas-
sifier, we have P (Y = 1|x, πo) = σ (w0 +

∑
i wixi) where

σ is the sigmoid function and the weights wi, 0 ≤ i ≤ |X|
are real numbers. We call conditional probability distribu-
tions (CPDs) represented using calibrated classifiers (CC) as
CC-CPDs. More formally, a CCN is defined as follows:
Definition 1 (CCNs) Let X,Y be disjoint sets of random
variables. A conditional cutset network is a cutset network
over Y in which each conditional probability distribution is
represented using CC-CPDs defined over X .
A CCN thus represents an exponential number of cutset net-
works. This is because given X = x, it yields a cutset network
over Y . Fig. 2 shows an example CCN that models the con-
ditional distribution P (Y1, . . . , Y6|X1, X2, X3). Instantiating
the CCN with the assignment (X1 = 0, X2 = 0, X3 = 1)
yields the cutset network given in Fig. 1. Thus, CCNs are
conditionally tractable in that given X = x, they admit linear
time MAP and MAR inference.

3.1 Structure Learning
Next, we present an algorithm for learning the structure of
CCNs (see Algorithm 1). The learning algorithm follows
the generic prescription given in prior work [Rahman et al.,
2014; Rahman and Gogate, 2016b] with the following major
change: the sufficient statistics are computed using conditional
or discriminative methods.

The input to the algorithm are two sets of variables: X and
Y , a datasetD over X and Y and two constants E and ε. The
algorithm has three recursive steps which induce OR nodes,

Algorithm 1: LEARNCCN (D, Y , X , E, ε)
Input: Training Instances D, Set of variables Y , X , an

Integer E > 0 and a real number ε.
Output: A CCN representing P (Y |X)

1 begin
2 if D has fewer than E examples then
3 return CONDITIONAL-CHOW-LIU(D,Y , X)
4 end
5 for all pairs (Yi, Yj) ∈ Y , i 6= j do
6 Compute P (Yi, Yj |X) using calibrated classifiers
7 Use P and D to compute Score(Yi, Yj) (see Eq. (2))
8 end
9 Construct a complete graph G with variables in Y as

nodes and edges weighted by Score(Yi, Yj)
10 Remove edges having weight < ε from G
11 if G has J > 1 connected components then
12 Construct an AND node a having J child nodes

o1, . . . , oJ
13 for j = 1 to J do
14 oj=LEARNCCN(Dj ,Yj , X ,E,ε)
15 end
16 return a
17 end
18 Heuristically select Y ∈ Y (see Eq. (3)) and construct

an OR node o labeled with Y and two child nodes l
and r

19 Label the edge from o to l and from o to r with
P (Y = 1|X) and 1− P (Y = 1|X) respectively

20 l =LEARNCCN(D|Y = 1,Y \ {Y }, X , E, ε)
21 r =LEARNCCN(D|Y = 0,Y \ {Y }, X , E, ε)
22 return o
23 end

AND nodes and tree Bayesian networks respectively. In the
base/termination step (lines 2-4), the algorithm induces a tree
Bayesian network (leaf node) using the conditional Chow-
Liu algorithm [Hong et al., 2014] if the number of training
examples is smaller than E. In the decomposition step, the
algorithm partitions the variables in Y into multiple parts
{Y1, . . . ,YJ} if certain conditions are satisfied and recurses
on each part, inducing an AND node (lines 5-17). In line 14,
the notation Dj refers to the projection of training instances D
on the variables in the set X ∪Yj . If neither the base case nor
the conditions for the decomposition step are satisfied, then the
algorithm executes the splitting step (lines 18-22). In this step,
the algorithm induces an OR node o labeled by a heuristically
chosen variable Y ∈ Y and having two child nodes l and r
(line 18). Then it recursively constructs CCNs on l and r (lines
20-21). In line 20 (21), the notation D|Y = 1 (D|Y = 0)
denotes a dataset in which training instances having Y = 0
(Y = 1) are removed from D.

Decomposition Step. In the decomposition step, we seek
to partition Y into subsets {Y1, . . . ,YJ} such that the dis-
tribution over Y given X can be written as P (Y |X) =∏J
j=1 P (Yj |X), namely each subset is conditionally inde-

pendent of the other given X . A naive approach will consider



all possible partitions of Y and check whether the above con-
dition is satisfied by estimating the strength of conditional
independence using the conditional mutual information (CMI)
score. However, this approach is impractical because it has
exponential time complexity. To address this problem, we
propose to approximate CMI using pairwise CMI and estimate
the latter using calibrated classifiers. In particular, we propose
to approximate the pairwise CMI between two variables Yi
and Yj using

Score(Yi, Yj) =
1

N

N∑
k=1

∑
yi

∑
yj

(
P (yi, yj |x(k))

log

[
P (yi, yj |x(k))

P (yi|x(k))P (yj |x(k))

])
(2)

where {x(1), . . . ,x(N)} denotes the examples in D projected
on X and P (yi, yj |x) is a calibrated classifier learned from
the dataset D at each recursive step with {Yi, Yj} as the class
variable and X as the attributes.
Score(Yi, Yj) measures the strength of dependence be-

tween Yi and Yj . We can use it to construct a partition of
Y as follows. We first construct a complete graph G which
has one node for each variable in Y . Then we delete all
edges from G such that Score(Yi, Yj) < ε, where ε is a small
pre-defined constant (the deleted edges signify weaker depen-
dencies). Each connected component of G corresponds to a
component of partition of Y .
Splitting Step. In the splitting step, we heuristically choose
a variable to condition on. At a high level, we would like to
have small depth CCNs (compact models) and to achieve this
we should choose a variable that quickly yields a decomposi-
tion of variables or the base case. Literature on graphical mod-
els and cutset networks [Darwiche, 2009; Rahman et al., 2014;
Di Mauro et al., 2015b] suggests that the best heuristic in
such cases is to choose a variable that has strong dependencies
with other variables (highest degree in a graphical model).
To measure the strength of the dependencies, we propose to
use Score(Yi, Yj), our approximation to pairwise CMI, and
select the variable having the highest score (defined below) to
condition on (line 18 in Alg. 1).

V arScore(Yi) =
∑
j:j 6=i

Score(Yi, Yj) (3)

Base Case. In the base case, we construct a tree Bayesian
network using the following approach [Hong et al., 2014]. We
construct a complete graph G in which each edge is labeled
with Score(Yi, Yj) (see Eq. (2)) and then choose a maximum
spanning tree over G.

4 Cutset Bayesian Networks
CCNs can be used to model a joint distribution over a disjoint
subsets of random variables X and Y using the chain rule,
namely P (X,Y ) = PB(X)PC(Y |X) where PC(Y |X) is
represented using a CCN C and PB(X) is represented using
a Bayesian network B. We call such models cutset Bayesian
networks (CBNs). The main virtue of CBNs is that they

help us explore the trade-off between generalization perfor-
mance (which Bayesian networks are good at) and inference
accuracy (which cutset networks are good at) by leveraging
Rao-Blackwellised or cutset sampling approaches [Casella and
Robert, 1996; Bidyuk and Dechter, 2007]. Next, we describe
how to derive accurate MAR estimates using cutset sampling.

4.1 Cutset Importance Sampling
At a high level, in cutset (Rao-Blackwellised) sampling, we
combine exact and sampling based approximate inference by
only sampling a subset of variables and then exactly inferring
over the remaining variables for each sampled assignment. We
can apply this approach to CBNs by sampling all variables
(X) in the Bayesian network and exactly inferring over all
variables (Y ) in the conditional cutset network given X = x.

Formally, let A and E denote the non-evidence and evi-
dence variables of X respectively. Similarly, let B and T
denote the non-evidence and evidence variables of Y respec-
tively. Let (E = e,T = t) be the evidence. Then, we can
compute the probability of evidence, as follows:

P (e, t) =
∑
a,b

PB(a, e)PC(b, t|a, e) (4)

=
∑
a

PB(a, e)

Q(a)
Q(a)

∑
b

PC(b, t|a, e) (5)

whereQ(a) is a proposal distribution defined over A such that
whenever PB(a, e) > 0 then Q(a) > 0. The proposal distri-
bution can be chosen using heuristic approaches (cf. [Gogate
and Dechter, 2005]) or it can equal the prior distribution such
as in likelihood weighting [Fung and Chang, 1989]. Given
samples (a(1), . . . ,a(N)) generated uniformly at random from
Q, we can estimate P (e, t) using the following unbiased esti-
mator [Bidyuk and Dechter, 2006]:

P̂ (e, t) =
1

N

N∑
i=1

PB(a
(i), e)

Q(a(i))

∑
b

PC(b, t|a(i), e) (6)

Note that for each sample a(i), the quantity∑
b PC(b, t|a(i), e) can be computed (exactly) in time

that scales linearly with the size of the conditional cutset
network and thus P̂ (e, t) can be computed efficiently. It
is known that the mean squared error of P̂ (e, t) can be
reduced by either increasing the number of samples N or by
reducing the variance of weights. The latter in turn depends
on how close the proposal distribution is to the posterior
distribution given by αPB(a(i), e)

∑
b PC(b, t|a(i), e) where

α is a normalization constant.
We can show that the Rao-Blackwell estimator P̂ (e, t) is

more accurate than the conventional importance sampling
estimator given below:

P̃ (e, t) =
1

N

N∑
i=1

PB(a
(i), e)PC(b

(i), t|a(i), e)

Q(a(i), b(i))
(7)

where Q(a, b) is a proposal distribution defined over A ∪B,
and (a(1), b(1)), . . . , (a(N), b(N)) are the samples generated
from Q. Specifically,



Dataset
Generative Performance (LL Scores)

Dataset
Discriminative Performance (CLL Scores)

BN CBN (%X) CN 20% Evidence 50% Evidence 80% Evidence
20 50 80 DACL CCN CN DACL CCN CN DACL CCN CN

NLTCS -6.00 -6.02 -6.01 -6.01 -6.00 NLTCS -4.31 -4.33 -4.30 -2.56 -2.58 -2.57 -0.98 -0.99 -0.98
MSNBC -6.09 -6.04 -6.04 -6.06 -6.25 MSNBC -4.59 -4.59 -4.81 -2.18 -2.18 -2.37 -0.86 -0.87 -0.98
KDD -2.13 -2.18 -2.15 -2.13 -2.15 KDD -1.60 -1.63 -1.61 -1.19 -1.19 -1.20 -0.36 -0.36 -0.37
Plants -12.17 -12.82 -12.38 -12.19 -12.46 Plants -8.73 -8.89 -8.96 -4.51 -4.53 -4.79 -1.64 -1.54 -1.70
Audio -39.19 -40.32 -39.28 -39.12 -40.22 Audio -31.38 -31.83 -31.61 -18.64 -18.67 -19.31 -7.66 -7.58 -7.99
Jester -51.96 -53.00 -52.02 -51.88 -52.91 Jester -41.48 -41.88 -41.71 -25.03 -24.96 -25.61 -9.89 -9.75 -10.25
Netflix -55.44 -56.52 -55.33 -55.26 -56.67 Netflix -44.07 -44.30 -44.27 -26.12 -26.03 -26.84 -10.31 -10.22 -10.72
Accident -26.25 -27.71 -26.62 -26.11 -28.78 Accident -19.33 -18.50 -21.27 -10.01 -10.24 -12.83 -3.55 -3.61 -4.95
Retail -10.81 -10.87 -10.82 -10.80 -10.91 Retail -8.42 -8.45 -8.45 -4.89 -4.88 -4.93 -1.67 -1.66 -1.70
Pumsb* -21.46 -22.93 -21.92 -21.51 -24.73 Pumsb* -15.16 -14.72 -16.30 -6.87 -6.98 -9.18 -1.98 -2.02 -2.67
DNA -76.49 -78.94 -77.16 -76.60 -82.49 DNA -61.30 -60.12 -67.75 -34.90 -32.98 -46.87 -13.06 -12.29 -14.82
Kosarek -10.56 -10.78 -10.60 -10.57 -10.84 Kosarek -8.77 -8.81 -8.80 -4.79 -4.76 -4.92 -1.16 -1.14 -1.22
MSWEB -9.76 -10.16 -9.80 -9.76 -9.82 MSWEB -8.65 -9.00 -8.69 -4.19 -4.25 -4.31 -1.67 -1.69 -1.75
Book -33.62 -34.36 -33.84 -33.72 -35.38 Book -27.46 -26.85 -28.26 -16.39 -15.90 -17.54 -6.73 -6.48 -7.74
Movie -48.61 -50.02 -49.11 -48.52 -53.81 Movie -39.77 -36.55 -41.94 -26.73 -24.85 -31.86 -9.18 -8.40 -13.55
WebKB -144.02 -147.75 -145.33 -143.94 -156.03 WebKB -118.21 -114.40 -122.82 -72.31 -69.34 -77.32 -27.04 -25.76 -29.69
Reuters -80.78 -84.43 -81.54 -81.12 -86.00 Reuters -68.86 -65.19 -66.55 -39.20 -36.56 -40.00 -16.97 -15.67 -18.13
20NG -147.98 -150.3 -147.89 -147.86 -156.09 20NG -122.76 -119.00 -125.25 -75.01 -71.69 -78.66 -29.29 -27.72 -31.75
BBC -230.70 -238.95 -231.82 -230.30 -236.25 BBC -198.26 -188.23 -200.87 -124.36 -114.52 -129.49 -47.30 -43.27 -50.13
Ad -14.39 -14.55 -14.01 -14.01 -15.16 Ad -8.94 -8.52 -9.79 -4.09 -3.41 -4.65 -1.57 -1.18 -1.93
Average -51.42 -52.93 -51.68 -51.38 -54.14 Average -42.10 -40.79 -43.20 -25.20 -24.03 -27.26 -9.64 -9.11 -10.65

(a) (b)

Table 1: (a) generative and (b) discriminative performance of CBNs and competing algorithms. We measure generative and discriminative
performance using test set log-likelihood (LL) score and test set conditional log-likelihood (CLL) score respectively. Bold values indicate
significantly higher scores.

Proposition 1 The variance of P̂ (e, t) is smaller than or
equal to P̃ (e, t) under the assumption Q(a) =

∑
bQ(a, b).

Remarks: (1) P̂ (e, t) can be easily modified to yield pos-
terior marginal estimates using the normalized importance
sampling approach (cf. [Liu, 2008]). (2) CBNs help us trade
inference accuracy with generalization performance because
as the number of variables in X is increased we expect that
the generalization performance will improve while inference
accuracy will drop because the variance of P̂ (e, t) will in-
crease. CBNs include BNs and CNs as special cases. All we
have to do is set Y = ∅ and X = ∅ respectively.

Learning CBNs. CBNs can be learned from data using the
following approach: (1) Heuristically partition the variables
into two subsets X and Y ; (2) Learn a BN over X using
various Bayesian network structure learning approaches; and
(3) Learn a CCN over Y given X using Algorithm 1.

5 Experiments
We evaluate the performance of CBNs on 20 benchmark
datasets (see Table 2 for their characteristics) which have been
used extensively in previous studies [Rooshenas and Lowd,
2014]. We evaluate the following algorithms: (1) bags of cut-
set networks (CNs) which serves as a strong state-of-the-art
baseline; (2) CBNs: we randomly select (exactly) T% of the
variables to include in the set X , with the rest as elements of
Y . We experiment with the following 4 values for T : 20%,
50%, 80% and 100%. In the latter case, the CBN yields a BN.
Thus, our study involves 5 competing algorithms: CNs, BNs
and CBNs with 20%, 50% and 80% of the variables designated

as the set X . Each algorithm was given a time bound of 48
hours. We learn a CCN over Y using Algorithm 1. We set E
to 10 in Algorithm 1 and for pruning low mutual information
edges, we use an adaptive threshold of ε = N−β where N is
the number of training examples and β ∈ {0.5, 0.7, 1.0}. We
learn a complete (intractable) Bayesian network (BN) over
X as follows: given a random order (X1, . . . , Xn) over all
the variables in X , we represent each conditional probability
distribution P (Xi|X1, . . . , Xi−1) using a calibrated classifier.
We learn bags of CNs following [Rahman and Gogate, 2016a;
Di Mauro et al., 2017] with the number of bags fixed to 50
and the maximum depth fixed to 5.

We experimented with the following mixture of calibrated
classifiers: α× (LR)+(1−α)× (RF ) where LR is a logistic
regression classifier with `2 penalty λ ∈ {10−i}i=3

i=−1, RF is
a random forest classifier having 40 random trees with depth
chosen from {3, 6, 9} and α ∈ [0, 1]. We tuned the various
hyper-parameters (e.g., α, λ, etc.) using the validation set.

5.1 Generative Performance
Table 1(a) shows the average test set log-likelihood (LL) scores
achieved by fully connected Bayesian networks (BNs) (100%
of variables in X), CBNs and CNs. The scores show a clear
trade-off between generalization performance and tractabil-
ity. As we increase the size of X from 20% to 100% (BNs),
namely as the exact inference complexity increases, the gen-
eralization performance improves. We observe that in many
cases, CNs have worse test set LL scores than CBNs.

Table 2 shows the test set conditional marginal log-
likelihood scores achieved by various models. Here, we ran-
domly select 50% and 80% of the variables as query vari-



Datasets Dataset Characteristics
Conditional Marginal Log-Likelihood Scores

50% Query 80% Query

BN CN CBN (% X) BN CN CBN (% X)
#Var #Train #Valid #Test 20 50 80 Best 20 50 80 Best

NLTCS 16 16181 2157 3236 -0.430 -0.348 -0.287 -0.249 -0.246 -0.246 -0.140 -0.171 -0.235 -0.187 -0.183 -0.183
MSNBC 17 291326 38843 58265 -0.512 -0.364 -0.349 -0.323 -0.324 -0.323 -0.432 -0.400 -0.387 -0.384 -0.439 -0.384
KDD 64 180092 19907 34955 -0.028 -0.036 -0.036 -0.035 -0.035 -0.035 -0.042 -0.045 -0.045 -0.042 -0.048 -0.042
Plants 69 17412 2321 3482 -0.206 -0.168 -0.072 -0.076 -0.084 -0.072 -0.090 -0.148 -0.112 -0.121 -0.111 -0.111
Audio 100 15000 2000 3000 -0.420 -0.431 -0.450 -0.438 -0.443 -0.438 -0.436 -0.483 -0.488 -0.467 -0.462 -0.462
Jester 100 9000 1000 4116 -0.558 -0.626 -0.606 -0.591 -0.564 -0.564 -0.589 -0.602 -0.624 -0.601 -0.588 -0.588
Netflix 100 15000 2000 3000 -0.501 -0.559 -0.546 -0.515 -0.497 -0.497 -0.497 -0.565 -0.564 -0.537 -0.514 -0.514
Accident 111 12758 1700 2551 -0.245 -0.249 -0.272 -0.222 -0.202 -0.202 -0.144 -0.192 -0.258 -0.208 -0.180 -0.180
Retail 135 22041 2938 4408 -0.083 -0.091 -0.086 -0.084 -0.085 -0.084 -0.113 -0.115 -0.113 -0.117 -0.113 -0.113
Pumsb* 163 12262 1635 2452 -0.190 -0.333 -0.209 -0.180 -0.196 -0.180 -0.057 -0.197 -0.146 -0.111 -0.069 -0.069
DNA 180 1600 400 1186 -0.540 -0.524 -0.512 -0.514 -0.526 -0.512 -0.446 -0.458 -0.469 -0.457 -0.442 -0.442
Kosarek 190 33375 4450 6675 -0.043 -0.071 -0.047 -0.045 -0.042 -0.042 -0.034 -0.038 -0.035 -0.034 -0.034 -0.034
MSWEB 294 29441 3270 5000 -0.047 -0.103 -0.066 -0.065 -0.052 -0.052 -0.035 -0.047 -0.039 -0.036 -0.038 -0.036
Book 500 8700 1159 1739 -0.053 -0.079 -0.063 -0.060 -0.056 -0.056 -0.058 -0.057 -0.054 -0.065 -0.059 -0.054
Movie 500 4524 1002 591 -0.169 -0.210 -0.148 -0.152 -0.166 -0.148 -0.259 -0.200 -0.161 -0.179 -0.194 -0.161
WebKB 839 2803 558 838 -0.316 -0.222 -0.202 -0.251 -0.301 -0.202 -0.265 -0.212 -0.212 -0.233 -0.266 -0.212
Reuters 889 6532 1028 1540 -0.106 -0.149 -0.092 -0.104 -0.103 -0.092 -0.116 -0.103 -0.098 -0.102 -0.125 -0.098
20NG 910 11293 3764 3764 -0.125 -0.135 -0.110 -0.111 -0.139 -0.110 -0.146 -0.112 -0.107 -0.104 -0.121 -0.104
BBC 1058 1670 225 330 -0.330 -0.249 -0.213 -0.305 -0.295 -0.213 -0.222 -0.215 -0.179 -0.191 -0.200 -0.179
Ad 1556 2461 327 491 -0.005 -0.212 -0.057 -0.021 -0.009 -0.009 -0.004 -0.107 -0.035 -0.012 -0.006 -0.006

Average -0.222 -0.258 -0.221 -0.217 -0.218 -0.204 -0.206 -0.223 -0.218 -0.209 -0.210 -0.199

Table 2: Average conditional marginal log-likelihood (normalized by the number of query variables) of BNs, CNs and CBNs for 50% and 80%
queries. Column Best shows score for CBNs having the smallest sample variance. Bold values indicate significantly higher score.

ables and the rest as evidence. Then we perform probabilistic
inference to compute the posterior marginal distribution of
each query variable given evidence. On CNs, we use exact
inference, on CBNs (Rao-Blackwellised) cutset likelihood
weighting (see section 4.1) and on BNs likelihood weighting
to compute the posterior marginal estimates. Table 2 includes
a column titled “Best” which gives the scores for the CBN hav-
ing the smallest sample variance (of weights) on each dataset.
It is well known that the smaller the sample variance, the
more accurate the algorithm. For the sampling algorithms, for
each test example, we generate 1000 samples and repeat the
experiment 10 times. From Table 2, we observe that CBNs
outperform CNs on a majority of the datasets for both 50%
and 80% query variables cases. Moreover, the CBN having
the smallest variance (column “Best”) almost always outper-
forms both CNs and BNs. Thus, our study suggests that we
can select the best CBN for a particular test example by run-
ning inference over all CBNs in parallel and choosing the one
having the smallest sample variance.

5.2 Discriminative Performance
We compare the discriminative performance of CCNs, namely
when all variables in X are observed to disciminatively trained
arithmetic circuits (DACL) [Rooshenas and Lowd, 2016] and
bags of cutset networks (CNs) [Rahman and Gogate, 2016a]
(the latter is a generative model). We use the Libra toolkit
[Lowd and Rooshenas, 2015] to learn ACs following the
methodology described in [Rooshenas and Lowd, 2016]. Ta-
ble 1(b) shows the average test-set conditional log-likelihood
(CLL) scores obtained by each of these models with (randomly
selected) 20%, 50% and 80% evidence variables (X). CCNs
outperform DACL on 10, 12 and 14 out of the 20 datasets

in the presence of 20%, 50% and 80% evidence variables re-
spectively (there are several ties: MSNBC for 20% evidence,
MSNBC and KDD for 50% evidence and KDD for the 80%
case). Both CCNs and DACLs outperform the well-trained
generative CNs in a majority of the cases. CCNs are signifi-
cantly better than DACLs on datasets having more than 500
variables. This implies that CCNs are capable of learning
more accurate models in high dimensions.

6 Conclusion
In this paper, we introduced a novel conditionally tractable
model called conditional cutset networks (CCNs) and its gen-
erative variant called cutset Bayesian networks (CBNs) that
combines CCNs with Bayesian networks. The main idea in
the latter is to partition the variables into two subsets X and
Y , learn a possibly intractable model over X but learn a
compact, conditionally tractable model for P (Y |X). This
allows us to explore the trade off between tractability and gen-
eralization performance (measured using test-set likelihood
score) in a systematic manner. We presented a novel structure
learning algorithm for CCNs and showed that it runs in polyno-
mial time by leveraging a novel approximation to conditional
mutual information that uses calibrated classifiers and data.
Experimentally, we showed that our new representation and
learning algorithms yield superior posterior estimates when
Rao-Blackwellised cutset sampling is used for inference.
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