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ABSTRACT

EXplainable Artificial Intelligence (XAI) approaches are used to
bring transparency to machine learning and artificial intelligence
models, and hence, improve the decision-making process for their
end-users. While these methods aim to improve human understand-
ing and their mental models, cognitive biases can still influence a
user’s mental model and decision-making in ways that system de-
signers do not anticipate. This paper presents research on cognitive
biases due to ordering effects in intelligent systems. We conducted a
controlled user study to understand how the order of observing sys-
tem weaknesses and strengths can affect the user’s mental model,
task performance, and reliance on the intelligent system, and we
investigate the role of explanations in addressing this bias. Using an
explainable video activity recognition tool in the cooking domain,
we asked participants to verify whether a set of kitchen policies
are being followed, with each policy focusing on a weakness or a
strength. We controlled the order of the policies and the presence of
explanations to test our hypotheses. Our main finding shows that
those who observed system strengths early-on were more prone to
automation bias and made significantly more errors due to positive
first impressions of the system, while they built a more accurate
mental model of the system competencies. On the other hand, those
who encountered weaknesses earlier made significantly fewer er-
rors since they tended to rely more on themselves, while they also
underestimated model competencies due to having a more negative
first impression of the model. Our work presents strong findings
that aim to make intelligent system designers aware of such biases
when designing such tools.
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1 INTRODUCTION

Over the past decade, machine learning and artificial intelligence al-
gorithms have been incorporated in different contexts and domains
to make systems more intelligent and autonomous. Unfortunately,
many of these so-called blackbox algorithms are hard to understand
for the users due to the complexity of their inner logic [47]. This
lack of transparency can cause users to experience problems due
to an inappropriate mapping between their mental model of how
the model works and the reality of how it works, which can lead
to other problems such as over or under-reliance on the intelligent
system [4].

To help solve these problems, researchers and practitioners have
introduced eXplainable Artificial Intelligence (XAI) models, where
the systems attempt to explain their decision-making process to
the users [27]. Explanations can be anything from general infor-
mation about and extracted from the model (e.g., post-hoc expla-
nations [21]) to annotation of the input to highlight the features
used in the decision-making process (e.g., [36]). For simplicity, in
the context of this paper, we refer to instance-level post-hoc expla-
nations as explanations and use them to test our hypotheses and
generalize our findings.

Theoretically, explanations should help users build a better men-
tal model of an intelligent system [48]. However, in practice, as the
models get more and more complex, it becomes harder to explain
them in a manner that is beneficial to the users—as also suggested
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by previous work in psychology (e.g., [14]). One major problem is
that with exploratory intelligent systems and tools, system design-
ers have little to no control over when users encounter inaccurate
and accurate predictions. As a result, the order of observing accu-
rate vs. inaccurate predictions may introduce unintended biases
in a user’s mental model of the system. For example, previous re-
search has shown that the order of encountering wrong predictions
significantly affected a user’s perception of accuracy [31]. However,
there is little understanding of the interplay between the order of
observing system weaknesses and the presence of explanations
with respect to the user’s mental model of the system.

In this study, we incorporate an explainable intelligent system (an
online user interface tool powered by an explainable deep learning
model) with an exploratory task to test how the order of observing
system weaknesses and strengths can affect user’s mental model of
the system, and whether explanation presence can help improve
these shaped mental models. The intelligent system we used was a
video activity recognition tool (with cooking videos) where users
could query the system to find certain actions and objects in the
videos. The task was simple but exploratory: users were provided
with a set of kitchen policies, and they had to determine which of the
policies were being followed and which were not in a set of cooking
videos. During the study session, the order of the policies was
manipulated to influence when participants experienced correct
and erroneous system outputs. We ran a 2x2 user study controlling
both policy order and explanation presence. Our results showed
that users with positive first impressions formed a better mental
model of system strengths, though they also made more errors
due to over-reliance on the model’s answers to queries. However,
users who encountered more model errors early formed negative
first impressions that ultimately lead to a limited mental model
and underestimation of system capabilities. Our work provides
a novel contribution through an empirical user study aimed to
help intelligent system designers to be aware of human cognitive
biases (specifically, anchoring bias and first impressions) when
using intelligent systems.

2 RELATED WORK

Researchers in the human-computer interaction (HCI) community
have been studying XAI systems from different angles. There have
been various research on design guidelines and reviews for explana-
tions based on their scope [1, 2], type [19], and target users [7, 40].
In the visualization community, researchers implemented and dis-
cussed different visualization techniques to improve user under-
standing of the model as a whole (e.g., [12, 32]), i.e., providing a
global overview (or explanations) for how the model works. How-
ever, most of the work in the HCI, machine learning, and artificial
intelligence communities have been focused on local explanations
that explain model behavior for each input-output [1]. In this paper,
we will also focus on local explanations.

The visualization aids used to describe system performance serve
as the basis for users to construct their understanding-or mental
model-of the system limits and competencies. Previous research
shows that it is not easy to capture and measure mental models due
to their temporal nature and their influence on user disposition [29].
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Since their initial description in 1943 [6], mental models are gen-
erally inferred from a variety of user study techniques, such as
think-aloud approaches [39], interviews [24], and well-constrained
survey questionnaires [10, 11]. Research on mental models in intel-
ligent systems shows that as users work with an intelligent system,
they develop more robust mental models, thus relying less on their
dispositional trust and more-so on their experiential trust [22, 23].
In XAI communities, different people have reviewed and proposed
different techniques and measures to quantify and qualify a user’s
mental model of the algorithm (e.g., [11, 27]). In AI/XAI research,
prediction tasks are commonly employed after users have time to
observe how the system performs [11, 40]. Given a novel sample,
users are asked to predict and estimate how they think the model
will respond; with controlled choices, the unique differences be-
tween the options serve as a proxy for what users believe about
the system. In this realm, Poursabzi-Sangdeh et al. [33] found that
simpler models with fewer features enable users to predict and
simulate the model predictions. As reflected in cognitive science,
when more models are required to make an inference, the more
challenging it is for individuals to understand the complexity of the
problem [14]; therefore, the emphasis is on making visualizations
that summarize the autonomous system in a tractable way to assist
in the valid construction of mental models.

Researchers in HCI and psychology communities have been
studying different cognitive and heuristic biases over the years. In
his book, Baron [3] lists and classifies more than 50 different known
and discovered cognitive biases. One of these classes is motivated
bias: Humans have beliefs that are aligned with the truth and can be
a basis for decision-making. Regardless, psychologists have found
that people often adapt their beliefs as they are reluctant to face
any consequences for these beliefs. One of the biases under this
category is primacy effect, which is a similar bias to what we are
addressing in this paper—also studied under different names (e.g.,
anchoring bias [5, 45], order bias [35], and first impressions [17,
31]). With this bias, a person’s initial assumptions or impressions
might affect their future behaviors. In intelligent systems, these first
impressions can affect future behaviors and hence, decisions [31].
In a survey about decision-making in critical systems, Lighthall
and Vazquez-Guillamet [20] discuss a few of these heuristic biases
that can affect a user’s decisions. For instance, confirmation bias
refers to when a person tries to collect redundant information to
find more evidence that their initial assumption is correct. They
argue two causes for this bias: (1) anchoring bias, where a person’s
decision on some variable is biases based on another variable; and
(2) a psychological tendency to rely on a[n incorrect] decision
they already made rather than restarting their decision-making
process. This is similar to what we are exploring in this paper, in
the sense that we are studying the mental models after the first
impressions are formed, as we believe first impressions can anchor
a person’s decision and prevent them from changing it in the future.
Referring to this paper, Wang et al. [46] proposed a theory-driven
framework to link explanation design to user reasoning goals in
order to mitigate the cognitive and some of the heuristic biases that
can affect the decision-making process.

In recent work, Kim et al. [16] show and discuss that the time
when the model makes an error can strongly influence user reliance.
They found that if users experience the errors earlier, their reliance
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decreases, while experiencing errors later-on can only influence
their reliance temporarily. Our work is similar, but extends this
examination of first impressions by exploring the interplay of model
transparency on mental models and user reliance. In other recent
work, Nourani et al. [31] studied how domain expertise affects users’
first impression formations of an intelligent system, and how these
impressions impact their trust and its evolution over time. Through
a user study with a simulated classification scenario, they found
that first impressions can significantly affect trust when users are
familiar with the domain; that is, with negative first impressions,
users had significantly lower trust while their naive counterparts
adjusted their level of trust based on their observations of the
system. Our work, however, focused on the user’s mental model in
amore exploratory scenario, meaning that we have less control over
what a user observes and how they experience the system. This
makes our work closer to decision-making tasks in more realistic
settings.

3 EXPERIMENT

We conducted a human evaluation to understand how first impres-
sions of intelligent systems can influence user mental models, as
well as task performance and reliance on the tool. We also sought
to learn whether explanations can help bypass the biases formed in
the earlier encounters with model predictions. In this section, we
describe our experiment design in more detail.

3.1 Explainable System

3.1.1 System Context. For this study, we sought an open-ended
scenario where users could explore the system and build a mental
model of how it works. With some intelligent systems, errors can
be tolerated to some extent and they may not be fatal. That is why it
might seem unnecessary for the users to build mental models of the
system. However, some systems naturally require a human agent
to monitor the outcomes and predictions rather than automatically
accepting failures without worrying about the consequences. Exam-
ples of such systems, and our system of choice, include video activity
recognition systems, where a model can be trained to automatically
detect activities that take place in the videos. In real-world scenar-
ios, activity recognition has many use-cases and can be critical due
to physical limitations and time constraints. Some examples include
fire detection [18], airport security [44], smart hospitals [42, 49], and
elderly care [15]. Since we desired a task where users are novices
and do not require any certain expertise or professional training,
we chose a cooking video scenario where the system was designed
to identify cooking-related tasks in a kitchen. In the rest of this
chapter, we briefly describe the model and interface we used for
the system we designed for our experiment.

3.1.2 XAl Model. The XAl model used in this study was trained
on a pre-annotated dataset of cooking videos called the TACoS
dataset [37]. Note that the development of the XAI model is not a
part of the contributions presented in this paper, as the model was
only used to serve the goals of the experiment while using a real
explainable model for the system. More details on the specifics of
the model can be found in our previous work [38]. Here, we provide
an overview of the model to help readers understand the basis for
the model capabilities and explanations.
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In the TACoS cooking videos [37], each frame of each video had
a set of labels (which we call ground labels) that summarized the
activity taking place in the video (for example, {“wash”, “carrot”,
“sink”} in frames where a carrot was being washed in the sink). The
problem was formulated as a multi-label classification problem
where given each frame of the video, the model had to assign the
correct labels to it. Each label was modeled as a binary random
variable where 0 and 1 indicated that the label was off or on respec-
tively. We implemented a two-layer architecture where the first
layer comprised a deep neural network based on GoogleNet [41]
that converted each frame into a set of noisy labels and the second
layer used a dynamic version of a tractable probabilistic model
called a cutset network [34] that modeled a conditional probability
distribution of the ground (true) labels given the noisy labels from
the neural network, i.e., P(G¥|EY*) where G = {G!,...,G,} is
the set of ground labels at frame ¢ and E* = {Ef, ..., El } is the set
of corresponding noisy evidence labels. The top layer was designed
as an “explanation” layer in order to (1) remove the noise from
the GoogleNet labels and (2) model the temporal relationships be-
tween the ground (true) labels. The model was trained on 30 videos
with a vocabulary of 35 labels. Explanations were computed on the
final trained model by formulating them as two standard proba-
bilistic inference queries: posterior marginal (MAR) and top-k most
probable explanation (MPE). The MAR query seeks to estimate
the probability of the true label given noisy labels obtained from
GoogleNet while the top-k MPE query seeks to find the top k most
likely assignments to the true labels.

3.1.3  Main Interface. We designed a video activity searching tool
to allow users to build specific queries and sort the videos from the
dataset. In this tool, we define each activity using three component
types: Action, Object, and Location. Fig. 1 shows the overview of
the interface. The top of the screen has a simple query builder
where users can input specific component combinations or select a
generic form (e.g., any action). After searching, the interface would
organize the videos into two lists based on whether the model
found the searched activity in each video or not. The XAI system
showed thumbnails for each video to distinguish them from the
other videos in the list. Each video was assigned an id number and
day of the week to help users track how the system responded.

3.1.4 Explanation Interface. By clicking on a thumbnail, a modal
overlay would open where users could watch the video and see
the model explanations to examine why the video was categorized
as a match (or non-match) for the query. Fig. 2 shows the three
explanation elements for each video that aimed to assist the users
in understanding why the model matched the query with the video.
Directly under the video progress-bar (Fig. 2.C) was a series of video
segments that highlighted the most relevant set of frames used by
the model to answer the current query. Clicking a video segment
updated the information presented in the other two explanation
elements: (1) The detected combinations (Fig. 2.D) listed the top
3 queries that the model associated with the currently-selected
video segment and (2) the detected components (Fig. 2.E) showed
the model’s confidence about the activity components detected
separately in this video segment
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Use this tool to ask the system questions and search the answer.

= Rules and
Policies

Tuesday ednesday #17 Thursday  #24

[ Monday #5 H Tuesday #7

@Watch Video [ @Watch Video [ @Watch Video [ @Watch Video [ @Watch Video [ @Watch Video

a videos found <
@Watch Video ] [ @Watch Video [ @Watch Video [ @ Watch Video [ @ Watch Video [ @Watch Video
Monday #4 Monday #6 Tuesday #8 Tuesday #9 Tuesday  #12 ] Tuesday #11 |
m videos not found m

Figure 1: The main overview of the user interface. By clicking in the top left corner (A), a panel opens from the left side of the
screen that includes a list of policies. Here, users recorded the kitchen’s compliance with each statement. (B) Users selected
components from three drop-downs to build a query and search for it among the videos. (C) The search sorted the thumbnails
into two categories: matching and non-matching videos. By showing a thumbnail preview of each video, their assigned unique
ID, and their corresponding weekday, users could select watch video to inspect and explore more.

e Found [cut + pepper + Any location] x
Q Detected Combinations
pepper cutting board
2 cut pepper plate
e < n/a pepper cutting board
G Detected Components
cut —— pepper ——
cutting board —— plate (
carrot —
(C

Figure 2: When clicking on the watch video button in the main interface, as seen in Fig. 1, participants would see a modal
to allow them to watch the video. (A) showed the selected query and whether the query is found or not found in the video
(B). If they were in the explanation presence, they were shown all the video segments that were used to come up with the
answer (found/not found) under the progress bar (C). They were able to click on each of the available segments to see the
model justification based on the relevant activities found in the segment (D), as well as the system’s confidence score in all the
components it detected within the selected segment (E).
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3.2 Research Goals and Hypotheses

For this study, we were primarily motivated to understand the role
of first impressions on a user’s mental model formation. As one
of the main motivations behind XAI research is to improve user
understanding and mental models of intelligent systems [9], we
deemed to test whether and how the addition of explanations can
affect user mental models, given that users might have formed ini-
tial biases in their assumptions towards the system. Therefore, we
designed a policy-verification task, where the system described in
Section 3.1 was used to verify whether a set of kitchen guidelines
and policies are being followed by the people performing cooking
activities. This was a task, exploratory enough to allow users to
freely test and observe various system predictions to build a mental
model of both system weaknesses and strengths. Moreover, with
an open-ended and real-world scenario, we are able to generalize
our findings to other intelligent decision aids. We designed a study
where participants observed the same set of policies, while we con-
trolled that earlier in the usage, some observed policies that expose
system weaknesses while others observed the policies that exposed
system competencies. Also, with each order, some participants were
provided explanations while others were not. By comparing these
conditions, our evaluation explored how users’ interpretation of the
same system may be different based on their experience of system
performance with or without the addition of explanations. These
goals and research question are summarized in the following set of
hypotheses:

e H1: Encountering model weaknesses early-on will lead to
less usage and reliance compared to encountering model
strengths early.

e H2: Positive first impressions can improve user mental mod-
els while negative first impressions can impair them.

e H3: Regardless of the order of encountering model weak-
nesses and strengths, model explanations help decrease or
eliminate the effect of anchoring bias on user reliance on the
system.

o H4 The addition of explanations will significantly improve
user task-performance and mental models by increasing their
understanding of Al system weaknesses and competencies.

3.3 Experimental Design

After describing the intelligent system and the goals of the study,
we turn our attention to the study design details.

3.3.1 User task. Using the XAI system described in Section 3.1,
we sought an exploratory task to allow the participants to use
and experience the system and build a mental model of it. As we
were also considering a task that did not require any expertise or
professional training, we used a kitchen policy scenario, where
participants were given a set of kitchen rules and policies and were
asked to determine, using the system, which of the policies were
being followed by the kitchen staff.

We generated intricate policies that generally required users
to build and test multiple queries in order to encourage further
use of the intelligent system. Each policy was designed to either
expose model weaknesses (i.e., components that were misidentified
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or remained unidentified) or model strengths (i.e., those compo-
nents known to be consistently identified correctly). Due to this
design, we ended up with 4 policies focused on system weaknesses
and 4 policies focused on system strengths. Additionally, we used
one policy as attention check, which was unique since it was not
ubiquitously followed by the kitchen staff, but would sound logical
to users not watching the videos: “Employees wash their hands
immediately after entering the kitchen”. Ultimately, participants
received nine policies to interpret and were asked to determine
their truthfulness in a set of thirty cooking videos. Policies were
simple statements of fact that used components available in the
query builder, like “Employees must not use pineapples more than 3
days a week” or “Carrots are only cut on rectangular cutting boards”.
Additionally, since the post-task questionnaire asked users to re-
port on their mental models and usage of the system, we repeated
components in multiple policies to increase memorability and to
support user understanding.

The interface included a list of policies (a hidden panel on the
left side of the screen until the participants decided to open them
by pressing the “Rules and Policies” on the top left corner of the
screen, as seen in Fig. 1.A), and participants indicated if each was
met with yes and no buttons.

3.3.2 Conditions. To address our goals and hypotheses, we de-
signed a 2x2 between-subjects user study with two independent
variables: (1) policy order and (2) explanation presence. Participants
were assigned one of the four conditions randomly and everyone
completed the same task. We controlled the order of observing poli-
cies so that some participants were exposed to system weaknesses
first while others were exposed to system strengths first. We also
maintained that the attention check policy would always remain
in the middle of the list of policies. Ultimately, all participants ob-
served the same set of policies, but with varying order. In pilot
testing, we observed that participants consistently examined each
policy in sequence starting from the top of the list, so we relied on
this behavior to control for the policy order factor. We also updated
the system interface described in sections 3.1.3 and 3.1.4 to match
the assigned condition. We changed the video thumbnails to show
the most relevant frame for the with explanations conditions and
the middle frame for the no explanations conditions. Also, while
those in the with explanations conditions observed all the three
explanation elements within the explanation interface, the partici-
pants in the no explanations conditions were only provided with
the video player (i.e., only elements (A) and (B) in Fig. 2).

3.3.3  Measures. In addition to interaction logs, we asked partici-
pants to complete four post-task questionnaires designed to quan-
tify and explore the limits of users’ perception of the system’s
strengths and weaknesses (i.e., their mental models), as well as
usage and reliance. We selected two types of questions for assess-
ing mental models. The first, as shown in Fig. 3.A, asked users to
estimate the detection accuracy for eight activity components we
selected that appeared in the policies frequently. Some of these com-
ponents were from model weaknesses (e.g., pineapple) and some
of them were from model strengths (e.g., carrot). Estimation of
accuracy is an established known method for estimating general
user understanding of model performance and mental model of
system capability (e.g., [13, 27, 31]). With a slider, users indicated
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Component

Cucumber

Estimated detected accuracy (percentage)

Nourani et al.

Your confidence

Low | High

70%

System Would: Not Match

Your Confidence: Low High

Query: Move + Pineapple + Any location

45 3

System Would: Not Match

Your Confidence: Low

Figure 3: Examples of the mental model questions for the user study. (A) The user estimated the accuracy for cucumber was
70% and had a high confidence in their estimation. (B) Frame-query estimation where the user guessed whether the system
matched each frame to the query and rated their confidence in their response.

how accurately the system detected each component (0-100%) and
also marked their confidence (low or high) in their answer. In the
second question, as seen in Fig. 3.B, the participants were given an
activity query with a set of 4 video thumbnails and were asked to
predict whether the system would categorize each thumbnail as a
match or non match using their mental model of the system. They
were also asked to rate their confidence in their prediction (low or
high). We provided three queries, each with four assigned thumb-
nails, making a total of 12 frame-query predictions per participant.
This measure was inspired by prediction tasks which are another
established method in assessing and measuring the user’s mental
model of AI/XAI systems [11, 27].

We then asked the participants to rate both usage and helpfulness
for each interface element on a 5-point Likert scale. These measures
were adjusted for participants based on their explanation condition
(i.e., they were only asked about components they saw). Finally, they
rated their estimation of the model’s overall accuracy in percentage,
as well as answering a few free-response questions describing any
noticeable weaknesses or feedback to the researchers.

3.4 Procedure

In a single online session, participants completed the following,
as summarized visually in Fig. 4. The research was approved by
the organization’s institutional review board (IRB). All participants
took about 20 minutes to verify all the policies. After observing the
study’s informed consent, participants were asked to complete a
brief demographic background questionnaire.

Participants were then introduced to their task via video tutorial
that described the task as well as how to form a query by providing
an example. To help participants understand the task better, we
designed a tutorial video, introducing a hypothetical restaurant

owner who asks the participants to use the intelligent tool and verify
whether the kitchen rules are being followed by her employees by
inspecting the surveillance footage from the past week. Participants
were informed that one food was prepared by one chef per video
and that there were six videos per day of the week (i.e., 30 videos in
total). The tutorial then described how to use the tool and how the
task can be achieved. To avoid learning effects, the tutorial used
an extra policy to demonstrate the interface functions. We created
two versions of the video for each of the with explanations and no
explanations conditions. We also included a summary of the tasks
and important considerations on the main page under the query
building tool for users to refer to during the study.

After the tutorial, the main task had participants verify nine
relevant kitchen policies listed in a sidebar. After answering all
nine policies, the participant continued to the post-study question-
naire to evaluate their mental model and understanding of model
weaknesses and strengths (more detail provided in Section 3.3.3).

3.5 Participants

We recruited a total of 116 participants from the university gradu-
ate and undergraduate students to complete the study online for
class credit. The participants consisted of 78 males and 38 females.
After carefully investigating the responses, we removed a total of 6
participants since they did not pass the attention check. Of the 110
remaining participants, 54 observed explanations: 28 of whom saw
strong policies first and another 26 observed the weak policies first.
Of those provided no explanations, 29 observed strong policies first
while the remaining 27 initially saw weak policies. All participants
were compensated, including those who did not pass the attention
check.
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Figure 4: An overview of the study procedure.

4 RESULTS

In this section, we present the measures of our study and provide
an analysis of the results. Some of our findings were previously
accepted and presented in an extended abstract [30] in ACM CHI
2020. The current paper provides a more in-depth analysis of those
measures, as well as measures not previously presented.

Before performing data analysis, two steps were taken to avoid
certain problems caused by performing an online study. To ensure
the quality of participant responses without having a researcher
present during the study sessions, we added an attention check
policy and removed all of whom did not pass the test. Additionally,
to account for some participants taking breaks during the task, we
adjusted the task completion time by not counting any period of
inactivity longer than five minutes. For each of our measures, we
used a two-way factorial ANOVA for the main effect and Tukey HSD
post-hoc testing for significant interaction effects, when applicable.

4.1 User-task Performance

First, to test our hypothesis about user-task performance, we tested
both task time and task error to test. Task time is defined as the
amount of active time spent on the policy review task. Task error
was measured as the proportion of policies that the participant an-
swered incorrectly. No significant effect was found for explanation
presence. However, participants in the weak first conditions had
significantly less error in their answers to the policy questions than
participants in the strong first conditions, with F(1,106) = 6.55,
p < 0.05, 1712, = 0.058. No evidence of an interaction effect between
explanation presence and policy order was observed. Additionally,
no significant effects were observed on task time. Fig. 6.a shows
the distribution of the task-error results across the conditions.
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4.2 Component Accuracy

After completing the policy-review task, participants were asked
to estimate the model’s detection accuracy (percentage) for several
components as described in Section 3.3.3. An example question for
this measure is shown in Fig. 3.A. We selected these components so
that five corresponded to system weaknesses (low model accuracy)
and four to system strengths (high model accuracy). We compared
the participants’ perceived accuracy of each component with the
system’s actual accuracy for that component. Since our task and in-
terface primarily had participants focusing on the matches returned
by the system, we selected the system’s positive predictive value of
each component as the metric for system accuracy. Additionally,
we only considered system performance on the videos that were
used in the task.

For analysis purposes, we used the average error in percentage
for both weaknesses and strengths for each participant separately,
i.e., two metrics per participant. A similar approach was used for
the confidence scores. The reason for this decision was to be able to
compare the user’s mental model of both system weaknesses and
strengths and understand how each independent variable affected
this understanding. We will discuss each of the two separately
below:

Weakness Detection: For components that corresponded to sys-
tem weaknesses, the statistical tests did not indicate significant
differences across the conditions for neither the accuracy nor con-
fidence.

Strength Detection: For components that corresponded to system
strengths, participants who observed weaknesses first significantly
underestimated the model’s detection accuracy compared to those
who saw strengths first, with F(1, 106) = 6.24, p < 0.05, r]IZ, = 0.056.
Additionally, participants who observed weaknesses early-on were
significantly less confident about their estimations compared to
those who saw strengths early, with F(1, 106) = 3.94,p < 0.05, q?, =
0.036. We did not observe any significant effect based on explanation
presence on the user’s strength-components’ accuracy estimation or
the confidence in their estimations. Fig. 5.a and 5.b show participant
responses and their confidence across the conditions, respectively.

4.3 Frame-Query Prediction

Additionally, we asked participants to predict what output the
system would have on a given frame-query pair, as observed in
Section 3.3.3. An example of this prediction question can be seen
in Fig. 3.B. We did not observe any significant differences among
the conditions for the prediction accuracy. The mean prediction
accuracy was M = 0.599 with a standard deviation of SD = 0.127
for participants with explanations and M = 0.601 with a standard
deviation of SD = 0.148 for participants without explanations. This
shows that users’ estimations were barely better than guessing.
However, a significant effect was observed on the confidence partic-
ipants had in their responses. Participants with explanations were
significantly more confident in their predictions than those without
explanations, with F(1,106) = 4.12,p < 0.05, r]f, = 0.035. There
was also a significant interaction effect between explanation pres-
ence and policy order with F(1, 106) = 5.20,p < 0.05, 17?, =0.047. A
Tukey multiple comparison test showed the following significant
interactions: Among the participants with no explanations, those
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Figure 5: Mental model metrics. (a) Participants’ error of estimation for component accuracy (below 0 is underestimation). (b)
Percentage of components for which participants rated as being confident in their estimation. (c) Percentage of frame-query
pairs for which participants felt confident in their predictions. The last two plots are based on strength-detection (as described

in Section 4.2)

who observed strong policies first were significantly more confident
than their counterparts (p < 0.05). Participants with system expla-
nations and strong policies first were more confident than those
with no explanations and weak policies first (p < 0.05). Finally, of
the participants who observed policies reflecting weaknesses early
on, those who had system explanations were significantly more
confident than those without explanations (p < 0.01). Fig. 5.c shows
the confidence of the participant’s responses among the conditions.

4.4 Explanation Usage and Helpfulness

After finishing the mental model questions, we asked the partici-
pants to report their usage of different interface components and
how helpful they found them during their interaction period. Par-
ticularly, we were interested in the responses from those in the
with explanations conditions about the provided system explana-
tions; i.e., video segments (Fig. 2C), detected combinations (Fig. 2D),
and detected components (Fig. 2E). Both usage and helpfulness
were measured through a 5-point Likert scale. To run a more ac-
curate analysis based on these three explanation types and pol-
icy order, we defined explanation type as a new independent vari-
able for the analysis, and then performed a two-way independent
ANOVA on explanation usage and explanation helpfulness. The re-
sults show participants who encountered weaknesses first reported
a significantly lower rate of usage of system explanations than
participants who encountered strengths first, with F(1, 156) = 4.76,
p < 0.05, r]lz, = 0.030. Additionally, we found that regardless of
policy order, participants strongly preferred the video segments
(Fig. 2C) in terms of both helpfulness and self-reported usage, with
F(2,156) = 9.77, p < 0.001, 1112, = 0.111 for explanation helpfulness
and F(2,156) = 16.70, p < 0.001, 1712, = 0.176 for self-reported expla-
nation usage. We also analyzed user behavior—captured through
interaction logs—to understand the usefulness of explanations by
measuring how many queries participants performed on average
for each policy. Participants who had system explanations com-
pleted the policy review task with significantly fewer queries per

policy than participants who did not have system explanations,
with F(1,106) = 4.94,p < 0.05, r]?, = 0.045. No effect of policy
order was observed for the number of queries made. Fig. 6 shows
the self-reported usage and helpfulness of the different explanation
types and the number of queries performed based on condition.

5 DISCUSSION

Our results demonstrate significant effects of first impressions on
mental model formation, user reliance, and usage of the intelligent
systems. In this section, we discuss the general indications of our
results as well as their limitations and provide implications for
system designers and opportunities for future work.

5.1 Interpretation of the Results

Participants in the strong first conditions had significantly more
user-task error compared to those in weak first conditions. While
this might seem counter-intuitive, it can be explained when com-
pared to the findings from usage and helpfulness, as those who
encountered system strengths earlier used explanations signifi-
cantly more and found them to be significantly more helpful in the
task compared to those who encountered weaknesses early. This
indicates that observing strengths first can cause users to rely on
the system more than they should (i.e., automation bias), while
seeing weaknesses in the beginning can prevent this problem.

On the other hand, users in the weak first condition had prob-
lems forming their mental models of the system competencies and
strengths. They significantly underestimated the system capabilities
while also having less confidence in their estimations. These users
are skeptical of system strengths but not confident in their skepti-
cism because the weaknesses they observed earlier obscured their
judgment of the system capabilities. This causes them to rely more
on themselves rather than the model, leading to more confusion
when shaping their mental model.

We designed the frame-query prediction task to measure the
user’s granular mental model based on the specifics of the system.
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Figure 6: Reliance and Usage metrics. (a) Participant error on the policy task (Percentage). (b) Responses to the question "How
much did you use this element?". (c) Responses to the question "How helpful did you find this element?". The last two were
measured on a 5-point Likert scale, with higher values indicating a higher rating of helpfulness and usage.

Though we did not observe any significant effects on the user’s
prediction, we did observe significant effects for the user’s confi-
dence in their prediction. Participants were more confident about
their mental models when explanations were present. However,
given that the mean for their original predictions were consistently
around 50% in all the conditions (which is similar to guessing), we
can conclude that these relatively high reported confidence scores
are overconfidence. Our interaction effects show that without ex-
planations, users in the strong first condition were more confident
about their mental model, which we suspect is due to their au-
tomation bias, as discussed before. However, we observe that with
explanations, users—regardless of their policy order—were more
confident about their estimations compared to without explanation
condition in weak first order. This might indicate that users can
experience overconfidence in their mental model either when expla-
nations are present or when strengths are observed earlier. However,
we observed this overconfidence and overreliance through multiple
tests for strong first order, showing that the order effect plays a
more important role on a user’s mental model than explanation
presence (this can be supported by our results related to user-task
error: users in weak first condition made fewer errors regardless of
their explanation condition). This suggests that explanations alone
cannot solve the strong bias created by first impressions.

Overall, these results suggest that unlike the general belief that
model explanations can increase user understanding, they might
not necessarily be beneficial. Explanations might cause a misbelief
in the users that they understand how the model works when, in
fact, they do not. As shown by previous research in psychology,
overconfidence (in this case, in the form of overprecision) can have
serious consequences [8, 28]. Similarly, previous research suggests
overreliance can cause several problems [4, 40], and our results
provide a clear example of users making more errors due to au-
tomation bias. First impressions have strong influences on human’s
minds towards information [43], and as shown by our results, they

can be strong against automated systems as well. We would en-
courage future research into mitigating such biases, as they can
have lasting effects on users’ minds. More intensive and meaningful
user studies are needed with realistic systems—as other researchers
(e.g., [1, 7, 25, 26]) have also argued—to expose such biases and
find techniques to (1) make users aware of their biases, (2) prevent
users from forming new biases, and (3) help users rectify their own
misconceptions and inaccuracies in mental models.

5.2 Implications for Intelligent System
Designers

With more complex and exploratory systems, the role of instruc-
tions and guided training becomes more inevitable; that is, allowing
the users to use the system without interventions might affect how
their mental models are shaped. With more critical tasks, it might
be beneficial for the system to guide the formation of the mental
model early-on to help users develop a more accurate foundational
understanding of the system before actually using it in practice
to make important decisions. Through this initial training phase,
designers can control what kind of predictions users observe and
in what order they are observing them. These decisions are task-
dependent and can be made based on the priorities in that system.
For instance, if sacrificing human-task accuracy (due to errors made
from automation bias) to encourage the formation of more accurate
mental models is acceptable, the introduction might focus more on
showing system strengths earlier in the usage. Designers might also
choose to sacrifice the mental model formation since they want to
limit the number of mistakes made by the users, and thus, they can
focus on highlighting more errors earlier in the usage. However,
most designers might strive for the best of both worlds: limit the
user mistakes by avoiding automation bias while allowing users to
maintain an appropriate mental model of the system. Based on our
findings, users who observed strengths earlier made more errors
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but formed a better mental model of the system strengths. Consid-
ering this finding, in the initial training, designers can guide users’
early observations toward model strengths but also intervene and
show errors occasionally to balance users’ attention with errors as
well. When errors are shown, designers can focus more on explain-
ing why they happen. This can be done by altering explanation
type, scope, and focus and differentiating it from the explanations
provided for the correct predictions. Note that this is only possible
in guided training as designers know what instances are correct
and which are wrong.

Theoretically, a higher-level explanation could help users scaf-
fold more accurate mental models by first introducing how the
system works before using the instance-level explanations. Previ-
ous research suggests that global visualization and explanations
can help users form a more appropriate perception of how the
model works [27]. Allowing users to explore and understand how
the model works on a higher level might help users form a men-
tal model before encountering the intelligent system for the first
time. Future research needs to test the extent of information suf-
ficient for global visualizations for mental model formation, and
whether this approach is effective for avoiding ordering and an-
choring biases when using instance-level models. Finally, designers
need to consider the effect of first impressions when designing
explainable interfaces and be aware that the sole addition of ex-
planations cannot circumvent bias formation. Comparing various
types of explanations against one another (e.g., why and how ex-
planations [1, 7, 19]) to understand which method works better
against certain biases, or incorporating multiple explanation scopes
within one interface might allow users to decide what they want
to explore to understand the model decisions better. For example,
with an analytical tool, a user can look for different types of infor-
mation and explanations from the model when encountering errors
to improve their understanding of the model.

5.3 Limitations and Conclusion

In this research, we studied how ordering biases can affect a user’s
mental model and reliance formation in intelligent systems and
what role explanations play with such biases. Our study presents
novel findings that highlight the importance of users’ first impres-
sions on their formed mental model of the intelligent system. The
results demonstrate that when encountering system strengths ear-
lier in the usage, users built a better mental model of the system
strengths as they used the system explanations more frequently.
But, positive first impressions can lead to automation bias and more
errors as the user is overconfident in not only the model’s strengths
but also the weaknesses of the system; and they generally over-rely
on the system. In contrast, when encountering system weaknesses
early-on, users tend to rely more on themselves and make fewer
errors; likely because they develop a mental model that is skeptical
of the system strengths due to their negative first impressions.

In this study, we focused on a machine learning technique that
produces high-level explanations with a novice-friendly explana-
tion interface (e.g., instead of using probabilities, we showed visual
bars). While we believe our results can generalize for various real-
world systems incorporating this class of explanations, these results
might not generalize for low-level, more technical explanations.

Nourani et al.

Future research needs to test and compare ordering bias with these
explanations as well. Further, since our system employed instance-
level and local explanations, additional research is needed to assess
whether these results hold for higher-level, global intelligent sys-
tems.

Due to the nature of the design for our query-building tool,
when users searched for an activity, we divided the video into
two categories of matched and not matched based on whether the
system detected the activity within each video. The detection is of
course not always correct, i.e., a system might categorize a video
as a match when the activity did not take place in the video (false
positive error) or categorize a video as a mismatch while the activity
is in fact taking place in the video (false negative error). For most of
the activities, the number of matched videos was smaller than the
number of not matched videos, and thus, users needed to explore
and view fewer videos to detect false positives. Since it was easier to
determine false positives, we expect that the participants would fail
to catch lots of false negative errors, i.e., the videos that the system
failed to match for the query. As a result, some system weaknesses
were harder to identify, potentially leading to improper mental
models of system weaknesses. We suspect that this is the reason the
study could not find evidence of differences between the conditions
based on a user’s mental model of the model’s weaknesses. Future
research may benefit from refined evaluations focusing on both
error types to test user’s mental model formation for both strengths
and weaknesses.
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