
Probabilistic Theorem Proving: A Unifying Approach
for Inference in Probabilistic Programming

Vibhav Gogate
The University of Texas at Dallas
vgogate@hlt.utdallas.edu

Pedro Domingos
University of Washington

pedrod@cs.washington.edu

1 Introduction

Inference is the key bottleneck in probabilistic programming. Often, the main advantages of proba-
bilistic programming – simplicity, modularity, ease-of-use, etc. – are dwarfed by the complexity and
intractability of inference. In fact, one of the main reasons for the scarcity/absence of large appli-
cations and real-world systems that are based in large part on probabilistic programming languages
(PPLs) (c.f. [6, 8]) is the lack of fast, scalable and accurate inference engines for them. Therefore,
in this paper, we consider probabilistic theorem proving (PTP) [5], a recently proposed scalable,
general-purpose algorithm for inference in probabilistic logic, and extend it to yield a general-purpose
inference algorithm for PPLs.

LWSAT

LMC

MC

CountingWeig
htedL

if
te

d

PTP = LWMC

TP1

TP = SAT0

MPE = WSAT PI = WMC

Figure 1: Inference problems ad-
dressed by PTP. TP0 and TP1 is propo-
sitional and first-order theorem proving
respectively, PI is probabilistic infer-
ence, MPE is computing the most prob-
able explanation, SAT is satisfiability,
MC is model counting, W is weighted
and L is lifted. A = B means A can be
reduced to B.

PTP solves the following problem: compute the probability of
a formula given probabilities or weights associated with a set of
formulas in first-order logic (or Markov logic [4]). It includes
many important problems as special cases, including proposi-
tional satisfiability, inference in graphical models and theorem
proving (see Fig.1). In our previous work, we showed that the
problem addressed by PTP can be reduced to lifted weighted
model counting (LWMC). Consequently, algorithms that solve
LWMC can be used to solve all of these problems.We proposed
both an exact, DPLL/Relsat [1] based search algorithm and an
approximate, importance sampling based algorithm for LWMC
and showed that they are much superior in terms of accuracy
and scalability than state-of-the-art approaches.

Our new algorithms based on PTP/LWMC have several desir-
able properties. First, our LWMC algorithms are lifted, namely
just like theorem proving they can infer over a group of ob-
jects in one shot, often yielding exponential performance gains
over propositional algorithms. Since theorem proving serves as
a general-purpose inference engine for deterministic program-
ming languages such as Prolog, we envision that PTP/LWMC
will serve as a general-purpose inference engine for probabilis-
tic languages. Second, our LWMC algorithms take advantage of context-specific independence
(CSI) [2] and determinism [3] by leveraging SAT technology that has matured considerably over
the last few decades. Both CSI and determinism are quite common in real-world probabilistic pro-
grams. Third, and more importantly there exists an open source software implementation of LWMC,
Alchemy 2.0 (available at http://code.google.com/p/alchemy-2/) which can help speed
up the development time considerably.

2 Our Approach

We propose a two step solution to the inference problem in PPLs. In the first step, we convert the
probabilistic program and the query to a (recursive) probabilistic knowledge base (PKB) and in the
second step we use an extension of probabilistic theorem proving (PTP) [5] to compute the probability
of the query. We need to extend PTP because PTP, in its current form, is not suitable for performing

1

http://code.google.com/p/alchemy-2/

(define Asthma (lambda(x) (flip 0.1)))

(define Smokes (lambda(x)

(if (Asthma (x))

(flip 0.01) (flip 0.5))))

(define Friends (lambda (x,y)

(if (and (Asthma x) (Smokes y))

(flip 0.01) (flip 0.5))))

(a) A Church Program

¬Asthma(x), 0.9; Asthma(x), 0.1;
¬Asthma(x) ∨ ¬Smokes(x), 0.01;¬Asthma(x) ∨ Smokes(x), 0.99;
Asthma(x) ∨ ¬Smokes(x), 0.5; Asthma(x) ∨ Smokes(x), 0.5;
¬Asthma(x) ∨ ¬Smokes(y) ∨ ¬Friends(x, y), 0.01;
¬Asthma(x) ∨ ¬Smokes(y) ∨ Friends(x, y), 0.99;
¬((¬Asthma(x) ∨ ¬Smokes(y)) ∧ Friends(x, y)), 0.5
¬((¬Asthma(x) ∨ ¬Smokes(y)) ∧ ¬Friends(x, y)), 0.5

(b) An Equivalent PKB

Figure 2: (a) A Church program that defines a social network about friendship between Asthamtics and Smokers.
The first statement says that people generally don’t have Asthma. The second statement says that Asthamtics
generally do not smoke and the third statement says that people who have Asthma generally are not friends with
people who smoke. (b) A PKB that is equivalent to the church program given in (a).

inference in PKBs derived from probabilistic programs. The reason is that probabilistic programs are
often self-recursive and have infinite loops. As a result, PKBs derived from them have logical variables
with infinite domains, and on such PKBs, both exact and approximate versions of PTP may not halt.
We therefore extend PTP to handle such cases.

A PKB [5] is a set of weighted first-order logic formulas. A weighted formula is a pair (Fi, φi)
where Fi is a formula in first-order logic and φi ≥ 0. Hard formulas have φi = 0 and soft formulas
have φi > 0. Formally, if x is a world and Φi(x) is the potential corresponding to formula Fi, then
Φi(x) = 1 if Fi is true, and Φi(x) = φi if the formula is false. We interpret a universally quantified
formula as a set of features, one for each grounding of the formula, as in Markov logic [4]. A PKB
{(Fi, φi)} thus represents the following joint probability distribution P (x) = 1

Z

∏
i φ

ni(x)
i , where x

is a truth-assignment to all groundings of all atoms, ni(x) is the number of false groundings of Fi in
x, and Z is the partition function.

2.1 Converting a Probabilistic Program to a PKB

Fig. 2 illustrates the conversion. Fig. 2(a) shows a Church program [6] and Fig. 2(b) shows an
equivalent PKB. For each definition in the program, we introduce a first-order atom in the PKB.
The terms of the first-order atoms are the inputs to the corresponding definition (or its λ-expression).
For each constraint in each definition, we introduce a soft formula in the PKB. For example, for the
statement “if (Asthma(x)) (flip 0.01)” in the definition of Smokes, we introduce two soft formulas:
¬Asthma(x) ∨ ¬Smokes(x), 0.01 and ¬Asthma(x) ∨ Smokes(x), 0.99.

To handle recursion in probabilistic programs, we introduce some syntactic sugar. To differentiate it
from a regular PKB, we will call it recursive PKB. We illustrate the key steps in building a recursive
PKB from a probabilistic program using the program given in Fig. 3(a). To model the infinite self-
recursion, we introduce an atom SillyGameTmp, that has three logical variables x, y and t as its
terms. As before, the domains of x and y are the objects in the real-world while the domain of t is
infinite. Fig. 3(b) shows an equivalent recursive PKB to the church program given in Fig. 3(a). The
recursive PKB has four soft formulas and four hard formulas. The soft formulas model the probability
distribution associated with the flips. The first hard formula expresses the constraint that if Flip1 is
True then SillyGameTmp has to be True. The second hard formula models that constraint that if
Flip1 is False and Flip2 is True then SillyGameTmp has to be True. The third hard formula
represents the constraint that if both the flips are False then the value of SillyGameTmp at level t is
the same as the value returned by SillyGameTmp at level t + 1 (The variable t thus keeps track of
the recursion level). The last formula expresses the constraint that the marginal distribution associated
with SillyGame(x,y) is the same as marginal distribution associated with SillyGameTmp(x,y,0).

(define SillyGame (lambda(x,y)

(if (flip 0.3)

True

(if (flip 0.7)

False

(SillyGame (x,y))))))

(a) A Church program

¬Flip1(x, y, t), 0.3; Flip1(x, y, t), 0.7
¬Flip2(x, y, t), 0.7; Flip2(x, y, t), 0.3
¬(Flip1(x, y, t) ⇒ SillyGameTmp(x, y, t)), 0
¬(¬Flip1(x, y, t) ∧ Flip2(x, y, t) ⇒ ¬SillyGameTmp(x, y, t)), 0
¬(¬Flip1(x, y, t)∧¬Flip2(x, y, t) ⇒ (SillyGameTmp(x, y, t+1) ⇔ SillyGameTmp(x, y, t))), 0
¬(SillyGame(x, y) ⇔ SillyGameTmp(x, y, 0)), 0

(b) Equivalent Recursive PKB

Figure 3: (a) A toy self-recursive Church program (b) Equivalent recursive PKB to the program given in (a).

2

2.2 Answering Queries over the recursive PKB using PTP

PTP takes as input a PKB K and a query formula Q and outputs P (Q|K). Recall that the partition
function of a PKB K is given by Z(K) =

∑
x

∏
i φ

ni(x)
i . The conditional probability P (Q|K) is

simply a ratio of two partition functions: P (Q|K) = Z(K ∪ {Q, 0})/Z(K), where Z(K ∪ {Q, 0})
is the partition function of K with Q added as a hard formula.

The main idea in PTP is to compute the partition function of a PKB by performing lifted weighted
model counting. The model count of a formula in CNF is the number of worlds that satisfy it. In
weighted model counting (WMC) [3, 9], each literal has a weight, and a CNFs count is the sum over
satisfying worlds of the product of the weights of the literals that are true in that world. PTP uses a
lifted, weighted extension of the Relsat model counter [1], which is in turn an extension of the DPLL
satisfiability solver. PTP first converts the PKB into a CNF L and set of literal weights W . To achieve
this, we replace each soft formula Fi is replaced by a hard formula Fi ⇔ Ai , where Ai is a new atom
with the same arguments as Fi and the weight of Ai is φi.

Algorithm 1 shows pseudo-code for LWMC, the core routine in PTP.M(L) is the set of atoms appear-
ing in L, and nA(S) is the number of groundings of A consistent with the substitution constraints in
S. A lifted decomposition is a partition of a first-order CNF into a set of CNFs with no ground atoms
in common. A lifted split of an atom A for CNF L is a partition of the possible truth assignments to
groundings of A such that, in each part, (1) all truth assignments have the same number of true atoms
and (2) the CNFs obtained by applying these truth assignments to L are identical. For the ith part,
ni is its size, ti/fi is the number of True/False atoms in it, σi is some truth assignment in it, L|σi is
the result of simplifying L with σi , and Si is S augmented with the substitution constraints added
in the process. In a nutshell, LWMC works by finding lifted splits that lead to lifted decompositions,
progressively simplifying the CNF until the base case is reached.

A key sub-task in LWMC is identifying lifted splits and lifted decomposition in time that is polynomial
(preferably linear or constant) in the number of atoms in L. In [5, 7], we proposed a method for each.
Both methods are linear in the size ofL in absence of substitution constraints and can yield exponential
speedups over propositional WMC algorithms such as Cachet [9] and ACE [3].

Algorithm 1 LWMC(CNF C, substs. S, weights W)
// Lifted base case
if all clauses in C are satisfied then

return
∏

A∈A(C)(WA +W¬A)
nA(S)

if C has an empty unsatisfied clause then return 0
// Lifted decomposition step
if there exists a lifted decomposition {C1,1, . . . , C1,m1

,
. . . , Ck,1, . . . , Ck,mk

} of C under S then
return

∏k
i=1[LWMC(Ci,1, S,W)]mi

// Lifted splitting step
Choose an atom A
Let {Σ(1)

A,S , . . . ,Σ
(l)
A,S} be a lifted split of A for C under S

return
∑l

i=1 niW
ti
AW fi

¬ALWMC(C|σi; Si,W)

Algorithm 2 LWMCR(CNF C, substs. S, weights W)
// Lifted base case
if all clauses in C are satisfied then

return
∏

A∈A(C)(WA +W¬A)
nA(S)

if C has an empty unsatisfied clause then return 0
// Lifted decomposition step
if there exists a lifted decomposition {C1,1, . . . , C1,m1

,
. . . , Ck,1, . . . , Ck,mk

} of C under S then
return

∏k
i=1[LWMCR(Ci,1, S,W)]mi

// Lifted splitting step
Choose an atom A
Let {Σ(1)

A,S , . . . ,Σ
(l)
A,S} be a lifted split of A for C under S

if A is defined recursively
Estimate the probabilities PA and P¬A of A being True
and False respectively using Monte Carlo simulation
return

∑l
i=1 niP

ti
A P fi

¬ALWMCR(C|σi; Si,W)
else

return
∑l

i=1 niW
ti
AW fi

¬ALWMCR(C|σi; Si,W)

LWMC is an exact algorithm. However, it lends itself readily to Monte Carlo approximations: we just
replace the sum in the splitting step with a random choice of one of its terms, calling the algorithm
many times, and averaging the results via importance sampling. We can also improve the performance
of LWMC using many optimizations such as unit propagation and caching. Several such optimizations
are included in Alchemy 2.0, our open source software that implements PTP.

2.3 Handling Recursive PKBs

A potential problem with using LWMC on recursive PKBs is that the algorithm may not halt. How-
ever, we can easily circumvent this problem by modifying LWMC, yielding a new algorithm LWMCR
(see Algorithm 2). The key idea here is that while splitting an atom, if we realize that it is recursively
defined, we simply replace its True and False weights (WA andW¬A) by the respective marginal prob-
abilities (PA and P¬A), estimated using a Monte Carlo simulation technique (e.g., MCMC, rejection
sampling, advanced dynamic programming techniques such as in [10], etc.).

3

References
[1] R. J. Bayardo, Jr. and J. D. Pehoushek. Counting Models Using Connected Components. In

Proceedings of the Seventeenth National Conference on Artificial Intelligence, pages 157–162,
Austin, TX, 2000. AAAI Press.

[2] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-Specific Independence in
Bayesian Networks. In Proceedings of the Twelfth Conference on Uncertainty in Artificial Intel-
ligence, pages 115–123, 1996.

[3] M. Chavira and A. Darwiche. On probabilistic inference by weighted model counting. Artificial
Intelligence, 172(6-7):772–799, 2008.

[4] P. Domingos and D. Lowd. Markov Logic: An Interface Layer for Artificial Intelligence. Morgan
& Claypool, San Rafael, CA, 2009.

[5] V. Gogate and P. Domingos. Probabilistic Theorem Proving. In Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelligence, pages 256–265. AUAI Press, 2011.

[6] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum. Church: a
language for generative models. In Proceedings of the Twenty-Fourth Conference on Uncertainty
in Artificial Intelligence, pages 220–229, 2008.

[7] A. Jha, V. Gogate, A. Meliou, and D. Suciu. Lifted Inference from the Other Side: The tractable
Features. In Proceedings of the 24th Annual Conference on Neural Information Processing
Systems (NIPS), pages 973–981, 2010.

[8] A. Pfeffer. IBAL: A Probabilistic Rational Programming Language. In Bernhard Nebel, editor,
Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, pages
733–740. Morgan Kaufmann, 2001.

[9] T. Sang, P. Beame, and H. Kautz. Solving Bayesian networks by weighted model counting.
In Proceedings of the Twentieth National Conference on Artificial Intelligence, pages 475–482,
2005.

[10] A. Stuhlmüller and N. D. Goodman. A dynamic programming algorithm for inference in recur-
sive probabilistic programs. Second Statistical Relational AI workshop at UAI 2012 (StaRAI-12),
2012.

4

	Introduction
	Our Approach
	Converting a Probabilistic Program to a PKB
	Answering Queries over the recursive PKB using PTP
	Handling Recursive PKBs

