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Abstract

Markov Logic Networks (MLNs) are weighted first-order logic templates for gen-
erating large (ground) Markov networks. Lifted inference algorithms for them
bring the power of logical inference to probabilistic inference. These algorithms
operate as much as possible at the compact first-order level, grounding or proposi-
tionalizing the MLN only as necessary. As a result, lifted inference algorithms can
be much more scalable than propositional algorithms that operate directly on the
much larger ground network. Unfortunately, existing lifted inference algorithms
suffer from two interrelated problems, which severely affects their scalability in
practice. First, for most real-world MLNs having complex structure, they are
unable to exploit symmetries and end up grounding most atoms (the grounding
problem). Second, they suffer from the evidence problem, which arises because
evidence breaks symmetries, severely diminishing the power of lifted inference. In
this paper, we address both problems by presenting a scalable, lifted importance
sampling-based approach that never grounds the full MLN. Specifically, we show
how to scale up the two main steps in importance sampling: sampling from the
proposal distribution and weight computation. Scalable sampling is achieved by
using an informed, easy-to-sample proposal distribution derived from a compressed
MLN-representation. Fast weight computation is achieved by only visiting a small
subset of the sampled groundings of each formula instead of all of its possible
groundings. We show that our new algorithm yields an asymptotically unbiased
estimate. Our experiments on several MLNs clearly demonstrate the promise of
our approach.

1 Introduction

Markov Logic Networks (MLNs) [5] are powerful template models that define Markov networks
by instantiating first-order formulas with objects from its domain. Designing scalable inference for
MLNs is a challenging task because as the domain-size increases, the Markov network underlying
the MLN can become extremely large. Lifted inference algorithms [1, 2, 3, 7, 8, 13, 15, 18] try to
tackle this challenge by exploiting symmetries in the relational representation. However, current
lifted inference approaches face two interrelated problems. First, most of these techniques have the
grounding problem, i.e., unless the MLN has a specific symmetric, liftable structure [3, 4, 9], most
algorithms tend to ground most formulas in the MLN and this is infeasible for large domains. Second,
lifted inference algorithms have an evidence problem, i.e., even if the MLN is liftable, in the presence
of arbitrary evidence, symmetries are broken and once again, lifted inference is just as scalable as
propositional inference [16]. Both these problems are severe because, often, practical applications
require arbitrarily structured MLNs which can handle arbitrary evidence. To handle this problem, a
promising approach is to approximate/bias the MLN distribution such that inference is less expensive
on this biased MLN. This idea has been explored in recent work such as [16] which uses the idea of
introducing new symmetries or [19] which uses unsupervised learning to reduce the objects in the
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domain. However, in both these approaches, it may turn out that for certain cases, the bias skews the
MLN distribution to a large extent. Here, we propose a general-purpose importance sampling based
algorithm that retains the scalability of the aforementioned biased approaches but has theoretical
guarantees, i.e., it yields asymptotically unbiased estimates.

Importance sampling, a widely used sampling approach has two steps, namely, we first sample from
a proposal distribution and next, for each sample, we compute its importance weight. It turns out that
for MLNs, both steps can be computationally expensive. Therefore, we scale-up each of these steps.
Specifically, to scale-up step one, based on the recently proposed MLN approximation approach [19],
we design an informed proposal distribution using a “compressed” representation of the ground
MLN. We then compile a symbolic counting formula where each symbol is lifted, i.e., it represents
multiple assignments to multiple ground atoms. The compilation allows us to sample each lifted
symbol efficiently using Gibbs sampling. Importantly, the state space of the sampler depends upon
the number of symbols allowing us to trade-off accuracy-of-the-proposal with efficiency.

Step two requires iterating over all ground formulas to compute the number of groundings satisfied by
a sample. Though this operation can be made space-efficient (for bounded formula-length), i.e., we
can go over each grounding independently, the time-complexity is prohibitively large and is equivalent
to the grounding problem. For example, consider a simple relationship, Friends(x, y) ∧ Likes(y,
z)⇒ Likes(x, z). If the domain-size of each variable is 100, then to obtain the importance weight
of a single sample, we need to process 1 million ground formulas which is practically infeasible.
Therefore, to make this weight-computation step feasible, we propose the following approach. We
use a second sampler to sample ground formulas in the MLN and compute the importance weight
based on the sampled groundings. We show that this method yields asymptotically unbiased estimates.
Further, by taking advantage of first-order structure, we reduce the variance of estimates in many
cases through Rao-Blackwellization [11].

We perform experiments on varied MLN structures (Alchemy benchmarks [10]) with arbitrary
evidence to illustrate the generality of our approach. We show that using our approach, we can
systematically trade-off accuracy with efficiency and can scale-up inference to extremely large
domain-sizes which cannot be handled by state-of-the-art MLN systems such as Alchemy.

2 Preliminaries

2.1 Markov Logic

In this paper, we assume a strict subset of first-order logic called finite Herbrand logic. Thus, we
assume that we have no function constants and finitely many object constants. We also assume that
each argument of each predicate is typed and can only be assigned to a fixed subset of constants. By
extension, each logical variable in each formula is also typed. The domain of a term x in any formula
refers to the set of constants that can be substituted for x and is represented as ∆x. We further assume
that all first-order formulas are disjunctive (clauses), have no free logical variables (namely, each
logical variable is quantified), have only universally quantified logical variables (CNF). Note that all
first-order formulas can be easily converted to this form. A ground atom is an atom that contains no
logical variables.

Markov logic extends FOL by softening the hard constraints expressed by the formulas. A soft
formula or a weighted formula is a pair (f, w) where f is a formula in FOL and w is a real-number.
A MLN denoted byM, is a set of weighted formulas (fi, wi). Given a set of constants that represent
objects in the domain, an MLN defines a Markov network or a log-linear model. The Markov network
is obtained by grounding the weighted first-order knowledge base and represents the following
probability distribution.

PM(ω) =
1

Z(M)
exp

(∑
i

wiN(fi, ω)

)
(1)

where ω is a world, N(fi, ω) is the number of groundings of fi that evaluate to True in the world ω
and Z(M) is a normalization constant or the partition function.

In this paper, we assume that the input MLN to our algorithm is in normal form [9, 12]. A normal
MLN [9] is an MLN that satisfies the following two properties: (1) There are no constants in any
formula, and (2) If two distinct atoms with the same predicate symbol have variables x and y in
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the same position then ∆x = ∆y. An important distinction here is that, unlike in previous work
on lifted inference that use normal forms [7, 9] which require the MLN along with the associated
evidence to be normalized, here we only require the MLN in normal form. This is important because
normalizing the MLN along with evidence typically requires grounding the MLN and blows-up its
size. In contrast, normalizing without evidence typically does not change the MLN. For instance, in
all the benchmarks in Alchemy, the MLNs are already normalized.

Two main inference problems in MLNs are computing the partition function and the marginal
probabilities of query atoms given evidence. In this paper, we focus on the latter.

2.2 Importance Sampling

Importance sampling [6] is a standard sampling-based approach, where we draw samples from a
proposal distribution H that is easier to sample compared to sampling from the true distribution P .
Each sample is then weighted with its importance weight to correct for the fact that it is drawn from
the wrong distribution. To compute the marginal probabilities from the weighted samples, we use the
following estimator.

P ′(Q̄) =

∑T
t=1 δQ̄(s̄(t))w(s̄(t))∑T

t=1 w(s̄(t))
(2)

where s̄(t) is the tth sample drawn from H , δQ̄(s̄(t)) = 1 iff the query atom Q is assigned Q̄ in s̄(t)

and 0 otherwise, w(s̄(t)) is the importance weight of the sample given by P (s̄(t))
H(s̄(t))

.

P ′(Q̄) computed from Eq. (2) is an asymptotically unbiased estimate of PM(Q̄), namely as T →∞
P ′(Q̄) almost surely converges to P (Q̄). Eq. (2) is called as a ratio estimate or a normalized estimate
because we only need to know each sample’s importance weight up to a normalizing constant. We
will leverage this property throughout the paper.

2.3 Compressed MLN Representation

Recently, we [19] proposed an approach to generate a “compressed” approximation of the MLN using
unsupervised learning. Specifically, for each unique domain in the MLN, the objects in that domain
are clustered into groups based on approximate symmetries. To learn the clusters effectively, we use
standard clustering algorithms and a distance function based on the evidence structure presented to the
MLN. The distance function is constructed to ensure that objects that are approximately symmetrical
to each other (from an inference perspective) are placed in a common cluster.

Formally, given a MLNM, let D denote the set of all domains inM. That is, D ∈ D is a set of
objects that belong to the same domain. To compressM, we consider each D ∈ D independently and
learn a new domain D′ where |D′| ≤D and g : D→D′ is a surjective mapping, i.e., ∀ µ ∈D′, ∃ C
∈D such that g(C) = µ. In other words, each cluster of objects is replaced by its cluster center in
the reduced domain.

In this paper, we utilize the above approach to build an informed proposal distribution for importance
sampling.

3 Scalable Importance Sampling

In this section, we describe the two main steps in our new importance sampling algorithm: (a)
constructing and sampling the proposal distribution, and (b) computing the sample weight. We
carefully design each step, ensuring that we never ground the full MLN. As a result, the computational
complexity of our method is much smaller than existing importance sampling approaches [8].

3.1 Constructing and Sampling the Proposal Distribution

We first compress the domains of the given MLN, sayM, based on the method in [19]. Let M̂ be
the network obtained by groundingM with its reduced domains (which corresponds to the cluster
centers) and letMG be the ground Markov network ofM using the original domains. M̂ andMG
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Formulas:
R(x) ∨ S(x, y), w
Domains:
∆x = {A1, B1, C1, D1}
∆y = {A2, B2, C2, D2}

(a)

Formulas:
R1(µ1) ∨ S(µ1, µ3), w; R1(µ2) ∨ S(µ2, µ3), w
R1(µ1) ∨ S(µ1, µ4), w; R1(µ2) ∨ S(µ2, µ4), w
Domains:
ζ(µ1) = {A1, B1}; ζ(µ2) = {C1, D1}
ζ(µ3) = {A2, B2}; and ζ(µ4) = {C2, D2}

(b)

Figure 1: (a) an example MLNM and (b) MLN M̂ obtained fromM by grounding each logical
variable inM by the cluster centers µ1, . . ., µ4.

are related as follows. We can think of M̂ as an MLN, in which the logical variables are the cluster
centers. If we set the domain of each logical variable corresponding to cluster center µ ∈ D′ to ζ(µ)

where ζ(µ) = {C ∈ D|g(C) = µ}, then the ground Markov network of M̂ isMG. Figure 1 shows
an example MLNM and its corresponding compressed MLN M̂. Notice that the Markov network
obtained by groundingM is the same as the one obtained by grounding M̂.

Next, we describe how to generate samples from M̂. Let M̂ contain K̂ predicates, for which we
assume some ordering. Let E and U represent the counts of true (evidence) and unknown ground
atoms respectively. For instance, Ei ∈ E represents the number of true ground atoms corresponding
to the i-th predicate in M̂. To keep the equations more readable, we assume that we only have
positive evidence (i.e., an assertion that the ground atom is true). Note that it is straightforward to
extend the equations to the general case in which we have both positive and negative evidences.

Without loss of generality, let the j-th formula in M̂, denoted by fj , contain the atoms p1, . . . pk
where pi is an instance of the pi-th predicate and if i ≤ m, it has a positive sign else it has a negative
sign. The task is to now count the total number of satisfied groundings in fj symbolically without
actually going over the ground formulas. Unfortunately, this task is in #P . Therefore, we make the
following approximation. LetN(p1, . . . pk) denote the number of the satisfied groundings of fj based
on the assignments to all groundings of predicates indexed by p1, . . . pk. Then, we will approximate
N(p1, . . . pk) using

∑k
i=1N(pi), thereby independently counting the number of satisfied groundings

for each predicate. Clearly, our approximation overestimates the number of satisfied formulas because
it ignores the joint dependencies between atoms in f . To compensate for this, we scale-down each
count by a scaling factor (γ) which is the ratio of the actual number of ground formulas in f to the
assumed number of ground formulas. Next, we define these counting equations formally.

Given the j-th formula fj and a set of indexes k, where k ∈ k corresponds to the k-th atom in fj , let
#Gfj (k) denote the number of ground formulas in fj if all the terms in all atoms specified by k are
replaced by constants. For instance, in the example shown in Fig. 1, let f be R1(µ1) ∨ S1(µ1, µ3),
then, #Gf (∅) = 4, #Gf ({1}) = 2 and #Gf ({2}) = 1. We now count fj’s satisfied groundings
symbolically as follows.

S ′j = γ

m∑
i=1

Epi#Gfj ({i}) (3)

where γ =
#Gfj

(∅)
m#Gfj

(∅) = 1
m and S ′j is rounded to the nearest integer.

Sj = γ

(
m∑
i=1

Ŝpi#Gfj ({i}) +

k∑
i=m+1

(Upi − Ŝpi)#Gfj ({i})

)
(4)

where γ =
max(#Gfj

(∅)−S′
j ,0)

k#Gfj
(∅) , Ŝpi is a lifted symbol representing the total number of true ground

atoms (among the unknown atoms) of the pi-th predicate and Sj is rounded to the nearest integer.

The symbolic (un-normalized) proposal probability is given by the following equation.

H(Ŝ,E) = exp

 C∑
j=1

wjSj

 (5)
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Algorithm 1: Compute-Marginals

Input: M̂, ζ, Evidence E, Query Q, sampling threshold β, thinning parameter p, iterations T
Output: Marginal probabilities P for Q
begin

Construct the symbolic counting formula Eq. (5)
// Outer Sampler
for t = 1 to T do

Sample Ŝ(t) using Gibbs sampling on Eq. (5)
After burn-in, for every p-th sample, generate s̄(t) from Ŝ(t)

for each formula fi do
// Inner Sampler
for c = 1 to β do

// Rao-Blackwellization
f ′
i = Partially ground formula created by sampling assignments to shared variables in fi

compute the satisfied groundings in f ′
i

Compute the sample weight using Eq. (7)
Update the marginal probability estimates using Eq. (2)

where C is the number of formulas in M̂ and wj is the weight of the j-th formula.

Given the symbolic equation Eq. (5), we sample the set of lifted symbols, Ŝ, using randomized Gibbs
sampling. For this, we initialize all symbols to a random value. We then choose a random symbol Ŝi
and substitute it in Eq. (5) for each value between 0 to (Ûi) yielding a conditional distribution on Ŝi
given assignments to Ŝ−i, where Ŝ−i refers to all symbols other than the ith one. We then sample
from this conditional distribution by taking into account that there are

(
Ûi

v

)
different assignments

corresponding to the vth value in the distribution, which corresponds to setting exactly v groundings
of the ith predicate to True. After the Markov chain has mixed, to reduce the dependency between
successive Gibbs samples, we thin the samples and only use every p-th sample for estimation.

Note that during the process of sampling from the proposal, we only had to compute M̂, namely
ground the original MLN with the cluster-centers. Therefore, the representation is lifted because we
do not ground M̂. This helps us scale up the sampling step to large domains-sizes (since we can
control the number of clusters).

3.2 Computing the Importance Weight

In order to compute the marginal probabilities as in Eq. (2), given a sample, we need to compute
(up to a normalization constant) the weight of that sample. It is easy to see that a sample from the
proposal (assignments on all symbols) has multiple possible assignments in the original MLN. For
instance, suppose in our running example in Fig. 1, the symbol corresponding to R(µ1) has a value
equal to 1, this corresponds to 2 different assignments inM, either R(A1) is true or R(B1) is true.
Formally, a sample from the proposal has

∏K̂
i=1

(Ûi

Ŝi

)
different assignments in the true distribution.

We assume that all these assignments are equi-probable (have the same weight) in the proposal. Thus,
to compute the (un-normalized) probability of a sample w.r.tM, we first convert the assignments on
a specific sample, Ŝ(t) into one of the equi-probable assignments s̄ by randomly choosing one of the
assignments. Then, we compute the (un-normalized) probability P (s̄,E). The importance weight
(upto a multiplicative constant) for the t-th sample is given by the ratio,

w(Ŝ(t),E) =
P (s̄(t),E)

H (̂̄S(t),E)
(6)

Plugging-in the weight computed by Eq. (6) into Eq. (2) yields an asymptotically unbiased estimate
of the query marginal probabilities [11]. However, in the case of MLNs, computing Eq. (6) turns
out to be a hard problem. Specifically, to compute P̂ (s̄(t),E), given a sample, we need to go
over each ground formula inM and check if it is satisfied or not. The combined-complexity [17]
(domain-size as well as formula-size are assumed to be variable) of this operation for each formula
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is #P-complete (cf. [5]). However, the data complexity (fixed formula-size, variable domain-size)
is polynomial. That is, for k variables in a formula where the domain-size of each variable is d,
the complexity is clearly O(dk) to go over every grounding. However, in the case of MLNs, notice
that a polynomial data-complexity is equivalent to the complexity of the grounding-problem, which
is precisely what we are trying to avoid and is therefore intractable for all practical purposes. To
make this weight-computation step tractable, we use an additional sampler which samples a bounded
number of groundings of a formula inM and approximates the importance weight based on these
sampled groundings. Formally,

Let Ui be a proposal distribution defined on the groundings of the i-th formula. Here, we define this
distribution as a product of |Vi| uniform distributions where Vi = Vi1 . . . Vik is the set of distinct
variables in the i-th formula. Formally, Ui =

∏|Vi|
j=1 Uij , where Uij is a uniform distribution over the

domain-size of Vik. A sample from Ui contains a grounding for every variable in the i-th formula.
Using this, we can approximate the importance weight using the following equation.

w(s̄(t),E, ū
(t)
i ) =

exp

(∑M
i=1 wi

N ′
i(s̄(t),E,ū

(t)
i )

β
∏|Vi|

j=1 Uij

)
H(Ŝ(t),E)

(7)

where M is the number of formulas inM, ū(t)
i are β groundings of the i-th formula drawn from Ui

and N ′i(s̄
(t),E, ū

(t)
i ) is the count of satisfied groundings in ū

(t)
i groundings of the i-th formula.

Proposition 1. Using the importance weights shown in Eq. (7) in a normalized estimator (see Eq. (2))
yields an asymptotically unbiased estimate of the query marginals, i.e., as the number of samples, T
→∞, the estimated marginal probabilities almost surely converge to the true marginal probabilities.

We skip the proof for lack of space, but the idea is that for each unique sample of the outer sampler,
each of the importance weight estimates computed using a subset of formula groundings converge
towards the true importance weights (if all groundings of formulas were used). Specifically, the
weights computed by the “inner” sampler by considering partial groundings of formulas add up to
the true weight as T →∞ and therefore each importance weight is asymptotically unbiased. Eq. (2)
is thus a ratio of asymptotically unbiased quantities and the above proposition follows.

We now show how we can leverage MLN structure to improve the weight estimate in Eq. (7).
Specifically, we Rao-Blackwellize the “inner” sampler as follows. We partition the variables in each
formula into two sets, V1 and V2, such that we sample a grounding for the variables in V1 and
for each sample, we tractably compute the exact number of satisfied groundings for all possible
groundings to V2. We illustrate this with the following example.
Example 1. Consider a formula ¬R(x, y) ∨ S(y, z) where each variable has domain-size equal to d.
The data-complexity of computing the satisfied groundings in this formula is clearly d3. However, for
any specific value of y, say y = A, the satisfied groundings in this formula can be computed in closed
form as, n1d + n2d − n1n2, where n1 is the number of false groundings of R(x, A) and n2 is the
number of true groundings in S(A, z). Computing this for all possible values of y has a complexity of
O(d2).

Generalizing the above example, for any formula f with variables V, we say that V ′ ∈V is shared,
if it occurs more than once in that formula. For instance, in the above example y is a shared variable.
Sarkhel et. al [14] showed that for a formula f where no terms are shared, given an assignment to
its ground atoms, it is always possible to compute the number of satisfied groundings of f in closed
form. Using this, we have the following proposition.
Proposition 2. Given assignments to all ground atoms of a formula f with no shared terms, the
combined complexity of computing the number of satisfied groundings of f is O(dK), where d is an
upper-bound on the domain-size of the non-shared variables in f and K is the maximum number of
non-shared variables in an atom of f .

Algorithm 1 illustrates our complete sampler. It assumes M̂ and ζ are provided as input. First,
we construct the symbolic equation Eq. (5) that computes the weight of the proposal. In the outer
sampler, we sample the symbols from Eq. (5) using Gibbs sampling. After the chain has mixed, for
each sample from the outer sampler, for every formula inM, we construct an inner sampler that uses
Rao-Blackwelization to approximate the sample weight. Specifically, for a formula f , we sample
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Figure 2: Tradeoff between computational efficiency and accuracy. The y-axis plots the average
KL-divergence between the true marginals and the approximated ones for different values of Ns.
Larger Ns implies weaker proposal, faster sampling. For this experiment, we set β (sampling bound)
to 0.2. Note that changing β did not affect our results very significantly.

an assignment to each non-shared variable to create a partially ground formula, f ′ and compute the
exact number of satisfied groundings in f ′. Finally, we compute the sample weight as in Eq. (7) and
update the normalized estimator in Eq. (2).

4 Experiments

We run two sets of experiments. First, to illustrate the trade-off between accuracy and complexity, we
experiment with MLNs which can be solved exactly. Our test MLNs include Smokers and HMM
(with few states) from the Alchemy website [10] and two additional MLNs, Relation (R(x, y)⇒ S(y,
z)), LogReq (randomly generated formulas with singletons). Next, to illustrate scalability, we use
two Alchemy benchmarks that are far larger, namely Hypertext classification with 1 million ground
formulas and Entity Resolution (ER) with 8 million ground formulas. For all MLNs, we randomly set
25% groundings as true and 25% as false. For clustering, we used the scheme in [19] with KMeans++
as the clustering method. For Gibbs sampling, we set the thinning parameter to 5 and use a burn-in of
50 samples. We ran all experiments on a quad-core, 6GB RAM, Ubuntu laptop.

Fig. 2 shows our results on the first set of experiments, where the y-axis plots the average KL-
divergence between the true marginals for the query atoms and the marginals generated by our
algorithm. The values are shown for varying values of Ns = |GM|

|GM̂|
, i.e. the ratio between the ground

MLN-size and the proposal MLN-size. Intuitively, Ns indicates the amount by whichM has been
compressed to form the proposal. As illustrated in Fig. 2, as Ns increases, the accuracy becomes
lower in all cases because the proposal is a weaker approximation of the true distribution. However, at
the same time, the complexity decreases allowing us to trade-off accuracy with efficiency. Further, the
MLN-structure also determines the proposal accuracy. For example, LogReg that contains singletons
yields an accurate estimate even for high values of Ns, while, for Relation, a smaller Ns yields such
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(Ns, β) C-Time(secs) I-SRate
(210,0.1) 3 1200
(210,0.25) 3 250
(210,0.5) 3 150
(25,0.1) 8 650
(25,0.25) 8 180
(25,0.5) 8 100
(23,0.1) 15 600
(23,0.25) 15 150
(23,0.5) 15 90

(a) Hypertext (1M groundings)

(Ns, β) C-Time(secs) I-SRate
(10K,0.1) 25 125
(10K,0.25) 65 45
(10K,0.5) 65 15
(1K,0.1) 65 125
(1K,0.25) 65 45
(1K,0.5) 65 15
(25,0.1) 150 15
(25,0.25) 150 8
(25,0.5) 150 4

(b) ER (8M groundings)

Figure 3: Scalability experiments. C-Time indicates the time in seconds to generate the proposal.
I-SRATE is the sampling rate measured as samples/minute.

accuracy. This is because, singletons have symmetries [4, 7] which are exploited by the clustering
scheme when building the proposal.

Fig. 3 shows the results on the second set of experiments where we measure the computational-time
required by our algorithm during all its operational steps namely proposal creation, sampling and
weight estimation. Note that, for both the MLNs used here, we tried to compare the results with
Alchemy, but we were unable to get any results due to the grounding problem. As Fig. 3 shows, we
could scale to these large domains because, the complexity of sampling the proposal is feasible even
when generating the ground MLN is infeasible. Specifically, we show the time taken to generate
the proposal distribution (C-Time) and the the number of weighted samples generated per minute
during inference (I-SRate). As expected, decreasing Ns, or increasing β (sampling bound) lowers
I-SRate because the complexity of sampling increases. At the same time, we also expect the quality
of the samples to be better. Importantly, these results show that by addressing the evidence/grounding
problems, we can process large, arbitrarily structured MLNs/evidence without running out of memory
in a reasonable amount of time.

5 Conclusion

Inference algorithms in Markov logic encounter two interrelated problems hindering scalability – the
grounding and evidence problems. Here, we proposed an approach based on importance sampling
that avoids these problems in every step of its operation. Further, we showed that our approach yields
asymptotically unbiased estimates. Our evaluation showed that our approach can systematically
trade-off complexity with accuracy and can therefore scale-up to large domains.

Future work includes, clustering strategies using better similarity measures such as graph-based
similarity, applying our technique to MCMC algorithms, etc.
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