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Abstract
Lifted inference rules exploit symmetries for fast reasoning in statistical rela-
tional models. Computational complexity of these rules is highly dependent on
the choice of the constraint language they operate on and therefore coming up
with the right kind of representation is critical to the success of lifted inference.
In this paper, we propose a new constraint language, called setineq, which allows
subset, equality and inequality constraints, to represent substitutions over the vari-
ables in the theory. Our constraint formulation is strictly more expressive than
existing representations, yet easy to operate on. We reformulate the three main
lifting rules: decomposer, generalized binomial and the recently proposed single
occurrence for MAP inference, to work with our constraint representation. Exper-
iments on benchmark MLNs for exact and sampling based inference demonstrate
the effectiveness of our approach over several other existing techniques.

1 Introduction
Statistical relational models such as Markov logic [5] have the power to represent the rich relational
structure as well as the underlying uncertainty, both of which are the characteristics of several real
world application domains. Inference in these models can be carried out using existing probabilistic
inference techniques over the propositionalized theory (e.g., Belief propagation, MCMC sampling,
etc.). This approach can be sub-optimal since it ignores the rich underlying structure in the relational
representation, and as a result does not scale to even moderately sized domains in practice.

Lifted inference ameliorates the aforementioned problems by identifying indistinguishable atoms,
grouping them together and inferring directly over the groups instead of individual atoms. Starting
with the work of Poole [21], a number of lifted inference algorithms have been proposed. These
include lifted exact inference techniques such as lifted Variable Elimination (VE) [3, 17], lifted
approximate inference algorithms based on message passing such as belief propagation [23, 14, 24],
lifted sampling based algorithms [26, 12], lifted search [11], lifted variational inference [2, 20] and
lifted knowledge compilation [10, 6, 9]. There also has been some recent work which examines the
complexity of lifted inference independent of the specific algorithm used [13, 2, 8].

Just as probabilistic inference algorithms use various rules such as sum-out, conditioning and de-
composition to exploit the problem structure, lifted inference algorithms use lifted inference rules
to exploit the symmetries. All of them work with an underlying constraint representation that spec-
ifies the allowed set of substitutions over variables appearing in the theory. Examples of various
constraint representations include weighted parfactors with constraints [3], normal form parfac-
tors [17], hypercube based representations [24], tree based constraints [25] and the constraint free
normal form [13]. These formalisms differ from each other not only in terms of the underlying
constraint representation but also how these constraints are processed e.g., whether they require a
constraint solver, splitting as needed versus shattering [15], etc.

The choice of the underlying constraint language can have a significant impact on the time as well as
memory complexity of the inference procedure [15], and coming up with the right kind of constraint
representation is of prime importance for the success of lifted inference techniques. Although, there
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Approach Constraint Constraint Tractable Lifting
Type Aggregation Solver Algorithm

Lifted VE [4] eq/ineq intersection no lifted VE
no subset no union

CFOVE [17] eq/ineq intersection yes lifted VE
no subset no union

GCFOVE [25] subset (tree-based) intersection yes lifted VE
no inequality union

Approx. LBP [24] subset (hypercube) intersection yes lifted message passing
no inequality union

Knowledge Compilation eq/ineq intersection no first-order knowledge
(KC) [10, 7] subset no union compilation
Lifted Inference normal forms none yes lifting rules:
from Other Side [13] (no constraints) decomposer,binomial
PTP [11] eq/ineq intersection no lifted search & sampling:

no subset no union decomposer, binomial
Current Work eq/ineq intersection yes lifted search & sampling:

subset union decomposer,binomial
single occurrence

Table 1: A comparison of constraint languages proposed in literature across four dimensions. The deficien-
cies/missing properties for each language have been highlighted in bold. Among the existing work, only KC
allows for a full set of constraints. GCFOVE (tree-based) and LBP (hypercubes) allow for subset constraints
but they do not explicitly handle inequality. PTP does not handle subset constraints. For constraint aggregation,
most approaches allow only intersection of atomic constraints. GCFOVE and LBP allow union of intersections
(DNF) but only deal with subset constraints. See footnote 4 in Broeck [7] regarding KC. Lifted VE, KC and
PTP use a general purpose constraint solver which may not be tractable. Our approach allows for all the features
discussed above and uses a tractable solver. We propose a constrained solution for lifted search and sampling.
Among earlier work, only PTP has looked at this problem (both search and sampling). However, it only allows
a very restrictive set of constraints.

has been some work studying this problem in the context of lifted VE [25], lifted BP [24], and lifted
knowledge compilation [10], existing literature lacks any systematic treatment of this issue in the
context of lifted search and sampling based algorithms. This paper focuses on addressing this issue.
Table 1 presents a detailed comparison of various constraint languages for lifted inference to date.

We make the following contributions. First, we propose a new constraint language called setineq,
which allows for subset (i.e., allowed values are constrained to be either inside a subset or outside
a subset), equality and inequality constraints (called atomic constraints) over substitutions of the
variables. The set of allowed constraints is expressed as a union over individual constraint tuples,
which in turn are conjunctions over atomic constraints. Our constraint language strictly subsumes
several of the existing constraint representations and yet allows for efficient constraint processing,
and more importantly does not require a separate constraint solver. Second, we extend the three main
lifted inference rules: decomposer and binomial [13], and single occurrence [18] for MAP inference,
to work with our proposed constraint language. We provide a detailed analysis of the lifted inference
rules in our constraint formalism and formally prove that the normal form representation is strictly
subsumed by our constraint formalism. Third, we show that evidence can be efficiently represented
in our constraint formulation and is a key benefit of our approach. Specifically, based on the earlier
work of Singla et al. [24], we provide an efficient (greedy) approach to convert the given evidence
in the database tuple form to our constraint representation. Finally, we demonstrate experimentally
that our new approach is superior to normal forms as well as many other existing approaches on
several benchmark MLNs for both exact and approximate inference.

2 Markov Logic
We will use a strict subset of first order logic [22], which is composed of constant, variable,
and predicate symbols. A term is a variable or a constant. A predicate represents a property
of or relation between terms, and takes a finite number of terms as arguments. A literal is a
predicate or its negation. A formula is recursively defined as follows: (1) a literal is a formula,
(2) negation of a formula is a formula, (3) if f1 and f2 are formulas then applying binary logical
operators such as ∧ and ∨ to f1 and f2 yields a formula and (4) If x is a variable in a formula f ,
then ∃x f and ∀x f are formulas. A first order theory (knowledge base (KB)) is a set of quantified
formulas. We will restrict our attention to function-free finite first order logic theory with Herbrand
interpretations [22], as done by most earlier work in this domain [5]. We will also restrict our
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attention to the case of universally quantified variables. A ground atom is a predicate whose terms
do not contain any variable in them. Similarly, a ground formula is a formula that has no variables.
During the grounding of a theory, each formula is replaced by a conjunction over ground formulas
obtained by substituting the universally quantified variables by constants appearing in the theory.

A Markov logic network (MLN) [5] (or a Markov logic theory) is defined as a set of pairs {fi, wi}mi=1
where fi is a first-order formula and wi is its weight, a real number. Given a finite set of constants
C, a Markov logic theory represents a Markov network that has one node for every ground atom
in the theory and a feature for every ground formula. The probability distribution represented by
the Markov network is given by P (θ) = 1

Z exp(
∑m
i=1 wini(θ)), where ni(θ) denotes the number

of true groundings of the ith formula under the assignment θ to the ground atoms (world) and
Z =

∑
θ′ exp(

∑m
i=1 wi ∗ ni(θ′))) is the normalization constant, called the partition function. It is

well known that prototypical marginal inference task in MLNs – computing the marginal probability
of a ground atom given evidence – can be reduced to computing the partition function [11]. Another
key inference task is MAP inference in which the goal is to find an assignment to ground atoms that
has the maximum probability.

In its standard form, a Markov logic theory is assumed to be constraint free i.e. all possible sub-
stitutions of variables by constants are considered during the grounding process. In this paper, we
introduce the notion of a constrained Markov logic theory which is specified as a set of triplets
{fi, wi, Sx

i }mi=1 where Sx
i specifies a set (union) of constraints defined over the variables x appear-

ing in the formula. During the grounding process, we restrict to those constant substitutions which
satisfy the constraint set associated with a formula. The probability distribution is now defined
using the restricted set of groundings allowed by the respective constraint sets over the formulas in
the theory. Although, we focus on MLNs in this paper, our results can be easily generalized to other
representations including weighted parfactors [3] and probabilistic knowledge bases [11].

3 Constraint Language

In this section, we formally define our constraint language and its canonical form. We also define
two operators, join and project, for our language. The various features, operators, and properties of
the constraint language presented this section will be useful when we formally extend various lifted
inference rules to the constrained Markov logic theory in the next section (sec. 4).

Language Specification. For simplicity of exposition, we assume that all logical variables take val-
ues from the same domain C. Let x = {x1, x2, . . . , xk} be a set of logical variables. Our constraint
language called setineq contains three types of atomic constraints: (1) Subset Constraints (setct),
of the form xi ∈ C (setinct), or xi /∈ C (setoutct); (2) equality constraints (eqct), of the form
xi = xj ; and (3) inequality constraints (ineqct), of the form xi 6= xj . We will denote an atomic
constraint over set x by Ax. A constraint tuple over x, denoted by Tx, is a conjunction of atomic
constraints over x, and a constraint set over x, denoted by Sx, is a disjunction of constraint tuples
over x. An example of a constraint set over a pair of variables x = {x1, x2} is Sx = Tx

1 ∨Tx
2 , where

Tx
1 = [x1 ∈ {A,B}∧x1 6= x2∧x2 ∈ {B,D}], and Tx

2 = [x1 /∈ {A,B}∧x1 = x2∧x2 ∈ {B,D}].
An assignment v to the variables in x is a solution of Tx if all constraints in Tx are satisfied by v.
Since Sx is a disjunction, by definition, v is also a solution of Sx.

Next, we define a canonical representation for our constraint language. We require this definition
because symmetries can be easily identified when constraints are expressed in this representation.
We begin with some required definitions. The support of a subset constraint is the set of values
in C that satisfies the constraint. Two subset constraints Ax1 and Ax2 are called value identical
if V1 = V2, and value disjoint if V1 ∩ V2 = φ, where V1 and V2 are supports of Ax1 and Ax2

respectively. A constraint tuple Tx is transitive over equality if it contains the transitive closure of
all its equality constraints. A constraint tuple Tx is transitive over inequality if for every constraint
of the form xi = xj in Tx, whenever Tx contains xi 6= xk, it also contains xj 6= xk.

Definition 3.1. A constraint tuple Tx is in canonical form if the following three conditions are
satisfied: (1) for each variable xi ∈ x, there is exactly one subset constraint in Tx, (2) all equality
and inequality constraints in Tx are transitive and (3) all pairs of variables x1, x2 that participate
either in an equality or an inequality constraint have identical supports. A constraint set Sx is in
canonical form if all of its constituent constraint tuples are in canonical form.
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We can easily express a constraint set in an equivalent canonical form by enforcing the three condi-
tions, one by one on each of its tuples. In our running example, Tx

1 can be converted into canonical
form by splitting it into four sets of constraint tuples {Tx

11, T
x
12, T

x
13, T

x
14}, where Tx

11 = [x1 ∈
{B} ∧ x1 6= x2 ∧ x2 ∈ {B}], Tx

12 = [x1 ∈ {B} ∧ x2 ∈ {D}], Tx
13 = [x1 ∈ {A} ∧ x2 ∈ {B}],

and Tx
14 = [x1 ∈ {A} ∧ x2 ∈ {D}]. Similarly for Tx

2 . We include the conversion algorithm in the
supplement due to lack of space. The following theorem summarizes its time complexity.
Theorem 3.1.* Given a constraint set Sx, each constraint tuple Tx in it can be converted to canon-
ical form in time O(mk + k3) where m is the total number of constants appearing in any of the
subset constraints in Tx and k is the number of variables in x.

We define following two operations in our constraint language.
Join: Join operation lets us combine a set of constraints (possibly defined over different sets of
variables) into a single constraint. It will be useful when constructing formulas given constrained
predicates (refer Section 4). Let Tx and Ty be constraints tuples over sets of variables x and y,
respectively, and let z = x ∪ y. The join operation written as Tx on Ty results in a constraint
tuple T z which has the conjunction of all the constraints present in Tx and Ty. Given the constraint
tuple Tx

1 in our running example and Ty = [x1 6= y ∧ y ∈ {E,F}], Tx
1 on Ty results in [x1 ∈

{A,B} ∧ x1 6= x2 ∧ x1 6= y ∧ x2 ∈ {B,D} ∧ y ∈ {E,F}]. The complexity of join operation is
linear in the size of constraint tuples being joined.

Project: Project operation lets us eliminate a variable from a given constraint tuple. This is key
operation required in the application of Binomial rule (refer Section 4). Let Tx be a constraint tuple.
Given xi ∈ x, let x̄i = x \ {xi}. The project operation written as Πx̄iT

x results in a constraint
tuple T x̄i which contains those constraints in Tx not involving xi. We refer to T x̄i as the projected
constraint for the variables x̄i. Given a solution x̄i = v̄i to T x̄i , the extension count for v̄i is
defined as the number of unique assignments xi = vi such that x̄i = v̄i,xi = vi is a solution for T x.
T x̄i is said to be count preserving if each of its solutions has the same extension count. We require
a tuple to be count preserving in order to correctly maintain the count of the number of solutions
during the project operation (also refer Section 4.3).
Lemma 3.1. * Let Tx be a constraint tuple in its canonical form. If xi ∈ x is a variable which is
either involved only in a subset constraint or is involved in at least one equality constraint then, the
projected constraint T x̄i is count preserving. In the former case, the extension count is given by the
size of the support of xi. In the latter case, it is equal to 1.

When dealing with inequality constraints, the extension count for each solution v̄i to the projected
constraint T x̄i may not be the same and we need to split the constraint first in order to apply the
project operation. For example, consider the constraint [x1 6= x2 ∧ x1 6= x3 ∧ x1, x2, x3 ∈
{A,B,C}]. Then, the extension count for the solution x2 = A, x3 = B to the projected con-
straint T x̄1 is 1 where extension count for the solution x2 = x3 = A is 2. In such cases, we need to
split the tuple Tx into multiple constraints such that extension count property is preserved in each
split. Let x̄i be a set of variables over which a constraint tuple Tx needs to be projected. Let y ⊂ x
be the set of variables with which xi is involved in an inequality constraint in Tx. Then, tuple Tx

can be broken into an equivalent constraint set by considering each possible division of y into a set
of equivalence classes where variables in the same equivalence class are constrained to be equal and
variables in different equivalence classes are constrained to be not equal to each other. The num-
ber of such divisions is given by the Bell number [15]. The divisions inconsistent with the already
existing constraints over variables in y can be ignored. Projection operation has a linear time com-
plexity once the extension count property has been ensured using splitting as described above (see
the supplement for details).

4 Extending Lifted Inference Rules
We extend three key lifted inference rules: decomposer [13], binomial [13] and the single occur-
rence [18] (for MAP) to work with our constraint formulation. Exposition for Single Occurrence
has been moved to supplement due to lack of space. We begin by describing some important def-
initions and assumptions. Let M be a constrained MLN theory represented by a set of triplets
{(fi, wi, Sx

i )}mi=1. We make three assumptions. First, we assume that each constraint set Sx
i is

specified using setineq and is in canonical form. Second, we assume that each formula in the MLN
is constant free. This can be achieved by replacing the appearance of a constant by a variable and
introducing appropriate constraint over the new variable (e.g., replacing A by a variable x and a
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constraint x ∈ {A}). Third, we assume that the variables have been standardized apart, i.e., each
formula has a unique set of variables associated with it. In the following, x will denote the set of
all the (logical) variables appearing in M . xi will denote the set of variables in fi. Similar to the
work done earlier [13, 18], we divide the variables in a set of equivalence classes. Two variables are
Tied to each other if they appear as the same argument of a predicate. We take the transitive clo-
sure of the Tied relation to obtain the variable equivalence classes. For example, given the theory:
P (x) ⇒ Q(x, y); Q(u, v) ⇒ R(v); R(w) ⇒ T (w, z), the variable equivalence classes are {x, u},
{y, v, w} and {z}. We will use the notation x̂ to denote the equivalence class to which x belongs.

4.1 Motivation and Key Operations

The key intuition behind our approach is as follows. Let x be a variable appearing in a formula
fi. Let Txi be an associated constraint tuple and V denote the support for x in Txi . Then, since
constraints are in canonical form, for any other variable x′ ∈ xi involved in (in)equality constraint
with x with V ′ as the support, we have V = V ′Therefore, every pair of values vi, vj ∈ V behave
identically with respect to the constraint tuple Txi and hence, are symmetric to each other. Now, we
could extend this notion to other constraints in which x appears provided the support sets {Vl}rl=1
of x in all such constraints are either identical or disjoint. We could treat each support set Vl for x as
a symmetric group of constants which could be argued about in unison. In an unconstrained theory,
there is a single disjoint partition of constants i.e. the entire domain, such that the constants behave
identically. Our approach generalizes this idea to a groups of constants which behave identically
with each other. Towards this end, we define following 2 key operations over the theory which will
be used over and again during application of lifted inference rules.

Partitioning Operation: We require the support sets of a variable (or sets of variables) over which
lifted rule is being applied to be either identical or disjoint. We say that a theory M defined over a
set of (logical) variables x is partitioned with respect to the variables in the set y ⊆ x if for every
pair of subset constraints Ax1 and Ax2 , x1, x2 ∈ y appearing in tuples of Sx the supports of Ax1

and Ax2 are either identical or disjoint (but not both). Given a partitioned theory with respect to
variables y, we use Vy = {V y

l }rl=1 to denote the set of various supports of variables in y. We refer
to the set Vy as the partition of y values in M . Our partitioning algorithm considers all the support
sets for variables in y and splits them such that all the splits are identical or disjoint. The constraint
tuples can then be split and represented in terms of these fine-grained support sets. We refer the
reader to the supplement section for a detailed description of our partitioning algorithm.

Restriction Operation: Once the values of a set of variables y have been partitioned into a set
{V y}rl=1, while applying the lifted inference rules, we will often need to argue about those formula
groundings which are obtained by restricting y values to those in a particular set V y

l (since values
in each such support set behave identically to each other). Given x ∈ y, let Axl denote a subset
constraint over x with V y

l as its support. Given a formula fi we define its restriction to the set
V y
l as the formula obtained by replacing its associated constraint tuple Txi with a new constraint

tuple of the form Txi
∧
j A

xj

l where the conjunction is taken over each variable xj ∈ y which also
appears in fi. The restriction of an MLN M to the set Vl, denoted by My

l , is the MLN obtained
by restricting each formula in M to the set Vl. Restriction operation can be implemented in a
straightforward manner by taking conjunction with the subset constraints having the desired support
set for variables in y. We next define the formulation of our lifting rules in a constrained theory.

4.2 Decomposer

Let M be an MLN theory. Let x denote the set of variables appearing in M . Let Z(M) denotes the
partition function forM . We say that an equivalence class x̂ is a decomposer [13] ofM if a) if x ∈ x̂
occurs in a formula f ∈ F , then x appears in every predicate in f and b) If xi, xj ∈ x̂, then xi, xj
do not appear as different arguments of any predicate P . Let x̂ be a decomposer for M . Let M ′

be a new theory in which the domain of all the variables belonging to equivalence class x̂ has been
reduced to a single constant. The decomposer rule [13] states that the partition function Z(M) can
be re-written using Z(M ′) as Z(M) = (Z(M ′))m, wherem = |Dom(x̂)| inM . The proof follows
from the fact that since x̂ is a decomposer, the theory can be decomposed into m independent but
identical (up to the renaming of a constant) theories which do not share any random variables [13].

Next, we will extend the decomposer rule above to work with the constrained theories. We will
assume that the theory has been partitioned with respect to the set of variables appearing in the
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decomposer x̂. Let the partition of x̂ values in M be given by V x̂ = {V x̂l }rl=1. Now, we define the
decomposer rule for a constrained theory using the following theorem.

Theorem 4.1. * Let M be a partitioned theory with respect to the decomposer x̂. Let M x̂
l denote

the restriction of M to the partition element V x̂l . Let M ′x̂
l further restricts M x̂

l to a singleton {v}
where v ∈ V x̂ is some element in the set V x̂. Then, the partition function Z(M) can be written as
Z(M) = Πr

l=1Z(M x̂
l ) = Πr

l=1Z(M ′x̂
l )|V

x̂
l |

4.3 Binomial

Let M be an unconstrained MLN theory and P be a unary predicate. Let xj denote the set of
variables appearing as first argument of P . Let Dom(xj) = {ci}ni=1,∀xj ∈ xj. Let MP

k be the
theory obtained from M as follows. Given a formula fi with weight wi in which P appears, wlog
let xj denote the argument of P in fi. Then, for every such formula fi, we replace it by two new
formulas, f ti and ffi , obtained by a) substituting true and false for the occurrence of P (xj) in fi,
respectively, and b) when xj occurs in f ti or ffi , reducing the domain of xj to {ci}ki=1 in f ti and
{ci}ni=k+1 in ffi where n = |Dom(xj)|. The weight wti of f ti is equal to wi if it has an occurrence
of xj , wi ∗ k otherwise. Similarly, for ffi . The Binomial rule [13] states that the partition function
Z(M) can be written as: Z(M) =

∑n
k=0

(
n
k

) (
Z(MP

k ))
)
. The proof follows from the fact that

calculation of Z can be divided into n + 1 cases, where each case corresponds to considering
(
n
k

)
equivalent possibilities for k number of P groundings being true and n − k being false, k ranging
from 0 to n.

Next, we extend the above rule for a constrained theory M . Let P be singleton predicate and xj be
set of variables appearing as first arguments of P as before. Let M be partitioned with respect to
xj and Vxj = {V xj

l }rl=1 denote the partition of xj values in M . Let FP denote the set of formulas
in which P appears. For every formula fi ∈ FP in which xj appears only in P (xj), assume that
the projections over the set x̄j are count preserving. Then, we obtain a new MLN MP

l,k from M

in the following manner. Given a formula fi ∈ FP with weight wi in which P appears, do the
following steps 1) restrict fi to the set of values {v|v /∈ V xj

l } for variable xj 2) for the remaining
tuples (i.e. where xj takes the values from the set V xj

l ), create two new formulas f ti and ffi obtained
by restricting f ti to the set {V xj

l1
, . . . V

xj

lk
} and ffi to the set {V xj

lk+1
, . . . , V

xj

lnl
}, respectively. Here,

the subscript nl = |V xj

l | 3) Canonicalize the constraints in f ti and ffi 4) Substitute true and false
for P in f ti and ffi respectively 5) If xj appears in f ti (after the substitution), its weight wti is equal
to wi, otherwise split f ti into {f tid}

D
d=1 such that projection over x̄j in each tuple of f tid is count

preserving with extension count given by etld . The weight of each f tid is wi ∗ etld . Similarly, for ffi .
We are now ready to define the Binomial formulation for a constrained theory:

Theorem 4.2. * Let M be an MLN theory partitioned with respect to variable xj . Let P (xj) be
a singleton predicate. Let the projections T x̄j of tuples associated with the formulas in which xj
appears only in P (xj) be count preserving. Let Vxj = {V xj

l }rl=1 denote the partition of xj values
in M and let nl = |V xj

l |. Then, the partition function Z(M) can be computed using the recursive
application of the following rule for each l:

Z(M) =

nl∑
k=0

(
nl
k

)(
Z(MP

l,k))
)

We apply Theorem 4.2 recursively for each partition component in turn to eliminate P (xj) com-
pletely from the theory. The Binomial application as described above involves

∏r
l=1(nl + 1) com-

putations of Z whereas a direct grounding method would involve 2
∑

l nl computations (two possi-
bilities for each grounding of P (xj) in turn). See the supplement for an example.

4.4 Normal Forms and Evidence Processing

Normal Forms: Normal form representation [13] is an unconstrained representation which requires
that a) there are no constants in any formula fl ∈ F b) the domain of variables belonging to an
equivalence class x̂ are identical to each other. An (unconstrained) MLN theory with evidence can
be converted into normal form by a series of mechanical operations in time polynomial in the size
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Domain Source Rules Type (# Evidence
of const.)

Friends & Alchemy Smokes(p) ⇒ Cancer(p); Smokes(p1) person (var) Smokes
Smokers (FS) [5] ∧ Friends(p1,p2) ⇒ Smokes(p2) Cancer
WebKB Alchemy PageClass(p1,+c1) ∧ PageClass(p2,+c2) page (271) PageClass

[25],[24] ⇒ Links(p1,p2) class (5)
IMDB Alchemy Director(p) ⇒ !WorksFor(p1,p2) person(278) Actor

[16] Actor(p) ⇒ !Director(p); Movie(m,p1) movie (20) Director
∧ WorksFor(p1,p2) ⇒ Movie(m,p2) Movie

Table 2: Dataset Details. var: domain size varied. ’+’: a separate weight learned for each grounding

of the theory and the evidence [13, 18]. Any variable values appearing as a constant in a formula
or in evidence is split apart from the rest of the domain and a new variable with singleton domain
created for them. Constrained theories can be normalized in a similar manner by 1) splitting apart
those variables appearing any subset constraints. 2) simple variable substitution for equality and 3)
introducing explicit evidence predicates for inequality. We can now state the following theorem.

Theorem 4.3. * Let M be a constrained MLN theory. The application of the modified lifting rules
over this constrained theory can be exponentially more efficient than first converting the theory in
the normal form and then applying the original formulation of the lifting rules.

Evidence Processing: Given a predicate Pj(x1, . . . , xk) let Ej denote its associated evidence. Fur-
ther, Etj (Efj ) denote the set of ground atoms of Pj which are assigned true (false) in evidence.
Let Euj denote the set of groundings which are unknown (neither true nor false.) Note that the set
Euj is implicitly specified. The first step in processing evidence is to convert the sets Etj and Efj
into the constraint representation form for every predicate Pj . This is done by using the hypercube
representation [24] over the set of variables appearing in predicate Pj . A hypercube over a set of
variables can be seen as a constraint tuple specifying a subset constraint over each variable in the
set. A union of hypercubes represents a constraint set representing the union of corresponding con-
straint tuples. Finding a minimal hypercube decomposition in NP-hard and we employ the greedy
top-down hypercube construction algorithm as proposed Singla et al. [24] (Algorithm 2). The con-
straint representation for the implicit set Euj can be obtained by eliminating the set Etj ∪ E

f
j from

its bounding hypercube (i.e. one which includes all the groundings in the set) and then calling the
hypercube construction algorithm over the remaining set. Once the constraint representation has
been created for every set of evidence (and non-evidence) atoms, we join them together to obtain
the constrained representation. The join over constraints is implemented as described in Section 3.

5 Experiments
In our experiments, we compared the performance of our constrained formulation of lifting rules
with the normal forms for the task of calculating the partition function Z. We refer to our approach
as SetInEq and normal forms as Normal. We also compared with PTP [11] available in Alchemy
2 and GCFVOE [25] system. 1 Both our systems and GCFOVE are implemented in Java. PTP
is implemented in C++. We experimented on four benchmark MLN domains for calculating the
partition function using exact as well as approximate inference. Table 2 shows the details of our
datasets. Details for one of the domains Professor and Students (PS) [11] are presented in supple-
ment due to lack of space. Evidence was the only type of constraint considered in our experiments.
The experiments on all the datasets except WebKB were carried on a machine with 2.20GHz Intel
Core i3 CPU and 4GB RAM. WebKB is a much larger dataset and we ran the experiments on 2.20
GHz Xeon(R) E5-2660 v2 server with 10 cores and 128 GB RAM.

5.1 Exact Inference

We compared the performance of the various algorithms using exact inference on two of the do-
mains: FS and PS. We do not compare the value of Z since we are dealing with exact inference
In the following, r% evidence on a type means that r% of the constants of the type are randomly
selected and evidence predicate groundings in which these constants appear are randomly set to true
or false. Remaining evidence groundings are set to unknown. y-axis is plotted on log scale in the
following 3 graphs. Figure 1a shows the results as the domain size of person is varied from 100 to
800 with 40% evidence in the FS domain. We timed out an algorithm after 1 hour. PTP failed to

1Alchemy-2:code.google.com/p-alchemy-2,GCFOVE: https:dtai.cs.kuleuven.be/software/gcfove
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scale to even 100 size and are not shown in the figure. The time taken by Normal grows very fast and
it times out after 500 size. SetInEq and GCFOVE have a much slower growth rate. SetInEq is about
an order of magnitude faster than GCFVOE on all domain sizes. Figure 1b shows the time taken
by the three algorithms as we vary the evidence on person with a fixed domain size of 500. For all
the algorithms, the time first increases with evidence and then drops. SetInEq is up to an order of
magnitude faster than GCFVOE and upto 3 orders of magnitude faster than Normal. Figure 1c plots
the number of nodes expanded by Normal and SetInEQ. GCFOVE code did not provide any such
equivalent value. As expected, we see much larger growth rate for Normal compared to SetInEq.
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(a) FS: size vs time (sec).

 1

 10

 100

 1000

 10000

 0  20  40  60  80  100

T
im

e
 (

in
 s

e
c
o

n
d

s
)

Evidence %

SetInEq
Normal

GCFOVE

(b) FS: evidence vs time (sec)

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 100  200  300  400  500  600  700  800

N
o

. 
o

f 
n

o
d

e
s

Domain Size

SetInEq
Normal

(c) FS: size vs # nodes expanded
Figure 1: Results for exact inference on FS

5.2 Approximate Inference
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(b) IMDB: evidence % vs time (sec)

Figure 2: Results using approximate in-
ference on WebKB and IMDB

For approximate inference, we could only compare Nor-
mal with SetInEq. GCFOVE does not have an approxi-
mate variant for computing marginals or partition func-
tion. PTP using importance sampling is not fully im-
plemented in Alchemy 2. For approximate inference in
both Normal and SetInEq, we used the unbiased impor-
tance sampling scheme as described by Gogate & Domin-
gos [11]. We collected a total of 1000 samples for each
estimate and averaged the Z values. In all our experi-
ments below, the log(Z) values calculated by the two al-
gorithms were within 1% of each other hence, the esti-
mates are comparable with other. We compared the per-
formance of the two algorithms on two real world datasets
IMDB and WebKB (see Table 2). For WebKB, we exper-
imented with 5 most frequent page classes in Univ. of
Texas fold. It had close to 2.5 million ground clauses.
IMDB has 5 equal sized folds with close to 15K ground-
ings in each. The results presented are averaged over the
folds. Figure 2a (y-axis on log scale) shows the time taken
by two algorithms as we vary the subset of pages in our
data from 0 to 270. The scaling behavior is similar to as
observed earlier for datasets. Figure 2b plots the timing of
the two algorithms as we vary the evidence % on IMDB.
SetInEq is able to exploit symmetries with increasing ev-
idence whereas Normal’s performance degrades.

6 Conclusion and Future work
In this paper, we proposed a new constraint language called SetInEq for relational probabilistic mod-
els. Our constraint formalism subsumes most existing formalisms. We defined efficient operations
over our language using a canonical form representation and extended 3 key lifting rules i.e., de-
composer, binomial and single occurrence to work with our constraint formalism. Experiments on
benchmark MLNs validate the efficacy of our approach. Directions for future work include exploit-
ing our constraint formalism to facilitate approximate lifting of the theory.
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