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Many real-world application domains are both relational and uncertain. Statistical relational

models (SRMs) enable us to compactly model these domains by combining the power of first-

order (or relational) logic with probabilistic graphical models. A key problem in these models

is inference, namely the means of answering queries posed over SRMs. In this thesis, we

present a new lifted algorithm, namely an algorithm that treats indistinguishable random

variables as one and infers over them in one shot, for scalable inference in SRMs. Our

algorithm lifts the iterative join graph propagation (IJGP) algorithm, a state-of-the-art

message-passing algorithm for probabilistic graphical models, to the first-order level by taking

advantage of relational structure. Our approach is based on the observation that when the

SRM is non-shared, IJGP can be elegantly lifted. We utilize this observation by converting

the given SRM to a non-shared SRM. Our experimental evaluation on benchmark SRMs

clearly shows that lifted IJGP is superior to IJGP not only in terms of time and space cost

of inference, but also in terms of convergence.
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CHAPTER 1

INTRODUCTION

Probabilistic graphical models, (PGMs) (Pearl, 1988; Darwiche, 2009; Koller and Friedman,

2009) such as Bayesian networks and Markov networks, are a popular framework for repre-

senting and reasoning about uncertainty. They exploit conditional independence in order to

compactly represent a joint probability distribution over a large number of random variables.

They have paved the way to a number of important applications in various domains such

as bio-informatics, natural language processing, the World Wide Web and computer vision.

One limitation of PGMs is that they are propositional in nature (based on propositional

logic) and, as a result, are unable to compactly encode relational knowledge. For example,

PGMs can elegantly represent statements such as “If Jack is a friend of Jill and Jill is a friend

of James, then Jack and James are likely to be friends too.” However, they cannot concisely

represent more general knowledge such as “Friendship is transitive with high probability.”

Recently, a number of frameworks have been developed that are able to represent PGMs

for such multiple-object scenarios in a compact manner. These representations, which are

often called statistical relational models (SRMs) (Getoor and Taskar, 2007) or first-order

probabilistic models, achieve this by combining PGMs with first-order logic. For example,

SRMs can represent the friendship relation using a predicate Friends(x, y), where x and y

are arguments that can be substituted with persons such as Ana, Bob, David, and Rita.

Among all the statistical relational representations proposed to date, Markov logic net-

works (MLNs) (Richardson and Domingos, 2006; Domingos and Lowd, 2009) are the most

popular one because of their simplicity. MLNs can compactly represent both uncertain and

relational knowledge. An MLN is specified by a set of weighted first-order formulas; each

1
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weight takes a real value between �1 and +1, which represents the strength of the con-

straint. A positive (negative) weight represents that the worlds satisfying the formula are

more (less) probable than the worlds that do not, all other things being equal. If a weight is

zero, the probability of worlds satisfying the formula equals that of the worlds not satisfying

the formula (with all other things being equal), making the formula redundant. When the

weight equals 1 (or �1), the formula (or its negation) represents a hard constraint and

worlds not satisfying the formula (or its negation) have a probability of zero. Thus, MLNs

generalize first-order logic.

As such, an MLN does not represent a joint probability distribution. It has a probabilistic

meaning only when constants or objects are specified. Specifically, given a set of constants,

a Markov logic network represents a log-linear model or a Markov network, which has one

propositional feature for each grounding (obtained by substituting quantified variables with

constants) of each first-order formula, with the weight of the feature being the weight of the

corresponding first-order formula.

The key task in Markov logic networks is inference - the problem of answering a query

posed over the MLN. In principle, we can perform inference over MLNs by first ground-

ing or propositionalizing the MLN, which yields a Markov network, and then by using any

probabilistic inference algorithm for PGMs over this Markov network. Examples of such

algorithms include variable elimination (Dechter, 1999), loopy belief propagation and its

generalizations (Murphy et al., 1999; Yedidia et al., 2005), Gibbs sampling (Geman and

Geman, 1984) and importance sampling (Gogate and Dechter, 2005). However, these ap-

proaches are impractical because the PGMs obtained by grounding the MLN can be quite

large, often having millions of variables and billions of features. Existing inference algorithms

for PGMs are unable to handle problems of this scale.

An alternative approach, which has gained prominence since the work of Poole (Poole,

2003) is lifted inference. It is similar to resolution theorem proving (Robinson, 1965), where
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inference is performed directly on the first-order representation, grounding only as necessary.

Lifted probabilistic inference algorithms can also be understood as probabilistic inference

algorithms that infer over groups of indistinguishable random variables together. These

indistinguishable groups arise from symmetries in the first-order representation.

Several lifted algorithms have been proposed to date. Prominent exact algorithms include

first-order variable elimination (Poole, 2003) and its extensions (de Salvo Braz, 2007), which

lift the variable elimination algorithm, and probabilistic theorem proving (PTP) (Gogate

and Domingos, 2011), which lifts the weighted model counting algorithm (Chavira and Dar-

wiche, 2008). Notable approximate inference algorithms are lifted Belief propagation (Singla

and Domingos, 2008), lifted importance sampling (Gogate et al., 2012), and lifted Gibbs

sampling (Venugopal and Gogate, 2012), which lift Belief propagation, importance sampling

and Gibbs sampling respectively. Although the general principle of exploiting symmetries is

the same, the types of symmetries that can be exploited are di↵erent for di↵erent algorithms.

In this thesis, we will show how to lift the Iterative Join Graph Propagation (IJGP)

algorithm (Mateescu et al., 2010) to the first-order level. IJGP is a state-of-the-art approxi-

mation scheme that has won numerous probabilistic inference competitions over the last few

years (Elidan and Globerson, 2010, 2011). IJGP is a type of generalized Belief propagation

algorithm (Yedidia et al., 2005) and can be understood as an approximate, iterative ver-

sion of the junction tree propagation algorithm, an exact inference technique. The junction

tree algorithm is a message-passing algorithm that operates on a graph structure called the

junction tree, which is a tree of clusters of variables that satisfy the running intersection

property. This property states that if two clusters contain a variable X, then all clusters

on the (unique) path between the two clusters should also contain X. The complexity of

junction tree propagation is exponential in the largest cluster size. IJGP operates on a graph

structure called a join graph, which is a graph (not necessarily a tree) of clusters that satis-

fies the running intersection property. The complexity of IJGP can be controlled by using



4

a parameter called the i-bound, an integer which bounds the cluster size (the complexity

is exponential in i). The accuracy typically increases with i and thus the i-bound helps

us explore the tradeo↵ between complexity and accuracy. Also, unlike the junction tree

propagation algorithm, in which the message-passing can always be made to converge in two

steps, the message-passing in IJGP may require multiple iterations to converge, or it may

not converge at all.

The core idea in lifting IJGP is to treat all ground nodes that are indistinguishable from

each other as one. In particular, if a subset of ground nodes/clusters send and receive the

same messages, we treat all nodes in the subset as indistinguishable from each other. We

develop techniques that exploit symmetry in the first-order representation for identifying

such subsets; we then pass messages for just one representative of each subset. This greatly

reduces the time and space cost of inference. Similar to IJGP, we also introduce a parameter

p that bounds the lifted cluster size, yielding novel complexity-accuracy trade-o↵s.

Our experiments show that our new algorithm has much smaller time and space over-

head than ground IJGP (which runs on a join graph constructed from the Markov network

obtained by grounding the MLN). The gain gets larger as the number of objects (constants

in FOL) in the domain increases. In fact, for large domain sizes, the join graph obtained

from the ground Markov network is so large that current computers runs out of memory (we

ran our experiments on a Linux system having 8 GB RAM). We also observe that the our

new lifted algorithm converges faster than the ground algorithm.

The rest of the thesis is organized as follows. In chapter 2, we present our notation and

related work. In chapter 3, we present our main contribution – the lifted IJGP algorithm.

In chapter 4, we present experimental results. Finally, we conclude in chapter 5 with a brief

summary and provide avenues for future work.



CHAPTER 2

BACKGROUND

In this chapter, we will present our notation and give a brief introduction on propositional

logic, first-order logic, graphical models, Markov logic and belief propagation. For details, re-

fer to (Darwiche, 2009; Genesereth and Nilsson, 1987; Koller and Friedman, 2009; Domingos

and Lowd, 2009).

2.1 Propositional Logic

The language of propositional logic consists of atomic sentences called propositions or atoms,

and logical connectives such as ^ (conjunction), _ (disjunction), ¬ (negation), ) (implica-

tion) and , (equivalence). Each proposition takes values from the binary domain {False,

True} (or {0, 1}). A propositional formula f is either an atom or any complex formula

that can be constructed from atoms using logical connectives. For example, A, B and C are

propositional atoms, and f = A _ ¬B ^ C is a propositional formula. A knowledge base

(KB) is a set of formulas. A world is a truth assignment to all atoms in the KB.

2.2 First Order Logic

First-order logic (FOL) generalizes propositional logic by allowing atoms to have internal

structure; an atom in FOL is a predicate that represents relations between objects. A predi-

cate consists of a predicate symbol, e.g., Friends, Smokes, etc., followed by a parenthesized

list of arguments called terms. A term is a logical variable, denoted by lower case letters

such as x, y, z, etc., or a constant, denoted by upper case letters such as X, Y, Z, etc. We

assume that each logical variable, e.g. x, is typed and takes values over a finite set �x .

5
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The language of FOL also includes two quantifiers: 8 (universal) and 9 (existential) which

express properties on the entire collection of objects. A formula in first order logic is a

predicate (atom), or any complex sentence that can be constructed from atoms using logical

connectives and quantifiers. For example, the formula 8x Smokes(x) ) Asthma(x) states

that all persons who smoke have asthma. 9x Cancer(x) states that there exists a person x

who has cancer. A first-order KB is a set of first-order formulas.

Throughout the thesis, we use a subset of FOL which has no function symbols, equality

constraints or existential quantifiers. We also assume that domains are finite (and therefore

function-free) and that there is a one-to-one mapping between constants and objects in the

domain (Herbrand interpretations). We make these assumptions in order to ensure a sound

and complete algorithm since inference in FOL based languages is undecidable in general.

We assume that each formula f is of the form 8xf , where x is a set of variables in f and f is a

conjunction or disjunction of literals; each literal being an atom or its negation. For brevity,

we will drop 9 from all the formulas. Given variables x = {x1, ..., xn

} and constants X =

{X1, ..., Xn

} whereX
i

2 �x

i

, f [X/x] is obtained by substituting every occurrence of variable

x

i

in f with X

i

. A ground formula is a formula obtained by substituting all of its variables

with a constant. A ground KB is a KB containing all possible groundings of all of its formulas.

For example, the grounding of a KB containing one formula, Smokes(x)) Asthma(x) where

�x = {Ana,Bob}, is a KB containing two formulas: Smokes(Ana) ) Asthma(Ana) and

Smokes(Bob) ) Asthma(Bob). A world in FOL is a truth assignment to all atoms in its

grounding.

2.3 Markov Networks

Probabilistic graphical models such as Bayesian and Markov networks are a graph-based,

factored representation of a joint probability distribution, defined over a large number of

random variables. In a Bayesian network, the joint distribution is represented by a directed
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acyclic graph (DAG). Every node in the DAG corresponds to a random variable that is

associated with a conditional probability distribution of the variable given its parents in

the DAG. In a Markov network, the joint distribution is compactly represented using an

undirected graph, with potential functions defined on the cliques in the graph. The joint

distribution represented by a Markov network is defined as the normalized product of the

potential functions. In general, at inference time, there is no di↵erence between Bayesian

networks and Markov networks. In this thesis, the focus is on Markov networks.

Let G = (V,E) be an undirected graph, where V = {1, . . . , N} is the set of vertices,

and E ✓ {(i, j)|i, j 2 V ; i 6= j} is the set of edges. Let X = {X
i

|i 2 V } denote the

set of random variables associated with G and let �(X
i

) denote the domain of X
i

. Let

� = {�1, . . . ,�m

} be a set of real-valued functions, called potentials, where �
i

(X
j

, . . . , X

k

) :

�(X
i

)⇥ . . .⇥�(X
k

)! R+
0 , and such that the vertex set {j, . . . , k} is a maximal clique in G.

Then, the pair M = hG,�i forms a Markov network. We denote the set of random variables

associated with a potential �
i

by vars(�
i

).

A Markov network M , induces the following probability distribution:

P

M

(x) =
1

Z

Y

1im

�

i

(x
i

)

where x is a full assignment to all variables in X, x
i

is the projection of the assignment x

on the variables in vars(�
i

), and Z is the normalization constant, also called the partition

function. Z is given by:

Z =
X

x

Y

1im

�

i

(x
i

)

For example, let M be a Markov network defined over the set X = {A,B,C,D,E} of

variables. Let M contain the following potentials:

1. �1(A,B)

2. �2(B,C,D)
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Figure 2.1. The graph associated with a Markov network having three potentials: �(A,B),
�(B,C,D) and �(A,E).

Table 2.1. Example potential value for �(A,B) where A and B are random variables with
domain size 2.

A B �(A,B)

0 0 4
0 1 10
1 0 20
1 1 30

3. �3(A,E)

The graph associated with M is shown in Figure 2.1. An example of potential is shown in

Table 2.1.

Since a Markov network represents a joint probability distribution, it can be used to

answer any query posed over the distribution. Probabilistic inference is the method of

answering these queries. The two main inference problems over Markov networks are:

• Marginal Inference: computing the (marginal) probability distribution over a subset

of variables given evidence, where evidence is an assignment of values to a subset of
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variables in the Markov network. For the Markov network given in Figure 2.1, an

example of marginal inference query is computing the marginal probability distribution

over A given E = True.

• Maximum-a-posterior (MAP) Inference: computing an assignment of values to

all variables that has the highest probability given evidence. For the Markov network

in Figure 2.1, an example of MAP inference query is computing an assignment to all

variables that has the maximum probability given E = True.

Most queries in real-world applications can be reduced to the two inference problems given

above. This thesis focuses on the marginal inference problem. Specifically, we focus on

computing the marginal distribution over a (single) variable (single variable marginals) given

evidence.

2.4 Markov Logic

Markov logic (Richardson and Domingos, 2006; Domingos and Lowd, 2009) extends FOL by

softening the hard constraints expressed by the formulas and is arguably the most popular

modeling language for statistical relational learning (SRL) (Getoor and Taskar, 2007). A

soft formula or a weighted formula is a pair (f, w) where f is a formula in FOL and w is a

real-number. A Markov logic network(MLN) is denoted by M = hF, P i, where F = {f
i

, w

i

}

is a set of weighted formulas, P is a set of predicates in the MLN. Given a set of constants

that represent objects in the domain, a Markov logic network defines a Markov network or

a log-linear model. The Markov network is obtained by grounding the weighted first-order

knowledge base and represents the probability distribution in equation 2.1.

P

M

(!) =
1

Z(M)
exp

⇣X

i

w

i

N(f
i

,!)
⌘

(2.1)

where ! is a world, N(f
i

,!) is the number of groundings of f
i

that evaluate to True in the

world ! and Z(M) is the normalization constant or the partition function.
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In order to ensure completeness and correctness of our proposed algorithm, we assume

that the input MLN (to our algorithm) is in normal form (Jha et al., 2010; Milch et al.,

2008). A normal MLN is an MLN that satisfies the following two properties:

1. There are no constants in any formula, and

2. If two distinct atoms with the same predicate symbol have variables x and y in the

same position, then �x = �y.

Note that in a normal MLN, we assume that the variables in each atom are ordered and

therefore we can identify each variable by its position in the order.

For example, consider the following MLN with just one formula:
⇣
R(x) _ S(y), w

⌘
.

Given two constants Ana and Bob, �(x) = �(y) = {Ana,Bob}, the MLN yields a ground

Markov network having the following weighted propositional formulas:

• R(Ana) _ S(Ana)� w

• R(Ana) _ S(Bob)� w

• R(Bob) _ S(Ana)� w

• R(Bob) _ S(Bob)� w

Since all the ground formulas have the same weight, the corresponding potentials for all the

groundings have the same form. One of them is shown in Table 2.2. The ground Markov

network is shown in Figure 2.2.

2.5 Factor Graphs

Factor graphs (Kschischang et al., 2001) are special bipartite graphs that allow us to sys-

tematically study and understand the properties of sum-product algorithms such as loopy

belief propagation (Murphy et al., 1999). A factor graph contains a corresponding vertex
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Table 2.2. Example potential value for one grounding of the MLN
⇣
R(x) _ S(y), w

⌘
.

R(Ana) S(Bob) �

⇣
R(Ana), S(Bob)

⌘

0 0 e

0

0 1 e

w

1 0 e

w

1 1 e

w

Figure 2.2. The graph structure of ground Markov network consisting of one formula
⇣
R(x)_

S(y), w

⌘
.

for each (random) variable and each potential in the Markov network. A potential vertex

is connected (via an undirected edge) to a variable vertex if the the potential contains the

variable in its scope. Formally, given a Markov network M = hG = (V,E),�i, the cor-

responding factor graph, denoted by F = (V
F

, E

F

), is an undirected bipartite graph with

vertex set V
F

= {V
i

|i 2 V }[ {P
i

|�
i

2 �} and edge set E
F

= {(V
i

, P

j

)|X
i

2 vars(�
j

)}, where

X

i

is the random variable corresponding to V

i

.

Figure 2.3 shows the factor graph for a Markov network having the following three

potentials:
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Figure 2.3. The factor graph of the model containing 3 potentials : �(A,B), �(B,C,D),
�(A,E).

1. �1(A,B)

2. �2(B,C,D)

3. �3(A,E)

2.6 Join Graphs

Join graphs are graphs over clusters of variables and are a generalization of factor graphs.

Given a Markov Network M = hG,�i, the join graph JG is denoted by JG = hJ,�, i,
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Figure 2.4. A valid join graph of the model containing 3 potentials : �(A,B), �(B,C,D),
�(A,E).

where J is a graph J = (V
J

, E

J

), and � and  are labelling functions which associate with

each vertex v 2 V

j

two sets, �(v) ✓ X and  (v) ✓ � such that,

1. For each potential �
i

2 �, there is at least one vertex v 2 V

j

such that �
i

2  (v), and

vars(�
i

) ✓ �(v).

2. For each variable X

i

2 X, the set {v 2 V

j

|X
i

2 �(v)} induces a connected sub-graph

of J . The connectedness requirement is also called the running intersection property.

Figure 2.4 shows a valid join graph for the factor graph in Figure 2.2.

2.7 Loopy Belief Propagation

Loopy Belief Propagation (Pearl, 1988; Murphy et al., 1999) is a widely used algorithm

for performing approximate inference in graphical models. Given a Markov network M , it

computes approximations to the set of marginal distributions, P
M

= {P (X
i

)}
i2V by passing

messages on the factor graph corresponding to M . At each iteration (of message-passing),

each vertex passes a message to each of its neighbors. We denote the message from the
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variable vertex V

i

to the potential vertex P

j

by µ

Vi!Pj(xi

) and the message from P

j

to V

i

by

µ

Pj!Vi(xi

). Note that each message is a potential over a single variable. On each iteration

it, the messages a node sends are determined by the messages received from its neighbors

on the previous iteration it � 1, as well as by the associated potential �
j

if the node is a

potential node P

j

. They are calculated by the following update equations:

µ

(it+1)
Vi!Pj

(xi) /
Y

Pk2NF (Vi)\Pj

µ

(it)
Pk!Vi

(xi) (2.2)

µ

(it+1)
Pj!Vi

(xi)/
X

vars(�j)\Xi

�(xi)
Y

Vk2NF (Pj)\Vi

µ

(it)
Vk!Pj

(xk) (2.3)

N

F

(V
i

) and N

F

(P
j

) are the sets of neighbors of V
i

and P

j

in the factor graph F respectively.

In practice, the messages are normalized in order to prevent underflow or overflow (hence

/ instead of =). The loopy belief propagation algorithm iterates until it reaches some

iteration it such that 8i, j, x
i

2 �(X
i

), |µ(it�1)
Vi!Pj

(x
i

)� µ

(it)
Vi!Pj

(x
i

)| < ✏ and similarly, 8i, j, x
i

2

�(X
i

)|µ(it�1)
Pj!Vi

(x
i

)� µ

(it)
Pj!Vi

(x
i

)| < ✏, for some small positive constant ✏ > 0.

At this point, the algorithm is said to have converged and we can calculate the approxi-

mations to the single variable marginals (often called beliefs) via the following equation:

bi(xi) = Ni

Y

Pj2N(VI)

µ

(it)
Pj!VI

(xi) (2.4)

where N

i

is a normalization constant, such that
P

xi2�(Xi)
b

i

(x
i

) = 1.

2.8 Iterative Join Graph Propagation

Iterative Join-Graph Propagation (IJGP) (Mateescu et al., 2010) can be perceived as a

generalization of the loopy belief propagation algorithm. It applies the same message passing

as loopy belief propagation to join graphs rather than to factor graphs. The messages are no

longer defined over a single variable, but are defined over the variables in the label attached

to the edge between the two clusters. IJGP(i) takes a parameter called an i-bound as input,

which bounds the number of variables in a cluster. Since the complexity of computing each
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message is exponential in the cluster size, the time and space complexity of one full iteration

of IJGP(i) is exponential in i times the number of clusters (which is typically linear in the

number of variables and potentials). It has been observed that the accuracy of IJGP typically

increases with i. Therefore, the parameter i helps us explore the trade-o↵ between time and

accuracy.

IJGP may or may not converge and it is known that when IJGP converges, its accuracy

is typically good. The convergence of IJGP can be improved by making the join graph

arc-minimal. Arc-minimal join graphs are join graphs from which no variable can be deleted

from any label without violating the running intersection property. When the join graph is

a tree, the algorithm always converges in a finite number of iterations. In fact, there exists

a message passing schedule such that the algorithm converges in one iteration (two passes).

Moreover, when the join graph is a tree, IJGP yields exact answers and is equivalent to the

junction tree propagation algorithm (Lauritzen and Spiegelhalter, 1988), a popular exact

inference algorithm.

2.9 Lifted Belief Propagation

Lifted Belief Propagation(LBP) (Singla and Domingos, 2008) is an approximate algorithm

that extends the loopy belief propagation to MLNs. LBP does this by constructing supern-

odes and superfeatures, which are lifted representations of variable nodes and factor nodes

respectively.

A supernode is a set of groundings of a predicate that send and receive the same messages

at each step of LBP, given an MLN. The supernodes of a predicate form a partition of its

groundings. A superfeature is a set of groundings of a clause that send and receive the same

messages at each step of belief propagation, given an MLN. The superfeatures of a clause

form a partition of its groundings.
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A lifted network is a factor graph composed of supernodes and superfeatures. The factor

corresponding to a superfeature g(x) is exp(wg(x)), where w is the weight of the correspond-

ing first-order clause. A supernode and a superfeature have an edge between them if and only

if some ground atom of the supernode appears in some ground clause of the superfeature.

Each edge has a positive integer weight. A minimal lifted network is a lifted network with

the smallest possible number of supernodes and superfeatures.

The messages sent in LBP are similar to those sent in standard BP, with the only following

distinctions:

1. The message from supernode x to superfeature f becomes :

µ

n(f,x)�1
f!x

Q
h2nb(x)\{f} µh!x

(x)n(h,x), where n(h, x) is the weight of the edge between h

and x.

2. The (unnormalized) marginal of each supernode (and therefore of each ground atom)

is given by
Q

h2nb(x) µ
n(h,x)
h!x

(x).

This lifted network simulates propositional LBP. The messages in BP are over a single

predicate. LBP has similar convergence properties as loopy BP. In cases where it converges

it is often faster than loopy BP.



CHAPTER 3

LIFTED ITERATIVE JOIN GRAPH PROPAGATION

3.1 Introduction

IJGP works well on propositional models; it is a state-of-the-art algorithm that has achieved

superior results on many of the standard benchmark propositional models, as demonstrated

by its various UAI competition victories. However, propositional models lack the compact-

ness of MLNs. We propose a lifted IJGP algorithm, which operates as much as possible on

the first-order representation, grounding the MLN only as necessary. In earlier work, (Singla

and Domingos, 2008) lifted the loopy belief propagation algorithm to the first-order level.

However, their results were not directly applicable to IJGP and our goal in this thesis is to fill

in this need. Figure 3.1 shows relationship between the various message passing algorithms.

Figure 3.1. Relationship between the various message passing algorithms.

17
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3.2 MLN Representation and Normal Forms

In our algorithm, we assume that the input MLN is a normal MLN(Jha et al., 2010; Milch

et al., 2008). Formally, a normal MLN is an MLN that satisfies the following two properties:

1. There are no constants in any formula.

2. If two distinct atoms with the same predicate symbol have variables x and y in the

same position then �
x

= �
y

.

For example, consider an MLN having two formulas: (Smokes(x) ) Asthma(x), w) and

(Smokes(Ana),1) (evidence). It is not in normal form. Its normal form has three formulas:

(Smokes(x0)) Asthma(x0), w), (Smokes1(y)) Asthma1(y), w) and (Smokes1(y),1), where

�0
x

= �
x

\ {Ana} and �
y

= {Ana}.

Also, following (Sarkhel et al., 2014), we enforce an additional constraint that the clauses

must not have any shared variables. This constraint helps us to ensure that we can process

each cluster in polynomial time, irrespective of the domain size. Formally, we enforce the

following constraint:

8f
i

2 F

⇣
vars

fi(pi) \ vars

fi(pj) = ;|i 6= j; p
i

, p

j

2 preds(f
i

)
⌘

where vars
fi(pi) is the variables of predicate pi in the formula f

i

, preds(f
i

) is the predicates

of f
i

, and F is the set of formulas in the MLN.

For example, the following clauses satisfy the above constraint.

• R(x) _ S(y)

• R(x) _ S(y) _ T (z)

whereas the following do not.

• R(x) _ S(x) (x is shared)
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• R(y) _ S(x, y) (y is shared)

Note that our approach can be applied to general MLNs by simply grounding all shared

terms in the MLN. For example, consider an MLN having one formulaR(x)_S(x, y), where�
x

=

�
y

= {Ana,Bob, Cat}. We can convert this MLN to a non-shared MLN by grounding x.

The new MLN will have the following three clauses:

• A(x) _D(y), where �
x

= {Ana},�
y

= {Ana,Bob, Cat}, R ⌘ A,D(y) ⌘ S(Ana, y)

• B(x) _ E(y), where �
x

= {Bob},�
y

= {Ana,Bob, Cat}, R ⌘ B,E(y) ⌘ S(Bob, y)

• C(x) _ F (y), where �
x

= {Cat},�
y

= {Ana,Bob, Cat}, R ⌘ C, F (y) ⌘ S(Cat, y)

In the above MLN, A, B and C are equivalent to R(A), R(B) and R(C) respectively, and D,

E and F are equivalent to S(A, y), S(B, y) and S(C, y) respectively.

3.3 Lifted Join Graphs

Our lifted IJGP algorithm operates on a graph structure, which is called a lifted join graph.

Lifted join graphs are similar to join graphs with a few di↵erences. Nodes in lifted join

graphs are defined over first-order atoms and thus correspond to multiple ground atoms.

Edges in join graphs are labeled with propositional atoms, whereas the edges in lifted join

graphs are labeled with first order atoms. Moreover, lifted join graphs can contain self loops;

namely, a node can send a message to itself. Self-loops are described later in this chapter.

Formally, given an MLN M , we denote the lifted join graph LJG by hJ,�i, where J is a

graph J = (V,E), V is the vertex set, E is the edge set and � is a set of labelling functions

which associates with each vertex v 2 V with the set, �(v) ✓ P , P is the set of all first-order

atoms in the MLN, such that,

1. For each formula f

i

2 F , there is atleast one vertex v 2 V such that preds(f
i

) ✓ �(v).
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Figure 3.2. A valid lifted join graph for the MLN : R(x) _ S(y), R(x) _ T (y), S(x) _ T (y).

2. For each predicate p
i

2 P , the set {v 2 V |p
i

2 �(v)} induces a connected sub graph of

J. The connectedness requirement is also called the running intersection property.

Figure 3.2 shows a valid lifted join graph for the following MLN:

• f1 :
⇣
R(x) _ S(y), w1

⌘

• f2 :
⇣
R(x) _ T (y), w2

⌘

• f3 :
⇣
S(x) _ T (y), w3

⌘

Each of the clusters are connected by the shared predicate and they send messages over the

shared predicates.

3.4 Constructing the Lifted Join Graph

Given an MLN, the goal of the construction algorithm is to find a lifted join graph J such

that:

• J is of minimal size.

• Each cluster v

i

2 J contains groundings that are indistinguishable w.r.t the model

(and thus propagation can be performed in a lifted manner over those groundings).
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• There exists a corresponding valid ground join graph upon which propagation is equiv-

alent to the propagation performed on J .

Construction of a lifted join graph can be done with any method that works on the

propositional case. The only condition is that the running intersection property must hold

for all the predicates. In the propositional case, the clusters in the join graph are connected

on the random variables whereas in the lifted case they join on the predicates. Here, we use

an algorithm similar to the bucket elimination(Dechter, 1999), to create the lifted join graph.

The algorithma assures that the number of unique predicates in the cluster is bound by an

integer parameter p called the p-bound. p helps us trade-o↵ time and space with accuracy.

Algorithm 1 gives the method to construct the lifted join graph.

For the following MLN, Figure 3.3 shows the lifted join graph with a p-bound of 2 and

Figure 3.4 shows the lifted join graph with a p-bound of 3:

• f1 :
⇣
R(x) _ S(y), w1

⌘

• f2 :
⇣
R(x) _ T (y), w2

⌘

• f3 :
⇣
S(x) _ T (y), w3

⌘

3.4.1 Self loops

Each node in the lifted join graph that the algorithm (see Algorithm 1) builds is a represen-

tation of multiple ground nodes. These ground nodes can either be completely independent

or have internal structure. In the latter case, we need self loops. For example, consider the

formula R(x),�(x) = {Ana,Bob, Cat}. Here, all nodes in the completely grounded graph

are independent of each other. Figure 3.5 shows the ground join graph corresponding to this

formula. Figure 3.6 shows the corresponding lifted join graph. Figure 3.7 shows the join

graph for the formula R(x)_S(y), �(x) = �(y) = {Ana,Bob, Cat}. The ground join graph
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Figure 3.3. The lifted join graph with p-bound = 2.

Figure 3.4. The lifted join graph with p-bound = 3.
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input : An MLN M, an ordering of predicates p1..pk, Bound p on the number of
unique predicates present in a cluster.

output: A lifted join graph J

Let X
i

be the bucket corresponding to p

i

;
Place all the f 2 F in appropriate bucket X

i

.

for i 1 to k do
if (number of unique predicates(X

i

)  p) then
f

new

( union(X
i

)

�(
Q

w 2 X

i

Create a node V

new

with f

new

and �.

V ( V [ V

new

else

Create mini-clusters C such that number of unique predicates  p

V ( V

new

[ C

Connect all the nodes in C with edge p

i

end
Eliminate p

i

from X

i

and place it in the correct bucket in the ordering.
end

Algorithm 1: Algorithm to build the lifted join graph

Figure 3.5. The ground join graph of the MLN containing one formula: R(x), �(x) =
{Ana,Bob, Cat}.

has nodes that send messages over the groundings of R(x) and S(y). Figure 3.8 shows the

lifted join graph. Here, we need the self loops to represent the fact that the ground network

has an internal structure as shown in Figure 3.7.

In the lifted join graph, we have to make sure that such messages in the ground join

graph are accounted for. A node needs to have a self loop on a predicate p

i

if none of the
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Figure 3.6. The lifted join graph of the MLN containing one formula: R(x), �(x) = {Ana,
Bob, Cat}.

Figure 3.7. The ground join graph of the MLN containing one formula: R(x)_S(y), �(x) =
�(y) = {Ana,Bob, Cat}.

Figure 3.8. The lifted join graph of the MLN containing one formula: R(x) _ S(y), �(x) =
�(y) = {Ana,Bob, Cat}.
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edges of the node contains p
i

. If there is an edge containing p

i

then it makes sure that the

messages are sent over the groundings of p
i

.

Since we have as input to the algorithm an MLN which has the constraint that the clauses

have no shared variables, a node v 2 V has a self loop on p

i

2 preds(v) i↵ p

i

/2 edges(v).

3.4.2 Processing the evidence

Handling evidence is the trickiest step of our proposed algorithm. The main idea in con-

structing a lifted join graph is to exploit symmetry; i.e. we wish to make sure that similar

nodes are present in a single cluster. This is a necessary condition, since all the ground

nodes within the cluster receive and send the same messages. Evidence breaks symmetry,

and therefore the nodes split with each evidence to make sure that a cluster always contains

indistinguishable ground nodes.

We process the evidence by processing the first-order atoms one by one. For each atom

which has evidence, we split its nodes into True, False and Unknown groundings, similar to

the method described in (Singla and Domingos, 2008), connect it appropriately to yield a new

lifted join graph, repeat the steps until all atoms having evidence are processed. Algorithm 2

formally describes our method.

Figure 3.9 shows how the algorithm splits the join graph given in Figure 3.8 into two

clusters. The evidence is on R(x). R(x) is present in two clusters and therefore we need to

split both the nodes. In the new join graph, P contains all the True groundings of R, Q

contains all the False groundings of R and R contains all the Unknown groundings of R.

3.5 Message Passing

Given an MLN M , lifted iterative join graph propagation is an iterative algorithm that

computes approximations to the set of marginals for all groundings in the clusters. It does

so by passing messages on the lifted join graph J corresponding to M . In every iteration,
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Figure 3.9. The evidence is on R(x). P (x), Q(x) and R(x) are the True, False and Unknown
groundings of R(x) respectively.

input : A Lifted Join graph J , The MLN M , Predicate evidences set
S|S

i

= {SU

i

, S

T

i

, S

F

i

} which corresponds to the Unknown, True and False
groundings of predicate p

i

output: Evidence instantiated join graph J

for each S

i

2 S do
L

i

 List of nodes containing p

i

n number of nodes containing p

i

for each j  1 to n do
Split the groundings of the in node L

i

[j] into 3 nodes L
i

[j]U , L
i

[j]T , L
i

[j]F

containing the groundings SU

i

, S

T

i

, S

F

i

Join the newly added nodes L
i

[j]U , L
i

[j]T and L

i

[j]F with the edge having
predicates {preds(L

i

[j]) - p
i

}
Add edges between the L

i

[j]U to nodes L
i

[k]U |k < j

Add edges between the L

i

[j]T to nodes L
i

[k]T |k < j

Add edges between the L

i

[j]F to nodes L
i

[k]F |k < j

end
end

Algorithm 2: Algorithm to split the lifted join graph
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each node passes a message to each of its neighbors. We denote the message from node V

i

to a node V

j

by µ

Vi!Vj(P ), where P is the set of shared predicates between V

i

and V

j

. On

each iteration it, the messages a node sends are determined by the messages it receives from

its neighbors from the previous iteration it� 1, as well as by the associated potential �
i

for

the node V

i

. They are calculated by the following update equations:

µ

(it+1)
Vi!Vj

(P )/
⇣ X

preds(�i)\P

P

Y

Vk2NJ (Vi)\Vj

µ

(it)
Vk!Vi

(preds(Vk))

⌘n

(3.1)

N

F

(V
i

) andN

F

(V
j

) are the sets of neighbors of V
i

and V

j

in the lifted join graph J respectively.

n is the exponentiation of the message. This is the critical part of the algorithm where

the compactness is achieved. Instead of sending n messages, we accommodate for it by

exponentiating the message to n. The process of computing n is explained in detail in the

next section.

In practice, the messages are normalized in order to prevent underflow or overflow (hence

/ instead of =). The propagation algorithm iterates until it reaches some iteration it such

that 8i, j, V
i

2 V |µ(it�1)
Vi!Vj

(P )� µ

(it)
Vi!Vj

(P )| < ✏, for some small positive constant ✏ > 0.

At this point, the algorithm is said to have converged and one can calculate the approx-

imations to the single predicate marginals.

3.5.1 Exponentiation

When we send a message from V

i

to V
j

, we need to account for the fact that there are multiple

ground nodes within each cluster. Specifically, we have to exponentiate the message sent

from node V

i

to V

j

by n, computed using the following expression:

n =
Y

pk2preds(Vi)\preds(Vj)

N(p
k

)

where N(p
k

) is number of grounding of predicate p

k

in V

i

.

Figure 3.10 and Figure 3.11 show the intuitive idea behind exponentiation and how it

saves time and space.
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Figure 3.10. The ground join graph of the model S(x)_R(y) where �(x) = {Ana,Bob, Cat}
and �(y) = {Ana}.

Figure 3.11. The lifted join graph of the model S(x) _R(y) where �(x) = {Ana,Bob, Cat}
and �(y) = {Ana}.

As we can see in Figure 3.10, all the ground nodes are the same and all of them send and

receive the same number of messages. Moreover, all the nodes join on S(Ana) and they all

have same potentials in the node. So instead of sending the same message n times, we can

exponentiate it by n as shown in Figure 3.11.



CHAPTER 4

EXPERIMENTS

4.1 Setup

We evaluated our lifted IJGP algorithm on the following three benchmark MLNs. These

MLNs are available on the Alchemy website (Kok et al., 2008), an open source software for

inference and learning in Markov logic networks.

1. Student MLN (having the following four formulas):

Teaches(teacher,course) ^ Takes(student,course) ! JobO↵ers(student,company)

Teaches(teacher,course)

Takes(student,course)

JobO↵ers(student,company)

2. WebKB MLN, consisting of three predicates and six formulas.

3. Social Network Friends and Smokers MLN, consisting of three predicates and five

formulas.

The experiments were done by varying the domain sizes with the following parameters:

p-bound = 3 and ✏ = 10�5. We recorded the runtime for the construction of the lifted join

graph and the run time for convergence. Evidence was randomly generated for 10% of the

groundings for each predicate.

29
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Table 4.1. Without Evidence : N1 is the number of nodes in the ground join graph, N2 is the
number of nodes in the lifted join graph. T1 is the time to construct the join graph(seconds).
T2 is the time taken for the algorithm to converge(seconds).

MLN Domain N1 N2 T1 T2

Student 3 81 9 0.05 0.11
Student 10 10000 100 0.1 0.158
Student 20 160000 400 0.987 0.5
Student 30 810000 900 3.119 1.360
WebKB 3 138 39 0.124 0.679
WebKB 10 11310 1410 4.467 11.640
WebKB 20 169220 11834 409.891 213.192
Friends and Smokers 3 54 19 0.088 0.082
Friends and Smokers 10 460 240 0.43 0.181
Friends and Smokers 20 1720 999 2.394 0.57

4.2 Results

Tables 4.1 and Table 4.2 show our results for each of the three MLNs, with evidence and

without evidence respectively. We can see that in general, the number of nodes that the

lifted IJGP algorithm has to process is significantly smaller than the number of nodes that

the ground IJGP algorithm has to process. Moreover, the ratio between the two decreases

significantly with the domain size. Although evidence does increase the number of nodes in

the lifted join graph, this number is still substantially smaller than the number of nodes in

the ground join graph. In summary, our experiments clearly demonstrate the power of our

new lifted algorithm; it is substantially superior to the ground algorithm, often by several

orders of magnitude.
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Table 4.2. With Evidence : N1 is the number of nodes in the ground join graph, N2 is the
number of nodes in the lifted join graph. T1 is the time to construct the join graph(seconds).
T2 is the time taken for the algorithm to converge(seconds).

MLN Domain N1 N2 T1 T2

Student 3 81 9 0.206 0.173
Student 10 10000 1500 1.034 11.976
Student 20 160000 8720 10.87 11.523
WebKB 3 138 39 0.148 0.593
WebKB 10 11310 4410 4.467 11.640
WebKB 20 169220 37750 602.92 31.488
Friends and Smokers 3 54 19 0.056 0.073
Friends and Smokers 10 460 320 0.373 0.191
Friends and Smokers 20 1720 1363 3.394 0.91



CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we have proposed a new lifted algorithm called lifted iterative join graph

propagation (LIJGP) for large scale inference in Markov logic networks (MLNs). LIJGP lifts

the IJGP algorithm (Mateescu et al., 2010), a state-of-the-art generalized belief propagation

technique for inference in probabilistic graphical models. The key idea in our approach is to

first convert the given MLN to a non-shared MLN, namely an MLN in which each formula

has no shared terms. The latter can be achieved by grounding out all shared terms in each

formula. The main advantage of non-shared MLNs is that each node in the corresponding

lifted join graph can be processed in polynomial time and space.

Our experiments on benchmark MLNs shows that our lifted algorithm is superior to IJGP

in terms of time and space requirements. Specifically, our results show that the number of

nodes in the lifted join graph is several orders of magnitude smaller than the completely

grounded join graph. The number of nodes is a direct measure of the memory footprint

required by the algorithm. We also observe that, as the domain size increases (namely,

the number of variables in the model), the rate of increase in the number of nodes is much

smaller for lifted IJGP than IJGP. IJGP also converges faster on the lifted join graph than the

on the completely grounded graph, since each (exponentiated) message represents multiple

messages in the grounded join graph.

Future work consists of relaxing the non-shared MLN requirement, which is a su�cient

but not a necessary requirement; developing structured message passing algorithms (Gogate

and Domingos, 2013) that use structured representations rather than the tabular represen-

tations used in our algorithm; developing advanced evidence handling strategies that have
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smaller time and space complexity requirements than those of the method proposed in the

thesis; etc.
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