
Deciphering a Deep Learning Black-Box via a Cutset
Network: Explainable Activity Recognition in Videos

Journal: Transactions on Interactive Intelligent Systems

Manuscript ID Draft

Manuscript Type: SI: Interactive Visual Analytics for Making Explainable and Accountable
Decisions

Date Submitted by the
Author: n/a

Complete List of Authors: Roy, Chiradeep; University of Texas at Dallas
Nourani, Mahsan; University of Florida
Shanbhag, Mahesh; University of Texas at Dallas
Rahman, Tahrima; University of Texas at Dallas
Ragan, Eric ; University of Florida,
Ruozzi, Nicholas; University of Texas at Dallas
Gogate, Vibhav; University of Texas at Dallas

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

111

Deciphering a Deep Learning Black-Box via a Cutset
Network: Explainable Activity Recognition in Videos

CHIRADEEP ROY, The University of Texas at Dallas
MAHSAN NOURANI, University of Florida
MAHESH SHANBHAG, The University of Texas at Dallas
TAHRIMA RAHMAN, The University of Texas at Dallas
ERIC D. RAGAN, University of Florida
NICHOLAS RUOZZI, The University of Texas at Dallas
VIBHAV GOGATE, The University of Texas at Dallas

We consider the following activity recognition task: given a video, infer the set of activities being performed
in the video and assign each frame to an activity. Although this task can be solved accurately using existing
deep learning techniques, their use is problematic in interactive settings. In particular, deep learning models
are black boxes: it is difficult to understand how and why the system assigned a particular activity to a frame.
This reduces the users’ trust in the system, especially in the case of end-users who need to use the system on
a regular basis. We address this problem by feeding the output of our proposed deep learning model into a
tractable, interpretable probabilistic graphical model called a dynamic conditional cutset network and then
performing joint inference over the two. The key benefit of our proposed approach is that deep learning helps
achieve high accuracy while cutset networks, because of their poly-time probabilistic reasoning capabilities,
make the system explainable. We demonstrate the efficacy of our approach using conventional evaluation
measures such as the Jaccard Index and Hamming Loss as well as a human-subjects study.

CCS Concepts: • Computing methodologies→ Activity recognition and understanding;Maximum a
posteriori modeling; • Human-centered computing → User studies.

Additional Key Words and Phrases: activity recognition, temporal models, cutset networks

ACM Reference Format:
Chiradeep Roy, Mahsan Nourani, Mahesh Shanbhag, Tahrima Rahman, Eric D. Ragan, Nicholas Ruozzi, and Vib-
hav Gogate. 2019. Deciphering a Deep Learning Black-Box via a Cutset Network: Explainable Activity Recogni-
tion in Videos. J. ACM 37, 4, Article 111 (August 2019), 24 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Video activity recognition—inferring high level activities from a sequence of frames—has received
increasing attention in recent years. This task is notoriously difficult especially when: (1) the number
of activities is large; (2) each frame is associated with multiple activities; and (3) activities in different
frames depend on each other. Despite the high degree of difficulty, recent advances in deep learning

Authors’ addresses: Chiradeep Roy, The University of Texas at Dallas, Chiradeep.Roy@utdallas.edu; Mahsan Nourani,
University of Florida, mahsannourani@ufl.edu; Mahesh Shanbhag, The University of Texas at Dallas, rayashanbhag@gmail.
com; Tahrima Rahman, The University of Texas at Dallas, Tahrima.Rahman@utdallas.edu; Eric D. Ragan, University of
Florida, eragan@ufl.edu; Nicholas Ruozzi, The University of Texas at Dallas, Nicholas.Ruozzi@utdallas.edu; Vibhav Gogate,
The University of Texas at Dallas, Vibhav.Gogate@utdallas.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0004-5411/2019/8-ART111 $15.00
https://doi.org/10.1145/1122445.1122456

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 1 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

111:2 Roy, et al.

architectures and algorithms [22, 39, 58, 59] have made it possible to accurately solve this task.
In particular, we can identify activities in a given video using the following approach: (1) predict
activities happening in each frame using deep learning based image classification techniques; and
(2) aggregate the predictions by leveraging prior knowledge to resolve discrepancies between the
predictions (e.g., using a constraint that activities do not change rapidly). Unfortunately, a problem
with the approach just described is that deep learning models are black-boxes; they do not give
their users a good understanding of how they work and why they arrived at a particular decision.

To address this issue, we focus on Explainable Activity Recognition (XAR), which we loosely define
as the task of inferring high-level activities from videos (or in general from low-level sensors) along
with an explanation of why the activities were chosen in lieu of other activities [17]. An XAR system
can benefit and enable a wide variety of real-world applications. For instance, a video surveillance
system would greatly benefit from (human understandable) explanations that describe why the
system flagged (predicted) activities happening in specific video segments as suspicious or benign.
These explanations can either be short or detailed. A short explanation, for example, would tag
the most important sub-segments in each video segment where the specific (e.g., when a package
is stolen from a porch) or a relevant activity (e.g., when a package is touched but not stolen after
seeing the surveillance equipment) happened. A detailed explanation, for example, would describe
alternate or competing hypotheses along with a confidence on each hypothesis and its various
components (e.g., the system believes that with a probability greater than 70%, the package on the
porch was touched at a later time by the delivery person because he/she forgot to scan the package
when it was delivered). Finally, an indirect advantage of explanations is that they help the user
better understand how the system works, which in turn helps her/him build a mental model of the
system’s functioning and gain greater trust in its decisions.
The main purpose of this paper is to describe a general approach for XAR and then apply

and evaluate it—using both machine learning metrics and human subjects studies—for activity
recognition in cooking videos. Specifically, we build an XAR system that can perform the following
three tasks: (1) parse a video into a set of pre-defined activity labels, namely divide each video into
segments and associate activity labels with each segment; (2) use this information to answer Yes/No
queries posed by the user; and (3) provide three different kinds of explanations to add context to the
system’s answers. The third task, in particular, can only be performed by an explainable machine
learning system and is of particular interest to us.
Our system consists of two parts: (1) an explainable machine learning model, which forms the

nuts and bolts of our system; and (2) a visual interface which provides answers to user’s queries
as well as explanations. Our model, in turn, has two layers, a video classification layer and an
explanation layer (see Fig. 1). The video classification (top) layer is a deep neural network that takes
video frames as input and predicts an activity label for each frame. The predicted labels are then
fed into the explanation (bottom) layer. The latter aggregates the predictions made by the neural
network and improves the accuracy using a probabilistic model that represents and reasons about
relationships between different activities as well as temporal constraints. The explanation layer
provides answers to the queries posed by the user as well as explanations; both tasks are solved by
performing inference over the probabilistic model.
The explanation layer consists of a tractable, interpretable probabilistic graphical model [24],

specifically a cutset network [47]. Unlike conventional graphical models such as Bayesian and
Markov networks in which probabilistic inference is NP-hard in general and inaccurate in practice,
cutset networks are desirable in that they admit accurate linear-time inference and often have the
same generalization performance as Bayesian and Markov networks [10, 31, 35, 35, 45–47, 52]. In
other words, inference over cutset networks is always fast and accurate, and as a result they often
yield significantly better quality predictions and explanations than Bayesian and Markov networks.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 2 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Deciphering a Deep Learning Black-Box via a Cutset Network: Explainable Activity Recognition in Videos 111:3

A possible interpretation of our explainable machine learning model is that the deep learning
layer provides noisy sensory inputs to the cutset network layer, which in turn removes the noise
and provides explanations. The neural network, by itself, is unable to provide explanations because
it does not model, and therefore is unable to reason about, the relationships between the predicted
labels. On the other hand, a cutset network explicitly models relationships between various activities
and can provide fast, high quality explanations by performing (abductive) probabilistic inference
over the network. To model temporal aspects in video, we further refine this model, propose a
novel temporal probabilistic modeling framework called dynamic cutset networks, and show that it
improves the estimation accuracy.

The second part of our system consists of a browser-based user interface that can be used to pose
Yes/No questions to the system (see 5). The user first chooses a video and can then choose from
a list of questions of the form “Did activity X take place?” The system then uses the explanation
layer to search for frames where there is an activity match and displays explanations in the form of
video segments, ranked triples, and component-wise contributions to the explanations. If no perfect
matches are found, then the system answers No to the query and uses partial component-wise
matches to explain its decision.
We evaluated the machine learning part of our system using standard information retrieval

metrics such as K-group measures, the Jaccard Index and the Hamming Loss. Specifically, we
compared our two-layer architecture, which contains a video classification layer and an explanation
layer, with a one-layer architecture that only contains the video classification layer. We observed
that the two-layer architecture is more accurate than the one-layer architecture. We evaluated the
interface using human-subjects studies where each user was shown a set of videos and presented
with questions that she/he had to answer using the explanations provided by the system. Our results
clearly demonstrate that the users who used the explanations found it easier to complete the task
and were able to develop a higher level of trust in the system.
The rest of the paper is organized as follows. In the next section, we describe related work. In

section 3, we describe the desiderata of an XAR system for cooking videos and show how to build
the system using machine learning representations and algorithms in section 4. We empirically
evaluate the machine learning models in section 5 and describe the results of a human-subjects
study for measuring explanation effectiveness in section 6. Finally, we summarize our contributions
and present avenues for future work in section 7.

2 RELATEDWORK
Traditionally, researchers have used spatiotemporal models for activity recognition that treat the
video as a 3D spatiotemporal object having co-ordinates (x,y, t) where x and y represent the spatial
co-ordinates of each image at time slice t of the video. For example, Laptev [28] generalized Harris’
interest point detector to the 3D domain in order to locate spatiotemporal chunks that exhibit
high variations of local pixel intensities. Other spatiotemporal approaches have tried comparing
sub-volumes of the 3D video cuboid to predefined action templates, e.g., [3, 54], while others have
tried to track the trajectories of points in motion, e.g., [6, 49], and compare these trajectories to
those of known actions. While these approaches have been fairly successful in the past, most of
them have been used to detect simple action primitives such as walking, jumping, etc. and have
difficulty generalizing to more complex activities. They also typically only provide information
about the action taking place; our model aims to provide additional information such as the object
that is being affected by the action and the location where the action is taking place.

More recently, Convolutional Neural Networks (CNNs) [29], which have already found extraordi-
nary success in large scale image classification and object detection, e.g., [26, 58], have been applied
to this task. For example, Yang et al. [63] successfully applied CNNs as low-level object detectors

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 3 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

111:4 Roy, et al.

with a probabilistic parser built on top that acts as a semantic wrapper around these features. Other
works have demonstrated that CNNs can be used to automatically extract relevant features that are
often better than hand-crafted features used in the spatiotemporal approaches, e.g., [14, 61]. We
wanted to combine the strength of CNNs, detecting intricate spatial patterns and extracting rich
visual features, together with the strengths of temporal probabilistic models such as Hidden Markov
Models [4, 56, 62] and Dynamic Bayesian Networks [5, 16, 20], which have been used extensively in
the activity recognition literature, in order to build a robust XAR system that is both accurate and
explainable.
This effort is also closely related to the work of Rohrbach et al. [51] and Donahue et al. [11]

on generating a semantic representation from videos at an activity level using deep learning
architectures. Instead of generating sentences in natural language however, we assign a number
of pre-defined labels divided into categories. Related efforts have considered the task of dense
captioning [25], i.e., generating summaries of texts from particular segments. Song et al. [55]
attempted to create captioning methods that require minimum supervision on the TaCOS dataset.
Duan et al. [13] attempted to combine caption generation and sentence localization to feed off
of each other to create a weakly supervised training model. These works focus on creating text
summaries for video segments, and as is typical of deep learning approaches, they are essentially
black-boxes. Our approach, on the other hand, aims to create a semantic representation for activities
in each frame that can be used to both answer queries easily as well as generate explanations (via
probabilistic inference) that justify these answers.

There have also been a number of studies on how trust influences interactions between humans
and automated systems, e.g., [18, 30, 36, 37]. These studies examine factors that might affect the
trust of the user in the system, such as the past performance of the system and how understandable
the system is to the user [30]. Hoffman [19] provides a more detailed taxonomy of such factors and
explains how trust is context-specific and dynamic. In other words, trust might vary with respect to
specific contexts of automation and must also be maintained over time. Our aim is to be able to
control and measure user trust with respect to these systems in order to better understand what
kind of explanations influence the trust variable.

Our work on feeding the output of deep neural networks to graphical models (cutset networks in
our case) is related to a recent line of work that combines graphical models and neural networks,
e.g., [21]. Unlike these works, which perform joint learning, the main idea in our work is to treat
the output of the neural network as a noisy but highly accurate sensor and then use the graphical
model to reduce the noise and provide (common-sense) reasoning capabilities.

3 ACTIVITY RECOGNITIONWITH EXPLANATIONS
The objective of our proposed system is two-fold: (a) perform accurate activity recognition in videos
and (b) compile knowledge acquired while learning to recognize activities into an explanatory
model. The latter can then be used to explain why a particular activity was assigned to each frame
of the video by the system.

3.1 Activity Recognition Task
We define an activity as a triple (action, object, location). The action component forms the core part
of the activity. These are usually verbs such as wash, cut, slice, open, etc. The object component
denotes the entities over which the activity is performed. These are generally nouns such as apples,
refrigerator, cutting board, knife, etc. Finally, the location component tells us where the activity is
taking place. These are generally location nouns such as kitchen, bathroom, counter top, sink, etc.
but can also overlap with the nouns we use as objects. For example, when we “kick open a door,”
the activity is “kick” and the object is “door,” but the same entity might play a different semantic

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 4 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Deciphering a Deep Learning Black-Box via a Cutset Network: Explainable Activity Recognition in Videos 111:5

role in a different activity such as if a baby “draws a picture on the door.” Here “draw” is the activity,
“picture” is the object, and “door” is the location.

We make the following simplifying assumptions. First, we train our system on a closed-domain.
In this study, we use cooking videos. Second, we assume that all activities are simple and not part of
other, more complex activities. Finally, the action must always be present, while the object and the
location are optional. For reflexive actions, such as “walking,” the object is “None.” In the future, we
plan on making activities more complex so that we can pose more interesting queries on them.

Users interact with our system by posing so-called selection questions: “Did a particular (simple)
activity defined by the triple (action, object, location) happen in the video?” where object and location
can be “None,” but action is not allowed to be “None.” Examples of selection questions include: (1)
“Did the person slice an orange on the counter?” where slice, orange, and counter denote the action,
object, and location respectively; (2) “Did the person take out grapes from the refrigerator?” where
take out, grapes, and refrigerator denote the action, object, and location respectively; (3) “Did the
person open the refrigerator?” where open and refrigerator denote action and object respectively
and location is None.

3.2 Explanations
In addition to answering queries posed by the user, we also want the system to provide explanations
to justify its answers. The current framework generates three different types of explanations:
(1) Video Explanations: When the system answers “yes,” we want the system to highlight

segments (possibly more than one) of the video where the activity happened. For “no” answers,
we want the system to highlight segments where a related activity happened. For example, for
the question “does the person in the video wash his hands?”, there might be two segments in
the video from say, 01:00 to 01:10 and from 04:15 to 04:25 where the person washes his hands.
We want our system to detect these segments and use them as explanations to justify its
answer to the question (“yes” in this case). If the person does not wash his hands in the video,
we would expect the system to answer “no” and explain its answer by highlighting a section
of the video (say from 00:20 to 00:35) where the person performs a similar activity such as
washing a knife or washing a peeler. The system is expected to therefore justify “no” answers
by saying that similar activities were detected but not the specific activity (or activities) that
the user was querying for.

(2) Ranked (action, object, location) Triples: We want the system to display the top-s pre-
dicted activity triples in the video that are relevant to the query. For example, for the question
“does the person cut a carrot?”, the system might answer “yes” and display a list of three
possible explanations: (cut, carrot, cutting-board), (cut, carrot, plate) and (cut, orange, plate).
We want these explanations to be ordered in descending order of likelihood (or confidence).
In this case, we know that the system believes that the activity taking place was (cut, carrot,
cutting-board) with the highest degree of confidence, followed by (cut, carrot, plate) and (cut,
orange, plate). These explanations not only provide more context to the answers but also
help the user decode patterns in the behavior of the system. For instance, the user might
notice that the system frequently generates “orange” as an alternative explanation for “carrot”
presumably because they have the same color. The model that we use for our system is able
to generate these kinds of explanations.

(3) Most Probable Entities:We want the system to display the most probable actions, objects
and locations (along with their likelihood) that are relevant to the query. Using the same
example as above, we want the system to give us a component-wise score for the components
cut (action), carrot (object), orange (object), cutting-board (location) and plate (location). The
system might have a 100% score for cut because it is very confident that the cutting action is

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 5 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

111:6 Roy, et al.

Video

Ground
Labels

Predicted
Labels

}
Modified GoogleNet

Dynamic Cutset
Networks

Set Query Nodes to Evidence
and Generate Explanations?

Answer Query
and Generate
Explanations

Video Classification Layer

Explanation
Layer

Fig. 1. High-level Architecture and Data Processing Pipeline. Our system has two layers: a video classification
layer based on deep learning whose output is fed to an explanation layer which is based on cutset networks
[47], a tractable interpretable probabilistic model. During the learning phase, the classification layer uses the
video and the ground truth (labels) as input and learns a mapping from frames to object, action and location.
During the learning phase, the explanation layer uses the labels predicted by the classification layer and
ground truth as input and learns a mapping from predicted labels to the ground truth. During the query phase,
the system answers questions by performing marginal and MAP inference over the cutset network (in the
explanation layer).

taking place but only a 60% score for carrot because it is not sure if the object being cut is
a carrot or an orange. Once again, the cutset network that we use in the explanation layer
makes it very easy to generate these types of explanations.

4 SYSTEM DESCRIPTION
Fig. 1 shows a high-level overview of the components of the system and the processing pipeline. We
evaluated and tailored the system to the Textually Annotated Cooking Scenes (TaCOS) dataset. Each
frame in each video in the dataset is labeled with an action, object, location triple. The dataset has
28 labels (our vocabulary) which includes 12 actions, 7 objects, 8 locations and a special label called
‘Nothing’. The system can be roughly organized into the following two layers: (a) video classification
layer which takes as input video frames and a vocabulary file and assigns a set of labels from the
vocabulary to each frame; and (b) explanation layer which takes the predicted labels from the video

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 6 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Deciphering a Deep Learning Black-Box via a Cutset Network: Explainable Activity Recognition in Videos 111:7

classification layer as input, corrects them using a probabilistic model, and outputs (potentially
more accurate) labels and explanations.

4.1 Video Classification Layer
The input to this layer is a single video frame that is mapped to a set of output activity labels
via a deep neural network. This process is repeated for each frame of each video. This layer was
implemented using GoogLeNet [57], a 22-layer Convolutional Neural Network1 (CNN) that is pre-
trained on the ImageNet dataset [53]. It uses a key component called an Inception Module that
creatively uses convolutions of size 1×1 to increase the representation power of the network without
increasing the number of parameters. Fig. 2 shows how the convolution and pooling layers are
arranged in this architecture.

4.1.1 1 × 1 Convolutions. While filters (or convolutions) in CNNs can be used to greatly reduce
the number of parameters for fully-connected networks (FCNs), in many practical scenarios this
reduction is still not enough to avoid overfitting. GoogleNet attempts to circumvent this problem by
using 1×1 convolutions. Consider a scenario where the input tensor has dimensions 28×28×192
which we want to reduce to a tensor of size 28×28×32 by using a filter of size 5×5×32. This would
imply that every unit of the output tensor 28×28×32 would be a dot product of dimensions 5×5×32
from the input volume. Unfortunately, this results in a little over 120 million parameters. If instead
we were to stack a 1×1×16 filter followed by a 5×5×16 filter then we would have a total of only
12 million parameters which is a reduction of over 90%. Therefore, these 1×1 convolution layers
serve to increase not only the depth but also the width of the network without noticeable loss in
performance. This idea was first proposed by the authors of Network-in-Network [32] which has
been applied in GoogLeNet [58] to the CNN setting.

4.1.2 Inception Module. In most state-of-the-art CNN architectures, a choice needs to be made
for each layer wherein the modeler needs to choose between a stack of 3×3 filters, 5×5 filters or
max pooling. The Inception Module (see Fig. 3 for a high-level overview) circumvents this problem
by combining all these components together followed by stacking their results together (Filter
Concatenation) and feeding it to the next layer without an exponential increase in the number of
parameters. The dimensionality of the images is reduced by performing 1×1 convolutions before
applying 3×3 and 5×5 filters and after applying max pooling. The 1×1 convolutions are helpful for
capturing features from layers closer to the input layer where pixel correlations will form local
clusters. The 3×3 and 5×5 convolutions are used to capture the semantic relationships between
clusters that are spread out.

4.1.3 Training. We modified the GoogleNet architecture slightly to accommodate our problem.
Specifically, we replaced the output layer of GoogLeNet by a softmax layer over a set of 28 activity
labels (12 actions, 7 objects and 8 locations plus the special label called “Nothing”). As mentioned
earlier, the base architecture was already pre-trained on the ImageNet dataset which was a part of
the ILSVRC challenge [53]. This dataset has over 200 object classes and over 450K training instances.
Our modified architecture was then trained on our dataset for a fixed number of iterations.

1Convolutional Neural Networks are a type of deep neural networks that are often used for solving image classification
tasks. At the heart of this network is the convolution operation which takes as input an image represented using a tensor
having dimensions width × heiдht × 3 (3 channels for RGB) and a filter represented using a tensor having dimensions f1
× f2 × 3 and outputs a tensor having dimensions width − f1 + 1 × heiдht − f2 + 1 × 1. The output tensor is obtained by
sliding the filter over the image (shifting it by one horizontally and vertically) and performing element wise dot product at
each step. At a high level, each layer in a convolutional network reduces the images into a new feature representation which
is easier to process and is likely to yield high accuracy.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 7 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

111:8 Roy, et al.

Fig. 2. Schematic layout of the GoogleNet architecture. The blue boxes represent convolutional layers (filters),
the red boxes pooling layers, the yellow boxes softmax layers and the green boxes depth concatenation layers.
Depth concatenation simply concatenates the results of its inputs along the depth dimension.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 8 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Deciphering a Deep Learning Black-Box via a Cutset Network: Explainable Activity Recognition in Videos 111:9

Fig. 3. Architectural layout of the inception module. Instead of having to choose the best filters, the outputs
of a 1×1, 3×3, 5×5 convolution layer and a max-pooling layer are concatenated together at the concatenation
layer. Three additional 1×1 units are used to further reduce dimensionality size—two for the 3×3 and 5×5
convolution layers and one for the max pooling layer.

4.2 Explanation Layer
In this section, we present dynamic conditional cutset networks (DCCNs), a new tractable temporal
probabilistic representation. We will use DCCNs in the explanation layer to: (a) correct errors in the
labels predicted by the GoogLeNet at each frame; (b) model the dynamics as well as persistence
(activities do not change rapidly between frames) in the video; and (c) provide explanations via
abductive poly-time probabilistic inference.

4.2.1 Cutset Networks. Probabilistic Graphical Models (PGMs) such as Bayesian and Markov net-
works [24] are widely used in practice to represent and reason about uncertainty. At a high level,
they are a compact representation of the joint probability distribution over a large number of ran-
dom variables. Once learned from data, they can be used to answer any query posed over the joint
distribution via probabilistic inference. The two main types of inference (queries) tasks are posterior
marginal (MAR) and maximum-a-posteriori (MAP) inference. In MAR inference, we are interested
in computing the marginal probability distribution over each query variable given evidence where
evidence (or observation) is an assignment of values to a subset of random variables. In MAP
inference, we are interested in computing the most likely assignment to all query variables given
evidence. Both tasks are notoriously difficult to solve in many practical networks, and theoretically
they are NP-hard in general. As a result, in practice, one has to often use approximate inference
algorithms to solve these problems (approximately). Unfortunately, these algorithms are unreliable
and often yield inaccurate query answers.
Tractable probabilistic models (TPMs) [1, 8, 33] are special types of probabilistic models which

admit poly-time MAR and MAP inference and thus circumvent the problem of unreliability of
approximate inference in Bayesian and Markov networks. Although TPMs are less expressive than
intractable (latent) probabilistic models such as Bayesian and Markov networks, their prediction
accuracy (at test time) is often much higher than intractable models. This is because tractable

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 9 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

111:10 Roy, et al.

Y1

Y3 Y4

Y2 → Y4 Y4 → Y2 Y3 → Y2 Y2 → Y3

0.3 0.7

0.2 0.8 0.92 0.08

(a)

Y1

Y3 Y4

Y2 → Y4 Y4 → Y2 Y3 → Y2 Y2 → Y3

1− σ1(x) σ1(x)

1− σ2(x) σ2(x) 1− σ3(x) σ3(x)

(b)

Y t Y t+1 True Labels

Xt Xt+1 Predicted Labels

(c)

Fig. 4. (a) A cutset network over 4 variables {Y1, . . . ,Y4}. OR nodes are denoted by circles. Y1 is the root
node of the OR tree. Left and right arcs emanating from an OR node labeled by Yi indicate conditioning over
false (assignment of 0) and true (assignment of 1) values of Yi respectively. Arcs emanating from OR nodes
are labeled with conditional probabilities. For example, the arc labeled with 0.08 denotes the conditional
probability P(Y4 = 1|Y1 = 1). The leaf nodes of the OR tree are tree Bayesian networks. (b) A conditional cutset
network (CCN) representing P(Y1, . . . ,Y4 |X). Arcs emanating from OR nodes are labeled with (calibrated)
classifier functions. For example, the arc from the OR node Y1 to the OR node Y3 is labeled with a logistic
regression classifier 1−σ1(x). Given an assignmentX = x to all variables inX , the CCN yields a cutset network
having the same structure as the one given in (a) except that the parameters will be computed using σ1, σ2
and σ3. (c) 2-slice dynamic conditional cutset network. The CCN at time slice t represents P(Y t |X t) while the
CCN at time slice t + 1 represents P(Y t+1 |X t+1,Y t).

models use exact inference at prediction time while one has to use inaccurate approximate inference
algorithms in Bayesian and Markov networks. Examples of popular TPMs include cutset networks
[44, 45, 47], arithmetic circuits [8, 33], sum-product networks [42] and probabilistic sentential
decision diagrams [2].

Cutset networks [47] are a class of TPMs that use recursive cutset conditioning [34, 41] to build a
rooted OR tree where each non-leaf node corresponds to a conditioned variable and each leaf node
corresponds to a tree-structured Bayesian Network defined over all variables not appearing on the
path from the root to the leaf. Formally, given a set of variables X = {X1, . . . ,Xn}, a cutset network
C is a pair (O,T) where O represents an OR tree and T represents a set of tree-structured Bayesian
Networks, one for each leaf node in O (see Fig. 4(a) for an example). Assuming that all the variables
in X are binary, each non-leaf node in O will have two branches. We will assume that the left and
right branches of an OR node labeled by Xi in O correspond to the values x i and xi respectively
where x i (similarly xi) denotes an assignment of value 0 to Xi (similarly 1). Each directed edge
between an OR node labeled by Xi and its child node inO is labeled with the conditional probability
of the variable Xi taking the corresponding value given the assignment on the path from the root to
Xi . For example, in Fig. 4a, 0.92 equals the conditional probability P(y4 |y1). Every non-leaf node
partitions the probability space into data points that agree with x i in the left sub-tree and those that
agree with xi in the right sub-tree. The probability of a full assignment x w.r.t. the cutset networkC
is given by

PC (x) = Tl (x)

(
xV (Tl (x))

)
·

∏
p∈O (x)

p (1)

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 10 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Deciphering a Deep Learning Black-Box via a Cutset Network: Explainable Activity Recognition in Videos 111:11

Algorithm 1 LearnCNet

Input: Dataset D = {x (1), . . . , x (m)} havingm training examples, Variables X = {X1, . . . ,Xn}

Output: Cutset network C
1: if termination condition then
2: return ChowLiuTree(D)
3: Use a splitting heuristic to select a variable Xi ∈ X
4: Create a new OR node o and label it by Xi
5: Dx i ← {x ∈ D |Xi = 0}
6: Dxi ← {x ∈ D |Xi = 1}
7: Let l and r denote the left and right child nodes of o
8: l ← LearnCNet(Dx i , X \ {Xi })
9: r ← LearnCNet(Dxi , X \ {Xi })
10: Let po,l and po,r denote the conditional probabilities on the edge between o and l and between

o and r respectively.
11: po,l ←

|Dxi |

|D |

12: po,r ←
|Dxi |

|D |
13: return o

where l(x) denotes the leaf node in C corresponding to the assignment x , Tl (x) denotes the tree
Bayesian network at l(x), V (Tl (x)) denotes the set of variables over which Tl (x) is defined, xV (Tl (x))
denotes the projection of the assignment x on the variables V

(
Tl (x)

)
(where V

(
Tl (x)

)
⊆ X) and O(x)

is the set of conditional probabilities on the path from root to the leaf node l(x) in the OR tree O .
The time complexity of posterior marginal estimation (MAR) and full maximum a-posteriori

estimation (MAP) is linear in the size of the cutset network as it requires just two passes over
the cutset network [47]. The fact that most prediction tasks can be reduced to these two types of
inference queries makes these models an attractive choice for applications that rely heavily on exact
inference at test time.
The structure and parameters of cutset networks can be learned from data using the top-down,

recursive induction approach described in Algorithm 1. The algorithm has two main steps: base
case and conditioning step. In the base case, the algorithm returns a tree Bayesian network if a
pre-defined termination condition (a popular condition is described below) is satisfied. The tree
Bayesian network is learned from data using the Chow-Liu algorithm [7]. This algorithm first
constructs an undirected weighted complete graph in which each node corresponds to a variable Xi
in X and each edge (Xi ,X j) is weighed using the mutual information score (MIScore) between Xi
and X j :

MIScore(Xi ,X j) =

1∑
i=0

1∑
j=0

PD (Xi = i,X j = j) log
PD (Xi = i,X j = j)

PD (Xi = i)PD (X j = j)

where PD (Xi = i,X j = j) is estimated from the dataset D; the estimate equals the number of times
the partial assignment (Xi = i,X j = j) appears in the data divided by the number of examples in D,
and PD (Xi = i) =

∑1
j=0 PD (Xi = i,X j = j) (similarly, PD (X j = j) =

∑1
i=0 PD (Xi = i,X j = j)). Then,

the Chow-Liu algorithm finds a maximum spanning tree from the weighted complete graph and
converts the tree to a directed tree K using depth-first search. The latter yields a tree Bayesian
network which represents the following distribution:

T (x) =
n∏
i=1

PD (x {Xi } |xpaK (Xi))

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 11 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

111:12 Roy, et al.

where paK (Xi) is the set of parents of Xi in K . Note that paK (Xi) ≤ 1 for all i .
The following termination condition is often used in practice [44, 45, 47]. Stop growing the OR

tree if any of the following conditions are satisfied: (1) The number of examples is smaller than
k ; (2) The depth of the OR tree is larger than d (d is bounded by n). Hyperparameters d and k are
tuned using the validation set; namely we search over possible choices of d and k and choose the
combination that gives the highest log-likelihood score on the validation set.
In the conditioning step, the algorithm heuristically selects a variable Xi to condition on. The

following heuristic is often used in practice [9, 44]. We select a variable having the following sum
mutual information score with ties broken randomly:

SumMIScore(Xi) =
∑
j :j,i

MIScore(Xi ,X j)

Once the variable (Xi) is selected, the algorithm induces an OR node o labeled by Xi (line 4). Then,
the algorithm partitions the datasetD into two datasets,Dx i andDxi where the former contains only
those examples inD whichXi is assigned the value 0while the latter contains only those examples in
D which Xi is assigned the value 1. It then creates two child nodes l and r and recursively constructs
a CN on l and r using Dx i and Dxi respectively. Finally, the algorithm estimates the conditional
probability on the edges between l and o and between r and o (lines 11 and 12) and returns the OR
node o.

4.2.2 Conditional Cutset Networks. Conditional cutset networks (CCNs) are a new framework that
was recently proposed by Rahman et al. [46]. As the name suggests, they generalize the cutset
networks framework to compactly represent conditional distributions of the form P(Y |X) where X
and Y are sets of variables. In CCNs, the OR tree and each tree Bayesian network is defined over
variables in Y . The conditional probabilities in the OR tree and tree Bayesian networks are given
by a calibrated probabilistic classifier [40]. These classifiers take as input an assignment x to a set
of variables X and output a probability distribution over the class label Yi ∈ Y . Tractability over
each individual distribution is still maintained since the number of parameters for most calibrated
classifiers scales polynomially with the number of input variables X . For example, when we using
logistic regression, we have P(Yi = 1|X = x) = σ (w0 +

∑
Xi ∈X wix {Xi }) wherewi ’s are the weights

(parameters) and σ denotes the sigmoid function.
Given an assignment x to all variables inX , a CCN yields a cutset network because each calibrated

classifier yields a marginal probability distribution over the class variable. Thus, given x , CCNs yield
a tractable probabilistic model over X . Fig. 4(b) shows an example of a conditional cutset network.
Structure and parameters of a CCN can be learned (see Algorithm 2) using the same top-down

induction approach used for cutset networks. The differences between the two algorithms are:
(1) In LearnCCN, we learn the parameters on the edges of the OR tree and the conditional

distributions at each node in each tree Bayesian network using a calibrated classifier σ (X)
(e.g., logistic regression, neural networks, random forests, etc.). The best classifier is chosen
using cross-validation.

(2) In LearnCCN, we learn the tree Bayesian networks at each leaf node of the OR tree using
conditional mutual information scores. Similarly, the splitting heuristic in the LearnCCN
algorithm uses sum conditional mutual information scores as compared with sum mutual
information scores in the LearnCNet algorithm. See Rahman et al. [46] for details.

4.2.3 Using CCNs to Predict Activity Labels. To use CCNs in our video activity recognition frame-
work, we feed the output of GoogLeNet to the CCN. More formally, let X denote the set of output
nodes of GoogLeNet and Y denote the set of true labels at a frame. We use the CCN to model P(Y |X)
and learn its structure and parameters using Algorithm 2. Given a set of videos V , the training

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 12 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Deciphering a Deep Learning Black-Box via a Cutset Network: Explainable Activity Recognition in Videos 111:13

Algorithm 2 LearnCCN

Input: Dataset D = {(x (1),y(1)), . . . , (x (m),y(m))}, Sets of Variables Y and X
Output: Conditional cutset network C

1: if termination condition then
2: return ConditionalChowLiuTree(D,Y ,X)
3: Use a splitting heuristic to select a variable Yi ∈ Y
4: Create new OR node o and label it by Yi
5: Learn a calibrated classifier σ (X) with class label Yi and X as input using D
6: Dyi ← {(x,y) ∈ D |Yi = 0}
7: Dyi ← {(x,y) ∈ D |Yi = 1}
8: Let l and r denote the left and right child nodes of o
9: l ← LearnCCN(Dyi , Y \ {Yi })
10: r ← LearnCCN(Dyi , Y \ {Yi })
11: Label the edge between l and o by 1 − σ (X)
12: Label the edge between r and o by σ (X)
13: return o

dataset D is constructed as follows. We have one training example in D for each frame in each video
of V . Each example is composed of true labels (Y) and labels predicted by GoogleNet (X) with the
pixels in the frame as input.

At test time, at each frame, we instantiate all the classifiers in the CCN using the predicted labels
to yield a cutset network and then perform MAP inference over the cutset network to yield the
final set of labels. In other words, the CCN treats the output of GoogLeNet as a noisy sensor (see
Fig. 4(c)) and computes a conditional joint probability distribution over the true labels given the
predicted (noisy) labels. A second benefit of CCNs, apart from improved accuracy, is that it can be
used to generate high quality explanations.

4.2.4 Dynamic Conditional Cutset Networks. An issue with CCNs is that they are static and do not
explicitly model temporal aspects of video. For instance, we can use persistence, namely objects do
not change their position rapidly between subsequent frames to correct prediction errors at a frame
by using data from neighboring frames. To address this issue, we propose a novel framework called
dynamic conditional cutset networks (DCCNs). Formally, let a video consist of n frames, let Y i and
X i be the set of true labels and predicted labels (evidence) respectively at frame i . Then, the DCCN
represents the following probability distribution:

P(y1:n |x1:n) = P(y1 |x1)
n∏
i=2

P(yi |x1:i ,y1:i−1), (2)

where the notation y1:n (similarly x1:n) denotes an assignment of values to all true (predicted) labels
in frames 1 to n. We will use the notation Y 1:n to denote the set

⋃n
i=1 Y

i .
The representation given in Eq. (2) is not compact as the number of frames in a video (n) increases.

To circumvent this issue, we adopt two standard assumptions widely used in temporal or dynamic
probabilistic models—the 1-Markov and stationarity assumptions [43]. Specifically, we assume
that each frame is conditionally independent of all frames before it given the previous frame (1-
Markov) and all conditional distributions are identical (stationarity). With these assumptions, we

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 13 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

111:14 Roy, et al.

Algorithm 3 GetPosteriorParticlesDCCN

Input: DCCN C , GoogleNet labels X = {x1, .., xn} for n video frames, number of particles K
Output: Set of K particles from the approximate posterior distribution P̂C (Y

n |x1, .., xn)

1: particles ← Generate K samples from prior PC (Y 1 |x1)
2: for i ∈ {2..n} do
3: old_particles ← particles
4: for k ∈ {1, . . . ,K} do
5: particles[k] ← Sample from transition PC (Y

i |x i−1,old_particles[k])
6: return particles

can represent P(y1:n |x1:n) using

P(y1:n |x1:n) = P(y1 |x1)
n∏
i=2

P(yi |x i ,yi−1), (3)

where P(y1 |x1) and P(yi |x i ,yi−1) are conditional cutset networks and P(yi |x i ,yi−1) has the same
parameters and structure for i (see Figure 4c).
We learn DCCNs using the following approach. The prior model P(y1 |x1) is the same as the

CCN described in the previous section. To learn the structure and parameters of P(yi |x i ,yi−1), we
construct the dataset as follows. Each frame in each video is a training example and is composed of
true labels at frame i (Y i), true labels at frame i − 1 (Y i−1) and labels predicted by GoogLeNet at
frame i (X i) using the pixels in the frame as input. Inference over DCCNs can be performed using
sequential sampling approaches such as particle filtering and smoothing [12]. Here, we generate K
assignments (y1,(1), . . . ,y1,(K)) uniformly at random from P(y1 |x1), then for each assignment y1,(i)
we sample one assignment from P(y2 |x2,y1,(i)), and so on. At the end of the sampling process, we
will have K particles from P(y1:n |x1:n).

Algorithm 3 uses this process to generate K particles that we will later use to generate the
explanations. Themain virtue of DCCNs is that, unlike widely used temporal models such as dynamic
Bayesian networks [38], the particles in DCCNs are generated from the posterior distribution
P(yi |x1:i ,y1:i−1) at each frame i . As a result, issues such as particle degeneracy—particles vanish
because their weights become too low as i increases—that typical sequential sampling algorithms
suffer from will be less severe in DCCNs [12].

4.2.5 Question Answering and Explanation Generation. As mentioned earlier, the main virtue of
CCNs and DCCNs is that unlike GoogleNet, they can be used to generate the three different types of
explanations described in Section 3.2. In this section, we describe how to generate the explanations.
To recap, in our proposed system, the user poses a selection type query to the system such as

“Does the person in the video cut anything?” (cut,∗,∗) or “Does the person do anything with an
orange in the sink?” (∗,orange,sink). The fields with ∗’s can be matched with anything. The system
then tries to search the video for any activity tuples that match the conditions of the selection query.
If a complete match is found, then the system answers Yes. If, however, no complete match is found
then the system answers No. The system then uses CCNs and DCCNs to generate the following
types of explanations:
(1) Video Explanations: For each unlabeled video, we use Algorithm 3 to compute the joint

probability distribution over all possible ground labels at time slice t . Then, we generate
the most likely set of labels yt at t by choosing the particle having the highest posterior
probability, which is equivalent to performing MAP inference after computing the posterior
distribution. Once we have the most likely set of labels for all the time slices, we can cluster

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 14 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Deciphering a Deep Learning Black-Box via a Cutset Network: Explainable Activity Recognition in Videos 111:15

frames that have the same set of labels into a single segment. In the worst case, this process
might exhibit high variance and result in segments spanning only a few frames; however,
this issue can be somewhat circumvented by merging windows containing multiple frames
instead of doing it on a frame-by-frame basis. Once this is done, we record the most probable
activity triple associated with each segment. When the user submits a selection query, all
segments whose activity triples completely match the parameters of the query are returned
as video explanations. This helps the user to quickly navigate to the relevant segments of the
video where the system believes that the activity took place.
More interesting, however, are the explanations generated when the system answers No. In
such a scenario, the system returns all video segments that have partial matches. For example,
for the question “Does the person take out a knife from the drawer” (take out, knife, drawer), in
the absence of a complete match, the system will first try to search for partial matches where
at least two of the three components match. For example, if there are segments where the
person takes out a peeler from the drawer (take out, peeler, drawer) or takes out a knife from
the cupboard (take out, knife, cupboard), these segments will be returned as explanations for
the No answer. The rationale is that while the system found activities similar to the activity
being queried, it did not find the exact activity being searched for and therefore answered
No. If no such partial matches exist, the system then tries to match at least one component
such as, say, (wash, knife, sink) or (take out, carrot, fridge). If there are no single component
matches either, then the system displays that no segments are found.

(2) Ranked (action, object, location) Triples: The particles/samples output by Algorithm 3
can also be used to generate ranked explanations for any given frame. In particular, if we
want to compute the top-s most likely activities at time slice t , then we can select s particles
having the highest likelihood at time slice t and display them to the user in descending
order of likelihood scores; this is equivalent to performing s-MAP inference on the posterior
distribution. Since video segments are returned as explanations to the system’s answers and
each video segment is associated with a single activity triple, we take the average of all the
particles over a segment and return the top-s particles having the highest average likelihood
as ranked triples.

(3) Most Probable Entities: Once again, these kinds of explanations can also be generated by
Algorithm 3 using an approach similar to the one used for ranked triples. The only difference
is that instead of generating s-MAP tuples, we wish to compute the marginal distribution
P(yt |x1:t) that will tell us how confident the system is about a particular label at a given time
slice. Since the last step of particle filtering involves generatingK instantiated cutset networks,
we can simply perform exact inference on these networks (which can be done tractably and in
fact, linearly) to compute the posterior marginals and then average out over all K networks.

4.3 User Interface
Our prototype system uses an interactive visual interface that allows users to load videos, ask
queries, and review the model output along with explanations. The goal for the interface design was
to limit the amount of model information presented to the users in order to avoid overwhelming
them with information. For this reason, the system uses simple visual representations in the form of
graphical annotations, textual component lists, and simple bar charts. Figure 5 shows the interface.
The interface allows the users to select a video and a relevant query based on that video. These

would serve as inputs for the model. The interface would then provide two types of output: (1) the
model’s answer to that query and (2) the explanations for why the answer is provided. For this
purpose, the interface includes a video player with the selected video that would allow the users to
go over the video if they wanted to review and analyze the system’s answer to the query or try to

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 15 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

111:16 Roy, et al.

Fig. 5. The interactive visual interface allows users to load videos and ask queries. The interface shows the ML
system’s answer along with explanatory elements for the output. The most relevant portions of the video play
time are shown by colored bars beneath the video, and the right side shows detected video components and
combinations of components relevant to the video and query.

come up with their own answer for that query. The queries used in this system are in the form of
yes/no questions, and hence, the answers are either yes or no.

The system also provides information to justify its answer to the selected query. For this purpose,
it would first highlight the most relevant segments (a sequence of relevant and consecutive frames)
in the video through visual annotations added under the video progress bar. These annotations
are in the form of square-shaped blue buttons, as seen under the video in Fig. 4. These annotated
segments are buttons, and when clicked, the video jumps to the start of that segment, and new
information is loaded that explains why this segment is relevant to the query answer. By default,
the first identified segment is selected.
Each segment includes detailed explanations as to why it is related to the system answer. We

display this information on the right-side of the interface, as seen in Fig. 4. On the top right,
the summary of detected video components (action, objects, and locations) for the given query
is shown, which represent the highest ranking combinations of components the model detected
in this segment. On the bottom right, the interface shows the component scores that summarize
the marginal probabilities of single components in the selected segment. To help users to quickly
judge component scores, graphical bars are shown underneath detected components to visually
represent the values of the component scores. Users can select different video segments to view the
corresponding component scores and combinations from different portions of the video.

5 MODEL EVALUATION
The model for the activity detection system was trained using a publicly-available video dataset,
the Textually Annotated Cooking Scenes (TACoS) dataset [50], which consists of videos of several
different cooking-related activities. For example, a typical video will have a person take out a
vegetable from the refrigerator, wash it, cut it, and then cook it. The cooking context has the
advantage of being easily understandable, even without particular domain expertise. The dataset
includes hand-annotated labels of actions, objects, and locations for each frame of video. We isolate
28 such labels and use videos with only these labels for our experiments. Most videos are around 2
minutes in length (although videos as long as 15 minutes are also present). We used different sets of

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 16 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Deciphering a Deep Learning Black-Box via a Cutset Network: Explainable Activity Recognition in Videos 111:17

Metric GoogLeNet CCNs Dynamic CCNs
K-1 0.9335 0.9677 0.9687
K-2 0.8557 0.8998 0.9197
K-3 0.7918 0.7962 0.8168

Jaccard Index 0.8608 0.8559 0.8674
Hamming Loss 0.1392 0.1286 0.1160

Table 1. Accuracy for Activity Recognition on Test Videos. Bold results indicate the best performing model.

videos for training and testing. For training, we used 60313 frames and for testing we used 9355
frames.

5.1 Model (Machine Learning) Evaluation
For each set, we selected a set of ground labels and used the video classification layer to generate
the predicted labels. We performed exact inference over CCNs and used particle filtering with 100
particles for inference in DCCNs. We performed the following ablation study: (1) our system in
which the explanation layer is removed (GoogLeNet); (2) our system which uses (static) conditional
cutset networks in the explanation layer (CCNs); and (3) the full system (dynamic CCNs).

Table 1 outlines the accuracy scores for correct activity recognition according to various evaluation
metrics. Since predicting each activity correctly is a multi-label classification task, we use K-Group
measures. Formally, a K-i measure where i is an integer is defined as the percentage of instances
where i labels out of the total number of labels were predicted correctly. We report K-1, K-2, and
K-3 since each activity is comprised of three entities: action, object and location. In addition, we also
use standard measures such as the Hamming Loss and the Jaccard Index. Hamming loss is defined
as the average fraction of incorrect labels (smaller the better). Jaccard index is the ratio between the
cardinality of the intersection of the predicted labels and the true labels and the cardinality of the
union of the predicted and true labels (higher the better). We observe that dynamic CCNs are more
accurate than CCNs, which in turn are more accurate than GoogLeNet.

Thus, our results clearly show that reasoning about relationships between the various labels via
CCNs and temporal constraints via DCCNs improves the accuracy of deep neural networks. Next,
we evaluate the quality of explanations output by our system using human subjects studies.

6 HUMAN SUBJECTS EVALUATION
To evaluate the overall effectiveness of the explanations in our video activity recognition system,
we designed and conducted a human-centered experiment.

6.1 Goals and Hypotheses
Video activity recognition (AR) systems are valuable and have many real-world applications, from
fire detection [27] and airport security [60], to elderly care [23] and autonomous vehicles [48]. As
alluded to in the introduction, many state-of-the-art models exist that yield high accuracy on the
AR task. However, no matter how accurate the model, these kinds of models typically suffer from
false positives, which may be highly undesirable in mission-critical applications. At the very least,
as users of these systems, we would like to predict the circumstances under which the system
would be likely to generate erroneous results and if it does, what these results might look like. Thus,
human-AI collaboration plays an important role in identifying the weaknesses of such systems. For
this purpose, it is crucial that human users maintain a proper understanding of the systems and

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 17 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

111:18 Roy, et al.

how they work in order to understand when to rely on them. This is the problem we expect to be
addressed by the Explainable Activity Recognition (XAR) framework that we defined earlier.
The goal of this study was to measure the degree to which the explanations generated by our

system would benefit non-expert end users with little to no understanding of how such systems
work. We hypothesized that both the speed and the accuracy of the decision-making process would
increase significantly with the introduction of explanations. We also hypothesized that the user’s
level of agreement with the system’s answers would vary significantly if explanations were shown.
A user’s answer is said to ‘agree’ with the system’s when they are the same.

6.2 Experimental Design
The task used for evaluating user performance involved answering a series of questions (or queries)
over a set of videos with the help of the system. The participants were divided into two groups:
one with and the other without explanations. Participants from both groups had access to the video
player and the system’s answer to each question. Participants in the with explanations category
used the interface with all the explanation components available (i.e., the video segments, the
detected combination of components, and the component scores), while participants in the without
explanations category did not have these components shown (i.e. they were only able to view the
system’s answers and nothing else). The experiment was conducted between-subjects in order to
allow the same set of questions and videos to be used for both groups and also to avoid learning
effects about knowledge of the model performance.
The TACoS dataset that was used for training and evaluating our system was used here as

well since cooking videos typically do not require any domain-specific knowledge. Each user was
presented with 20 queries spread out over 4 videos (i.e., 5 queries per video). Each query was a
simple yes/no question about the video and had a single, unique answer (e.g., “Does the person
cut a carrot?”). Participants of each group were presented with the system’s answer to each of
these queries and their task was to determine the true answer by watching the video and using the
system’s answers as point of reference.
Since the goal of the study was to evaluate whether the explanations helped the participants

perform better than the model alone, it was necessary that the system made enough errors so that
the explanations would actually be useful to determine the actual answer and that this improvement
could be measured.
It was, therefore, imperative that the task include multiple queries where the system provided

incorrect answers so that participants would have opportunities to recognize system errors. However,
since the actual model had a high accuracy score (refer to Table 1), using a set of sample queries
representative of the actual model accuracy would not have provided enough opportunities to view
system errors since the system would have been too accurate for participants to see enough errors
in the limited time of the study. To address this problem, we constrained the system accuracy to
a constant 80% for this phase of the evaluation. This was done by controlling the composition of
trials so that all participants experienced the system answering 80% of the queries correctly.

To assess task performance, we used the following three metrics: (1) error (2) time taken for task
completion and (3) agreement. Error was calculated as the percentage of queries where the partici-
pant’s answer was incorrect with respect to the (known) true answer. Agreement was measured as
the percentage of queries where the participant’s answer matched that of the system.

6.3 Procedure
The interface was a web-based application and the evaluation was conducted as an online study.
We ran the experiment through the Amazon Mechanical Turk (AMT) crowdsourcing platform. The
study was approved by our organization’s Institutional Review Board (IRB), and participants were

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 18 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Deciphering a Deep Learning Black-Box via a Cutset Network: Explainable Activity Recognition in Videos 111:19

compensated at a fixed rate per hour. The experiment consisted of a single session with completion
time of the participants varying from 25 minutes to 55 minutes.
The study opened with a consent form followed by a background questionnaire asking general

information about participant demographics, education, and occupation. The participants were also
provided with instructions on how to complete the task as well as a small tutorial prior to the main
query review trials.

We slightly modified the interface described in Section 4.3 to (1) control the sequence of viewed
videos and queries, and (2) include buttons for participants to provide their own answer for each
query. Thus, instead of allowing participants to choose from the set of existing videos and queries, the
interface only showed one video and one corresponding query at a time. For each trial, the system’s
answers were available, but the participants were asked to answer each query themselves. After
providing their answer, the system showed participants the correct answer (which was sometimes
different from the system’s answer to simulate 80% accuracy as mentioned earlier) as feedback to
help them estimate the system’s simulated accuracy as well as build an understanding of how the
system made its decisions which, in turn, would help them decide whether or not to rely on its
answers. Participants were not allowed to change their response after submission.

6.4 Participants
The experiment was completed online by 80 AMT workers. Of these participants, 40 of them were
shown explanations while the other 40 were not. With the exception of a single participant who
reported himself to be a programmer, all the others had occupations that were not related to data
science, machine learning, and statistics; hence, the participants were non-experts with regards to
machine learning knowledge. After pre-processing the data and removing outliers that did not fall
within 1.5 × IQR, we analyzed results from 38 participants for the with explanations category and 40
for the without explanations category.

6.5 Results
We analyzed the results using the Kruskal-Wallis non-parametric test to measure the difference
between the two groups. The plots are shown in Fig. 6. We observed a significant difference on
error per trial

(
χ 2(1, 76) = 5.63,p < 0.05

)
, showing that the participants with explanations had

significantly less error than those without explanations. Our experiment also detected a significant
difference on average time per trial

(
χ 2(1, 76) = 28.1,p < 0.001

)
. Participants with explanations

were significantly faster. Together, these results support our hypothesis that the addition of our
explanations significantly improves user task-performance in our system.
Additionally, the results from the user agreement with the system show that participants with

explanations significantly agreed with the system more than participants without explanations(
χ 2(1, 76) = 8.00,p < 0.01

)
. This might mean that providing more information helped participants

understand the system and judge when it was correct. It would seem that the explanations en-
couraged participants to correctly trust its output. Since the with explanations category also had
significantly better performance results, this suggests that the higher rate of agreement was not
simply blind trust or automation bias [15], where humans tend to trust an intelligent system by virtue
of its ‘intelligence’ alone. Rather, the results of this study suggest that agreement was appropriately
aligned with the queries where the system provided the correct answer. However, it is to be noted
that our study was not designed to specifically focus on the potential effects of explanations on
automation bias, and therefore this still remains an open area for further research.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 19 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

111:20 Roy, et al.

●

●

●●

●

●

●

0

25

50

75

100

NoExp WithExp

(a) Average Error per Trial
(Percentage)

●

●

●

●●

0

20

40

60

80

NoExp WithExp

(b) Average Time per Trial
(Seconds)

●

0

25

50

75

100

NoExp WithExp

(c) User Agreement with the
System (Percentage)

Metric No Explanation With Explanation
Accuracy 86.88% ± 7.4% 90.26% ± 6.03%
Speed (sec) 986.25 ± 561.35 517.42± 198.1
Agreement 74.38% ± 7.78% 78.95%± 4.95%

(d) Mean & standard deviation for performance and agree-
ment of novice participants.

Fig. 6. The plots show the distribution of user responses based on user task-performance and agreement with
the system among our two study conditions. Lower scores for both measures indicate better performance, i.e.,
lower errors and less performance time per each trial. The table is a summary of findings through mean &
standard deviation of each metric. These findings align with the results from Kruskal-Wallis non-parametric
test reported in section 6.5. We measured the average user error and time per trial and the fraction of instances
on which their answer agreed with the system’s answer. Bold results indicate significantly higher score.

7 DISCUSSION AND CONCLUSION
In this paper, we proposed a new explainable framework for activity recognition (AR), which we call
explainable activity recognition (XAR). We surmised that such a framework would use Explainable
Artificial Intelligence (XAI) techniques to provide enough model transparency to the users such
that it will allow them to: (1) build a good mental model of how the system functions; (2) use and
interact with the system more effectively, specifically understanding when it will succeed and when
it is likely to fail; and (3) build trust in the system.
We then proposed a general approach for building an XAR/XAI system. Our approach uses the

following pipeline:

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 20 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Deciphering a Deep Learning Black-Box via a Cutset Network: Explainable Activity Recognition in Videos 111:21

(1) build an accurate model for activity recognition using deep neural network architectures and
learning algorithms

(2) build a tractable probabilistic model over the interpretable random variables in the application
domain using the output of the deep learning model as input treating the latter as a noisy
sensor; the tractable model further improves the accuracy of the deep learning model

(3) answer queries posed by the user and generate explanations by performing probabilistic
inference over the tractable model; tractability ensures that query answers and explanations
are accurate and can be generated in real-time

We applied this general approach to build an XAR system for activity recognition in cooking
videos, specifically on the TACoS video dataset [51] where activity is defined as a (action, object,
location) triple. Our system had two-layers; the first layer used a deep convolutional neural network
called GoogLeNet [58] and the second layer used a new tractable model called dynamic conditional
cutset networks (DCCNs). The latter is a novel representation which extends and generalizes the
recently proposed conditional cutset networks representation [46] to temporal domains.
In our system, GoogLeNet helped detect complex spatial patterns in each frame of each video

while the DCCN helped capture the relationships between the various activities as well as temporal
dynamics. The DCCN answered queries posed by the user and provided explanations via fast,
accurate probabilistic inference. It also helped decipher the output of the black-box GoogLeNet
architecture by summarizing and aggregating its decisions (see “Video explanations” in Fig. 5), sug-
gesting alternative hypotheses that are likely to be true (see “Detected Combinations of components”
in Fig. 5) and providing confidence on its detected components (see “Component Score” in Fig. 5).

We evaluated our system along two dimensions: prediction accuracy and explanation effectiveness.
Via a thorough ablation based empirical evaluation, we found that the “explainable model” which
combines a DCCN and a neural network is superior in terms of prediction accuracy to a “non-
explainable model” which only uses a neural network. This verifies our hypothesis that DCCN
corrects the errors made by the neural network by leveraging temporal information as well as
relationships between activities. The usefulness of our explanations was also corroborated by the
user studies where most of the users believed that the explanations helped them solve the question-
answering task with greater ease and also gave them a better understanding of how the model made
its decisions which, in turn, increased their trust in the system.

7.1 Future Work
Although our new dynamic conditional cutset network framework generates high-quality samples
from the posterior distribution, both MAR and MAP inference over it are intractable (or NP-hard) in
general. To this end, one line of future work is to investigate temporal models on which both MAP
and MAR inference tasks can be solved in polynomial time. We are currently investigating specific
structural constraints for achieving this objective.
In this paper, we only considered simple selection queries with yes/no answers for the sake of

simplicity and brevity. An interesting direction to expand upon would be to use more complex kinds
of queries such as counting queries (e.g., how many carrots are there in the video?) and time-based
queries (e.g., when was the first time the user washed his hands?) which would require event ordering.
In order to achieve this objective, we will have to develop a novel representation for activities
and build an ontology to represent hierarchies of activities. This would allow for other interesting
queries involving super-activities and sub-activities. A simple query of this type might be something
like “Does the person in the video cook a potato?” which might consist of the sub-activities (cut,
potato, ∗), (move, potato, pot), (move, pot, stove), (turn on, stove, ∗) and (turn off, stove, ∗). Since these
are cooking videos, we might even ask the system if the person in the video follows the recipe
correctly. Once our system is able to answer these kinds of complex queries, we could then think

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 21 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

111:22 Roy, et al.

about more varieties of explanations that might be tailored to specific kinds of queries. Finally,
we would re-design our human studies to accommodate these new queries and explanations and
evaluate their usefulness to different categories of end users.

8 ACKNOWLEDGEMENTS
This work was supported by the DARPA Explainable Artificial Intelligence (XAI) Program under
contract number N66001-17-2-4032, and by the National Science Foundation grants IIS-1652835,
IIS-1528037, and IIS-1762268.

REFERENCES
[1] Francis R Bach and Michael I Jordan. 2002. Thin junction trees. In Advances in Neural Information Processing Systems.

569–576.
[2] Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche, and Guy Van den Broeck. 2015. Tractable Learning for

Complex Probability Queries. In Advances in Neural Information Processing Systems. 2242–2250.
[3] Aaron F Bobick and James W Davis. 2001. The recognition of human movement using temporal templates. IEEE

Transactions on Pattern Analysis & Machine Intelligence (2001), 257–267.
[4] Aaron F Bobick and Andrew D Wilson. 1997. A state-based approach to the representation and recognition of gesture.

IEEE Transactions on Pattern Analysis & Machine Intelligence (1997), 1325–1337.
[5] Hilary Buxton and Shaogang Gong. 1995. Visual surveillance in a dynamic and uncertain world. Artificial Intelligence

(1995), 431–459.
[6] Lee W Campbell and Aaron F Bobick. 1995. Recognition of human body motion using phase space constraints. In

Proceedings of the IEEE International Conference on Computer Vision. 624–630.
[7] C. K. Chow and C. N Liu. 1968. Approximating Discrete Probability Distributions with Dependence Trees. IEEE

Transactions on Information Theory 14 (1968), 462–467.
[8] Adnan Darwiche. 2000. A Differential Approach to Inference in Bayesian Networks. In Proceedings of the Sixteenth

Conference in Uncertainty in Artificial Intelligence. 123–132.
[9] N. Di Mauro, A. Vergari, and F. Esposito. 2015. Learning accurate cutset networks by exploiting decomposability. In

Congress of the Italian Association for Artificial Intelligence.
[10] Nicola Di Mauro, Antonio Vergari, and Floriana Esposito. 2016. Multi-label classification with cutset networks. In

Conference on Probabilistic Graphical Models. 147–158.
[11] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,

and Trevor Darrell. 2015. Long-term recurrent convolutional networks for visual recognition and description. In
Proceedings of the IEEE International Conference on Computer Vision & Pattern Recognition. 2625–2634.

[12] Arnaud Doucet, Nando De Freitas, Kevin Murphy, and Stuart Russell. 2000. Rao-Blackwellised particle filtering for
dynamic Bayesian networks. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence. 176–183.

[13] Xuguang Duan, Wenbing Huang, Chuang Gan, Jingdong Wang, Wenwu Zhu, and Junzhou Huang. 2018. Weakly
supervised dense event captioning in videos. In Advances in Neural Information Processing Systems. 3059–3069.

[14] Georgia Gkioxari and Jitendra Malik. 2015. Finding action tubes. In Proceedings of the IEEE International Conference on
Computer Vision & Pattern Recognition. 759–768.

[15] Kate Goddard, Abdul Roudsari, and Jeremy C Wyatt. 2011. Automation bias: a systematic review of frequency, effect
mediators, and mitigators. Journal of the American Medical Informatics Association (2011), 121–127.

[16] Shaogang Gong and Tao Xiang. 2003. Recognition of Group Activities using Dynamic Probabilistic Networks.. In
Proceedings of the IEEE International Conference on Computer Vision. 742–749.

[17] David Gunning. 2019. DARPA’s Explainable Artificial Intelligence (XAI) Program. In Proceedings of the 24th International
Conference on Intelligent User Interfaces. ii–ii.

[18] Kevin Anthony Hoff and Masooda Bashir. 2015. Trust in automation: Integrating empirical evidence on factors that
influence trust. Human factors 57, 3 (2015), 407–434.

[19] Robert R Hoffman. 2017. A Taxonomy of Emergent Trusting in the Human–Machine Relationship. Cognitive systems
engineering: The future for a changing world (2017), 137–163.

[20] Timothy Huang, Daphne Koller, Jitendra Malik, G Ogasawara, Bobby S Rao, Stuart J Russell, and Joseph Weber. 1994.
Automatic Symbolic Traffic Scene Analysis Using Belief Networks. In Proceedings of the Twelfth AAAI Conference on
Artificial Intelligence. 966–972.

[21] Matthew J Johnson, David KDuvenaud, AlexWiltschko, Ryan PAdams, and Sandeep RDatta. 2016. Composing graphical
models with neural networks for structured representations and fast inference. In Advances in Neural Information
Processing Systems. 2946–2954.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 22 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Deciphering a Deep Learning Black-Box via a Cutset Network: Explainable Activity Recognition in Videos 111:23

[22] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. 2014. Large-Scale Video Classification with
Convolutional Neural Networks. In 2014 IEEE Conference on Computer Vision and Pattern Recognition. 1725–1732.

[23] Zafar A Khan and Won Sohn. 2011. Abnormal human activity recognition system based on R-transform and kernel
discriminant technique for elderly home care. IEEE Transactions on Consumer Electronics (2011), 1843–1850.

[24] Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models - Principles and Techniques. MIT Press.
[25] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. 2017. Dense-captioning events in videos.

In Proceedings of the IEEE International Conference on Computer Vision. 706–715.
[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural

networks. In Advances in Neural Information Processing Systems. 1097–1105.
[27] Tai Yu Lai, Jong Yih Kuo, Yong-Yi Fanjiang, Shang-Pin Ma, and Yi Han Liao. 2012. Robust little flame detection on

real-time video surveillance system. In Third International Conference on Innovations in Bio-Inspired Computing and
Applications. 139–143.

[28] Ivan Laptev. 2005. On space-time interest points. International Journal of Computer Vision (2005), 107–123.
[29] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. 1998. Gradient-based learning applied to document

recognition. Proc. IEEE (1998), 2278–2324.
[30] J. D. Lee and K. A. See. 2004. Trust in automation: Designing for appropriate reliance. Human factors 46, 1 (2004),

50–80.
[31] Yitao Liang, Jessa Bekker, and Guy Van den Broeck. 2017. Learning the Structure of Probabilistic Sentential Decision

Diagrams. In Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence.
[32] Min Lin, Qiang Chen, and Shuicheng Yan. 2013. Network in network. arXiv preprint arXiv:1312.4400 (2013).
[33] Daniel Lowd and Pedro Domingos. 2008. Learning Arithmetic Circuits. In Proceedings of the Twenty-Fourth Conference

on Uncertainty in Artificial Intelligence.
[34] R. Mateescu and R. Dechter. 2005. AND/OR Cutset Conditioning. In Proceedings of the Nineteenth International Joint

Conference on Artificial Intelligence. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 230–235.
[35] Nicola Di Mauro, Antonio Vergari, and Teresa Maria Altomare Basile. 2015. Learning Bayesian Random Cutset Forests.

In Foundations of Intelligent Systems - 22nd International Symposium. 122–132.
[36] Bonnie M Muir. 1994. Trust in automation: Part I. Theoretical issues in the study of trust and human intervention in

automated systems. Ergonomics 37, 11 (1994), 1905–1922.
[37] Bonnie M Muir and Neville Moray. 1996. Trust in automation. Part II. Experimental studies of trust and human

intervention in a process control simulation. Ergonomics 39, 3 (1996), 429–460.
[38] K. P. Murphy. 2002. Dynamic Bayesian networks: representation, inference and learning. Ph.D. Dissertation. University of

California, Berkeley.
[39] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol Vinyals, Rajat Monga, and George Toderici.

2015. Beyond Short Snippets: Deep Networks for Video Classification. In Computer Vision and Pattern Recognition.
[40] AlexandruNiculescu-Mizil and Rich Caruana. 2005. Predicting good probabilities with supervised learning. In Proceedings

of the Twenty-Second International Conference on Machine learning. 625–632.
[41] Judea Pearl. 1988. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann.
[42] Hoifung Poon and Pedro Domingos. 2011. Sum-product networks: A new deep architecture. In IEEE International

Conference on Computer Vision Workshops.
[43] Lawrence R Rabiner. 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proc.

IEEE 77, 2 (1989), 257–286.
[44] T. Rahman and V. Gogate. 2016. Learning Ensembles of Cutset Networks.. In AAAI.
[45] Tahrima Rahman and Vibhav Gogate. 2016. Merging Strategies for Sum-Product Networks: From Trees to Graphs.. In

UAI.
[46] Tahrima Rahman, Shasha Jin, and Vibhav Gogate. 2019. Cutset Bayesian networks: a new representation for learning

Rao-Blackwellised graphical models. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence. 5751–5757.

[47] Tahrima Rahman, Prasanna Kothalkar, and Vibhav Gogate. 2014. Cutset networks: A simple, tractable, and scalable
approach for improving the accuracy of Chow-Liu trees. In Joint European conference on machine learning and knowledge
discovery in databases. 630–645.

[48] Akshay Rangesh, Eshed Ohn-Bar, Kevan Yuen, and Mohan M Trivedi. 2016. Pedestrians and their phones-detecting
phone-based activities of pedestrians for autonomous vehicles. In Proceedings of the Nineteenth IEEE International
Conference on Intelligent Transportation Systems. 1882–1887.

[49] Cen Rao and Mubarak Shah. 2001. View-invariance in action recognition. In Proceedings of the IEEE International
Conference on Computer Vision & Pattern Recognition. II–II.

[50] Michaela Regneri, Marcus Rohrbach, Dominikus Wetzel, Stefan Thater, Bernt Schiele, and Manfred Pinkal. 2013.
Grounding action descriptions in videos. Transactions of the Association for Computational Linguistics 1 (2013), 25–36.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 23 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

111:24 Roy, et al.

[51] Anna Rohrbach, Marcus Rohrbach, Wei Qiu, Annemarie Friedrich, Manfred Pinkal, and Bernt Schiele. 2014. Coherent
multi-sentence video description with variable level of detail. In German conference on pattern recognition. 184–195.

[52] Amirmohammad Rooshenas and Daniel Lowd. 2014. Learning sum-product networks with direct and indirect variable
interactions. In Proceedings of the Thirty-First International Conference on Machine Learning. 710–718.

[53] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. 2015. Imagenet large scale visual recognition challenge. International Journal of
Computer Vision 115, 3 (2015), 211–252.

[54] Eli Shechtman and Michal Irani. 2005. Space-time behavior based correlation. In Proceeedings of the IEEE International
Conference on Computer Vision & Pattern Recognition. 405–412.

[55] Young Chol Song, Iftekhar Naim, Abdullah Al Mamun, Kaustubh Kulkarni, Parag Singla, Jiebo Luo, Daniel Gildea,
and Henry A Kautz. 2016. Unsupervised Alignment of Actions in Video with Text Descriptions. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence. 2025–2031.

[56] Thad Starner and Alex Pentland. 1995. Real-time american sign language recognition from video using hidden markov
models. In Proceedings of the International Symposium on Computer Vision. 265–270.

[57] Christian Szegedy. 2014. Googlenet pre-trained model. http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel.
[58] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the IEEE International
Conference on Computer Vision & Pattern Recognition. 1–9.

[59] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. 2015. Learning Spatiotemporal Features
With 3D Convolutional Networks. In The IEEE International Conference on Computer Vision (ICCV).

[60] Rajesh Kumar Tripathi, Anand Singh Jalal, and Subhash Chand Agrawal. 2018. Suspicious human activity recognition:
a review. Artificial Intelligence Review 50, 2 (2018), 283–339.

[61] LiminWang, Yu Qiao, and Xiaoou Tang. 2015. Action recognition with trajectory-pooled deep-convolutional descriptors.
In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 4305–4314.

[62] Junji Yamato, Jun Ohya, and Kenichiro Ishii. 1992. Recognizing human action in time-sequential images using hidden
markov model. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 379–385.

[63] Yezhou Yang, Yi Li, Cornelia Fermuller, and Yiannis Aloimonos. 2015. Robot learning manipulation action plans by"
Watching" unconstrained videos from the world wide web. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Page 24 of 24

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

