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Abstract

Tractable probabilistic models (TPMs) compactly
represent a joint probability distribution over a
large number of random variables and admit poly-
nomial time computation of (1) exact likelihoods;
(2) marginal probability distributions over a small
subset of variables given evidence; and (3) in some
cases most probable explanations over all non-
observed variables given observations. In this pa-
per, we leverage these tractability properties to
solve the robust maximum likelihood parameter
estimation task in TPMs under the assumption
that a TPM structure and complete training data
is provided as input. Specifically, we show that
TPMs learned by optimizing the likelihood per-
form poorly when data is subject to adversarial
attacks/noise/perturbations/corruption and we can
address this issue by optimizing robust likelihood.
To this end, we develop an efficient approach for
constructing uncertainty sets that model data cor-
ruption in TPMs and derive an efficient gradient-
based local search method for learning TPMs that
are robust against these uncertainty sets. We em-
pirically demonstrate the efficacy of our proposed
approach on a collection of benchmark datasets.

1 INTRODUCTION

The last decade has witnessed rapid advances in deep genera-
tive models that effectively capture probability distributions
over high dimensional data such as Autoregressive mod-
els (ARNs) [Larochelle and Murray, 2011], Normalizing
flows [Papamakarios et al., 2021], Variational Autoencoders
(VAEs) [Kingma and Welling, 2014], Diffusion based mod-
els [Sohl-Dickstein et al., 2015], and Generative Adversarial
Networks (GANs). Despite their striking success in learning
representations over high dimensional data, these models

are severely limited in their inference capabilities, and can
only answer very few inference queries in polynomial time.

Simultaneously, the field of tractable probabilistic mod-
els (TPMs) which encompasses probabilistic models that
guarantee efficient computation of probabilistic inference
queries has witnessed significant traction. A unified frame-
work called Probabilistic Circuits (PCs) that includes all
the tractable models such as Sum-Product Networks (SPNs)
[Poon and Domingos, 2011], Arithmetic circuits (ACS), Cut-
set Networks (CNets) [Rahman et al., 2014], Probabilistic
Sentential Decision Diagrams (PSDDs) [Kisa et al., 2014]
has been developed. With memory-efficient computation
variants of probabilistic circuits such as Einsum Networks
[Peharz et al., 2020], the expressivity of these models has
significantly increased.

Although the robustness of probabilistic models has been as-
sessed in the context of deep generative models, it has never
been evaluated in the context of tractable probabilistic mod-
els. Therefore, in this paper, we analyze the robustness of
tractable models in a generative setting through the lens of
robust optimization 1. Tractable models learn to approximate
the data generating distribution via maximum likelihood es-
timation of the model’s parameters. Maximum likelihood
estimation demands the data be free from corruptions. But,
in the real-world, data is subjected to corruptions from a
wide variety of sources such as measurement errors, adver-
saries, and noise. The goal of this paper is to learn tractable
models that are immunized against these corruptions.

Robust Optimization (RO) [Ben-Tal et al., 2009] is a learn-
ing paradigm that captures data uncertainty without using
probability distributions. The problems considered here are
max-min variants of learning problems formulated using
stochastic optimization. These max-min formulations have
roots in Game theory and can be perceived as a game be-
tween an adversary who affects the available data by induc-
ing corruption and an optimizer who reacts to this worst-
case selection of the data. In this approach, we assume the

1code: https://github.com/utd-star-ai-ml/ro_tpm_uai_2022
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presence of point-wise adversaries whose corruptions can
be confined in deterministic uncertainty sets and estimate
the best solution for the worst-case realization of the data.
Thus RO is more conservative than stochastic optimization
and establishes a sense of being on the safe side.

In general, robust optimization variants of tractable stochas-
tic optimization problems may not be tractable. The choice
of uncertainty sets (1) plays a vital role in determining the
tractability of the problem, (2) provides the designer with
the flexibility to choose a trade-off between robustness and
performance, and (3) determines the similarity of the solu-
tions obtained for a stochastic optimization problem and its
robust optimization variant. Any prior knowledge about the
stochastic nature of the uncertainty in data can help choose
the uncertainty sets. We note that robust optimization aims
to estimate fixed solutions that ensure feasibility indepen-
dent of data corruptions and is different from sensitivity
analysis which is typically used as a post-optimization tool.

Contributions. In this paper, we propose two approaches
for efficiently learning tractable models immunized against
measurement errors, adversarial perturbations and noise.

• In the first approach, we formulate the learning objec-
tive using the robust optimization framework. Here, we
maximize the likelihood of data subject to all corrup-
tions belonging to a constrained uncertainty set. We
propose an iterative algorithm that estimates param-
eters of the robust model by maximizing the worst
case-likelihood obtained by the perturbed data gener-
ated by an adversary.

• In our second approach, we propose a regularizer to
the maximum likelihood estimation problem that adds
a nearest neighbor bias to the learning algorithm. We
see this as an effective amalgamation of two orthog-
onal views of capturing the training distribution and
staying on the safe side by optimizing for worst-case
perturbation of the training distribution.

• Empirically, we evaluate the proposed approaches on
Twenty benchmark datasets for density estimation task
on tractable models without latent variables (Cutset
Networks) and tractable models with latent variables
(SPNs). Our results clearly demonstrate the striking
vulnerability of maximum likelihood estimation to cor-
ruptions. They also show that our proposed approach
yields TPMs that have significantly higher test set log-
likelihood scores on corrupted data than TPMs learned
by maximizing likelihood.

To the best of our knowledge this is the first work in learning
robust tractable models. 2

2[Mauá et al., 2018] proposed Credal SPNs as an attempt to
robustify SPNs, where they allow parameters of the sum product
networks to vary in a closed convex set. But these models are not

2 NOTATION & BACKGROUND

We denote a dataset using the upper case letter X and in-
dividual samples using a small case letter x. A dataset X
is an ensemble of individual data samples xi, i = 1, . . . , n,
i.e., X = [x1, x2, . . . , xn]

T . For simplicity of exposition,
we focus on binary datasets, where each sample xi is a
d-dimensional 0/1 vector, namely xi ∈ {0, 1}d.

We denote corruptions of individual samples xi using ∆xi

where ∆xi is a d-dimensional 0/1 vector (or mask), 1 in-
dicates that the particular dimension is corrupted and 0
indicates that it is not. Given a dataset X , we denote an
ensemble of corruptions (or masks) by ∆X , where each
xi ∈ X is associated with a mask ∆xi ∈ ∆X , namely
∆X = [∆x1,∆x2, . . . ,∆xn]

T . We denote an XOR opera-
tion over two binary vectors using ⊕. We denote the cor-
rupted dataset by X⊕∆X = [x1⊕∆x1, . . . , xn⊕∆xn]

T .
We denote probability mass function parameterized by θ
at x using f(θ, x) and log-likelihood for the dataset X by
LL(θ,X).

2.1 GENERATIVE TRACTABLE MODELS

Generative tractable probabilistic models (TPMs) such as
thin junction trees [Bach and Jordan, 2001], bounded-
treewidth Bayesian networks [Elidan and Gould, 2008],
arithmetic circuits [Shen et al., 2016], cutset networks
[Rahman et al., 2014], mixtures of cutset networks [Rah-
man and Gogate, 2016], and sum-product networks [Poon
and Domingos, 2011] compactly represent large multi-
dimensional probability distributions while ensuring that
several inference and estimation tasks can be solved in time
and space that scales polynomially (and often linearly) with
the size of the model. TPMs may either have latent vari-
ables or they may not. Latent variables typically improve
the goodness-of-fit of the models as measured by test-set
log-likelihood scores while sacrificing tractability for some
inference tasks such as most probable explanation. In gen-
eral, inference tasks such as computing the log-likelihood,
estimating marginal distribution over a subset of variables
given evidence are tractable on the aforementioned TPMs
while the most probable explanation task is polynomial only
on TPMs having no latent variables.

In a standard setting, for generative parameter learning of
tractable probabilistic models (TPMs) we seek to estimate
parameters θ that maximize the log-likelihood function.

max
θ

n∑
i=1

log (f (θ;xi)) (1)

In subsequent sections, we focus on two types of tractable
probabilistic models, one having latent variables and the

scalable and unlike SPNs do not admit efficient computation of
likelihoods and marginal probability distributions given observa-
tions.



second having no latent variables. We chose cutset networks
(CNs) [Rahman et al., 2014] as our choice for tractable mod-
els without latent variables and SPNs [Poon and Domingos,
2011] for tractable models with latent variables, but our re-
sults can be easily applied to other tractable models. In CNs,
the log-likelihood function is concave and the maximum-
likelihood estimate can be computed in closed form. On
SPNs, the log-likelihood function is not concave and one
has to use iterative algorithms such as gradient ascent and
soft/hard expectation-maximization (EM) or their stochas-
tic versions to find parameters that correspond to a local
maxima of the log-likelihood function.

We leverage the fact that in tractable models such as CNs
and SPNs, given a dataset X or a corrupted dataset X⊕∆X ,
each parameter θi ∈ θ can be expressed as a conditional
probability and the gradient of the log-likelihood w.r.t. θi can
be computed in polynomial time (cf. [Peharz et al., 2017],
[Darwiche, 2009]).

2.2 ROBUST MAXIMUM LIKELIHOOD
ESTIMATORS

We assume presence of corruptions ∆xi which differenti-
ates true unobserved samples xtrue

i from the observed sam-
ples xobs

i and motivate learning through the lens of robust
optimization paradigm. Specifically, we operate under the
assumption that xobs

i = xtrue
i ⊕ ∆xi i,e observed samples

xobs
i are masked variants of true samples xtrue

i and seek to
estimate parameters θ that maximize probability density of
true samples.

n∏
i=1

f
(
θ;xtrue

i

)
≡

n∏
i=1

f
(
θ;xobs

i ⊕∆xi

)
or equivalently maximize the log-likelihood function

LL
(
θ;Xobs ⊕∆X

)
≡ log

(
n∏

i=1

f
(
θ;xobs

i ⊕∆xi

))

[Bertsimas and Nohadani, 2019] have shown that based on
the modelling choice of corruptions ∆xi and the knowledge
about them, we get two types of estimators.

• Adversarially Robust Estimators (AREs) are ob-
tained when we consider the corruptions reside in a
deterministic uncertainty set and no further knowledge
about the corruptions is available.

• Distributionally Robust Estimators are obtained
when corruptions can be considered as random vari-
ables with known support.

3 APPROACH

3.1 UNCERTAINTY SETS

At a high level, an uncertainty set defines a boundary or
region (of assignments) that is close to each observed data
point xobs

i such that the true data point xtrue
i can be any

one of the assignments in this region. We assume no prior
knowledge about the corruptions and model them to reside
in a deterministic uncertainty set. Specifically, we model
corruptions ∆xi to reside in an uncertainty set constrained
on L1 or equivalently hamming distance (since we assume
binary data) and express the uncertainty set denoted by Uh

as

Uh = {∆X = [∆x1, . . .∆xn]
T |∥∆xi∥1 ≤ h,

i = 1, . . . , n; h-Hamming distance threshold}

We define the strength of an adversary based on the choice
of uncertainty set used to corrupt the data, i.e., an adver-
sary which can produce corruptions from an uncertainty
set defined by h = 5 is stronger in capacity than an adver-
sary which can produce corruptions from an uncertainty set
defined by h = 3.

3.2 ADVERSARIALLY ROBUST ESTIMATORS

Roughly speaking, we define robust log-likelihood as the
log-likelihood score of the model under the worst case real-
ization of the data. In a robust setting, we seek to estimate
parameters θ using robust maximum likelihood estimators
which assume the presence of corruptions in the data ∆X
and maximize the likelihood of the true samples X ⊕∆X .
In the real world, we are oblivious to these corruptions and
assume their presence in uncertainty set Uh. Therefore, we
seek to estimate θ that maximizes the log-likelihood against
the worst-case realization of the data obtained when per-
turbed with corruptions ∆xi in U .

Formally, the robust parameter estimation task is given by

max
θ

min
∆X∈Uh

n∑
i=1

log
(
f
(
θ;xobs

i ⊕∆xi

))
(2)

In the above robust optimization problem (Eq. (2)), the size
of the uncertainty set, which in turn depends on h and d,
determines our desire to stay on the safe side. As we increase
the size of Uh, we expect a drop in the log-likelihood score;
however we immunize our our model against all corruptions
from this enlarged set. We note that we solve the original
maximum likelihood estimation problem (1) when h = 0.

Although, the max-min problem given in Eq. (2) is sig-
nificantly harder in general than the traditional maximum-
likelihood estimation task, it turns out that the objective



(given by the inner minimization) remains concave for cut-
set networks having no latent variables.3 This follows from
the fact that the log-likelihood function is concave and min-
imum over a concave function is also concave. Formally,

Proposition 1 In CNs (having no latent variables), the op-
timization problem given in Eq. (2) is concave.4

Thus, in CNs, since the gradient of the log-likelihood w.r.t.
the parameters θ can be computed in linear time in the size
of the data, the robust parameter estimation task can be
solved efficiently using a sub-gradient method if the inner
minimization task can be solved (optimally and) efficiently.
The latter is possible when h is bounded by a constant.

Unfortunately, since the log-likelihood function for SPNs
is non-concave, the objective remains non-concave. For
such problems, [Danskin, 1966] has shown that if the inner
minimization problem can be solved optimally, then there
always exists a directional derivative that can be used to
update the parameters and reach a local optimum.

Formally, we can show that:

Proposition 2 [Danskin, 1966] Let

∆X∗(θ) = argmin
∆X∈Uh

n∑
i=1

log
(
f
(
θ;xobs

i ⊕∆xi

))
then

∇θ min
∆X∈Uh

n∑
i=1

log
(
f
(
θ;xobs

i ⊕∆xi

))∣∣∣∣∣
θ=θt

=

∇θ

n∑
i=1

log
(
f
(
θ;xobs

i ⊕∆x∗
i (θt)

))∣∣∣∣∣
θ=θt

In other words, if we can find a solution ∆X∗(θt) to the in-
ner minimization problem, then the gradient of the objective
at θ = θt equals the gradient of the log-likelihood of the
dataset X ⊕∆X∗(θt). In SPNs, as we mentioned earlier,
this gradient can be computed efficiently in time that scales
linearly with the size of the model [Peharz et al., 2017].

The above discussion yields algorithm 1 where we itera-
tively solve the inner minimization problem to estimate
corruptions ∆X from U and use the obtained corruptions
to perturb the dataset, which shall be used to update the
parameters θ of the model.

3Note that we are performing robust parameter estimation and
assume that the structure of the tractable model is provided as
input to our algorithm.

4Note that although the objective is concave, it is not smooth
and therefore we have to use a sub-gradient method.

Algorithm 1: Robust Maximum Likelihood Estimation
Input: Binary dataset X , a tractable model structure

having parameters θ and hamming distance
threshold h ∈ Z

Output: An assignment to θ
1 begin
2 Randomly initialize all θi ∈ θ
3 repeat

// Solve Inner Minimization
4 Find new set of corruptions ∆X from

uncertainty set constrained by h using the
current parameters θ
// Outer Maximization

5 for k steps do
6 Use one step of stochastic gradient ascent or

EM to update parameters θ using
X ⊕∆X (see Proposition 2)

7 end
8 until convergence;
9 return θ

10 end

Practical considerations. Efficient estimation of adver-
sarially robust estimators (AREs) for tractable models with
latent variables depends on the efficiency and practicality
of the algorithm used in finding the solution for the inner
minimization problem. When exhaustive search over the
space of all possible corruptions

(
d
h

)
is employed in find-

ing the optimum for the inner minimization problem, we
incur a computational cost of O(dh × S) 5 (where S is the
size of the model). Thus, in theory, when h is bounded by
a constant, the optimum can be computed in polynomial
time. However, exhaustive search is not practically feasible
for large models (e.g., when d > 100 and h > 3). There-
fore, we use a greedy local search algorithm having time
complexity O(d × h × S) to search for a neighbor hav-
ing the smallest log-likelihood. Since the gradient can be
computed in time that scales linearly with the size of the
model, when local search is employed, the overall time com-
plexity of each iteration is reduced from O(dh × S × k) to
O(d× h× S × k).

Using Danskin’s theorem (see Proposition 2, it is straight-
forward to show that for SPNs and CNs, Algorithm 1 con-
verges to a local optima of Eq. (2). In CNs, the local optima
also corresponds to the global optima.

5For tractable representations that use a static ordering of vari-
ables such as algebraic decision diagrams (ADDs) and ordered
binary decision diagrams (OBDDs) we can find the optimum for
the inner minimization problem in time that scales polynomially
with h, d and S. But for dynamically ordered tractable representa-
tions such as SPNs and CNs, the time complexity of solving the
inner minimization problem is exponential in h.



3.3 REGULARIZED MAXIMUM LIKELIHOOD
ESTIMATORS

In a robust setting, as we increase the size of the uncertainty
set (see Eq. (2)), we immunize against corruptions from a
larger set and achieve better robust likelihood scores. How-
ever, these models perform poorly on the original training
and test sets. To address this issue, we propose an alternative
approach where we jointly optimize for both standard and
robust likelihoods, weighing the latter using a regularization
constant (hyperparameter) λ ≥ 0.

max
θ

[ Standard Likelihood︷ ︸︸ ︷[ n∑
i=1

log f(θ, xobs
i )
]
+

λ×
[ n∑

i=1

min
∆xi∈U

log
(
f
(
θ;xobs

i ⊕∆xi

))
︸ ︷︷ ︸

Robust Likelihood

]]
(3)

We can use the same algorithm (see Alg. 1) to estimate pa-
rameters θ with a minor change in Step-6 where, instead
of corrupted dataset X ⊕ ∆X we use augmented dataset
[X,X⊕∆X]. Roughly speaking, the optimization problem
in Eq.(3) is equivalent to applying a nearest neighbor regu-
larizer to the original (1). Our proposed approach is closely
related to [Xu et al., 2009] who showed that robust linear
regression under L∞ ball is equivalent to Lasso regression.

4 EXPERIMENTS

In this section, we evaluated the impact of our proposed
parameter estimation method on both the generative and
predictive performance of TPMs as well as their robustness
to adversarial attacks and random noise. Our evaluation
uses two popular classes of TPMs: sum product networks
(SPNs) [Poon and Domingos, 2011] and cutset networks
(CNs) [Rahman et al., 2014]. As mentioned earlier, we chose
these two TPMs as representatives for the following two
classes of TPMs: (1) TPMs having latent variables (SPNs)
on which only marginal inference is tractable and (2) TPMs
having no latent variables (CNs) on which both posterior
marginal distributions and most probable explanations can
be computed in polynomial time.

Given data, we learned both the structures and parameters
of cutset networks without any latent variables using the
LearnCNet algorithm proposed by [Rahman et al., 2014].
For each dataset, we initially learned a large depth cutset net-
work and then performed a bottom-up reduce error pruning
technique using the validation set to improve its generaliza-
tion accuracy. Our experiments on SPNs were performed
using two open-source implementations: EiNETs [Peharz
et al., 2020] and RAT-SPNs [Peharz et al., 2019]. For RAT-
SPNs, we used the following structural parameters for all
datasets: depth D = 3, number of replicas R = 50, number

of sum nodes C = 10, number of input distributions I = 10.
EiNETs use stochastic EM for estimation of parameters that
maximize the likelihood of the data. We use the default pa-
rameters for online EM frequency and online EM step size
(as mentioned in the author’s GitHub page6). RAT-SPNs
were trained using the DeeProb-kit7) library where the pa-
rameters are learnt using stochastic gradient descent with a
learning rate of 1e-2. In our experiments, we found that the
performance of SPNs trained using EiNETs and RAT-SPNs
are comparable across all the evaluation criteria but we no-
ticed that the computation time of learning and inference is
much faster with EiNETs. All our experiments for SPNs and
CNs were performed on machine equipped with a NVIDIA
A40 GPU and a 2.4 GHz Xeon 8-core processor.

For each dataset, we learned three types of SPNs and CNs:
1) SPN and CN learned by maximizing the standard data log-
likelihood, 2) SPN−a and CN−a learned by maximizing ro-
bust likelihood (see Eq. (2)) of the training data, and finally
3) SPN−r and CN−r obtained by joint maximization of
standard and robust likelihoods (see Eq.(3)). We performed
our experiments using λ = 1. Note that the structure of all
SPNs (and CNs) is learned from the original training data.
The three SPNs (and CNs) differ from each other in how the
parameters are learned; in other words, the structure is con-
stant across all models. We experimented with three values,
{1, 3, 5}, for the hamming distance threshold h. Models
of types (2) and (3) were learnt on uncertainty sets Uh of
varying size based on these hamming distance thresholds.
These sets govern the size of allowable corruptions in the
data.

We evaluated our method on 20 benchmark datasets that
have been used in several experimental evaluations of TPMs
[Lowd and Davis, 2010]. For each dataset and each h, we
generated two additional test sets. The first test set, which we
call fully adversarial test set, denoted by Ta was generated
from T as follows. We begin with an empty Ta. Then, for
each test example in T , we use greedy local search to find a
neighbor of the example that is at most h hamming distance
away and has the smallest log-likelihood score w.r.t. either
the SPN or CN and add it to Ta. The second test set which
we call randomly perturbed test set, denoted by Tr, was
generated from T as follows. We begin with an empty Tr.
Then, for each test example in T , we select a neighbor from
100 randomly generated neighbors such that each neighbor
is at most h hamming distance away from the example and
the selected neighbor has the smallest log-likelihood score
w.r.t. either the SPN or CN, and add it to Tr.

We evaluate both the generative and predictive performances
of all three types of models under various corruption scenar-
ios. To the best of our knowledge, this is the first empirical
study on the robustness of expressive TPMs.

6https://github.com/cambridge-mlg/EinsumNetworks
7https://github.com/deeprob-org/deeprob-kit



Table 1: Generative performance: Test set log-likelihood scores of models having latent variables. h ∈ {1, 2, 3}: hamming
distance thresholds. SPN: SPN trained original training data, SPN−a: SPN trained on the adversarially generated training
data by SPN, SPN−r: SPN trained via joint maximization of standard and robust likelihoods. T : original test data, Ta:
adversarially perturbed T by SPN, Tr: randomly perturbed T by SPN.

DATASET h
T Ta Tr

SPN SPN−a SPN−r SPN SPN−a SPN−r SPN SPN−a SPN−r

Plants
1

-13.56
-14.18 -13.81 -22.38 -18.0 -18.31 -22.06 -17.98 -18.17

3 -16.08 -14.61 -39.17 -23.89 -24.26 -30.9 -22.91 -23.19
5 -17.88 -14.67 -54.85 -28.2 -29.69 -38.33 -26.6 -27.25

Avg. -13.56 -16.05 -14.36 -38.8 -23.36 -24.09 -30.43 -22.5 -22.87

Netflix
1

-56.84
-57.62 -57.17 -61.0 -59.58 -59.92 -60.18 -59.53 -59.56

3 -59.43 -57.72 -67.14 -65.01 -65.11 -61.4 -62.11 -61.45
5 -60.88 -58.17 -72.06 -69.49 -67.69 -62.82 -64.24 -62.13

Avg. -56.84 -59.31 -57.69 -66.73 -64.69 -64.24 -61.47 -61.96 -61.05

DNA
1

-97.36
-97.55 -97.69 -101.94 -99.47 -99.91 -101.18 -99.35 -99.73

3 -97.73 -97.67 -107.32 -102.07 -103.07 -102.61 -100.45 -100.88
5 -98.16 -97.6 -111.38 -104.77 -105.8 -104.06 -101.83 -101.97

Avg. -97.36 -97.81 -97.65 -106.88 -102.1 -102.93 -102.62 -100.54 -100.86

Movie
1

-53.37
-54.21 -54.16 -80.05 -67.03 -71.03 -80.02 -67.25 -71.03

3 -56.94 -55.35 -132.0 -85.68 -96.0 -104.96 -81.66 -89.86
5 -59.57 -55.64 -182.1 -100.87 -122.6 -123.16 -94.2 -107.59

Avg. -53.37 -56.91 -55.05 -131.38 -84.53 -96.54 -102.71 -81.04 -89.49

BBC
1

-250.75
-266.76 -260.35 -259.35 -275.39 -260.35 -258.37 -274.78 -260.54

3 -261.12 -254.68 -275.56 -280.13 -272.46 -273.37 -279.10 -272.40
5 -257.18 -254.13 -291.12 -284.10 -281.15 -288.14 -283.67 -281.78

Avg. -250.75 -261.68 -256.39 -275.34 -279.87 -271.32 -273.29 -279.18 -271.57

4.1 ROBUST GENERATIVE PERFORMANCE

To evaluate the generative performance and robustness of
the learned models, we compare their log-likelihood scores
on three different test sets described above (T ,Tr,Ta) for
h = {1, 3, 5}. Scores on the set T indicate the model’s
goodness-of-fit to the underlying data generating distribu-
tion and larger scores imply a better fit. On the other hand,
scores on the sets Ta and Tr are representative of a model’s
robustness to adversarial and random perturbations. Higher
scores imply that the model is resilient to small perturbations
to the samples in T . Tables 1 and 2 report the average log-
likelihood scores of SPNs and CNs respectively obtained
on T , Ta and Tr. For ease of readability, we only report
results on five datasets with increasing dimensionality. A
comprehensive set of results are provided in the supplement.

We observe that although SPNs and CNs have slightly
higher scores on T as compared to their robust counterparts
{SPN−a, SPN−r }’s and {CN−a, CN−r }’s, they have
significantly lower scores on the corrupted sets Ta and Tr.
Both SPNs and CNs trained using our proposed approaches
consistently exhibit superior robust test-set log-likelihood
scores as compared with standard SPNs and CNs.

Impact of increasing h: We observe that as we increase
h, the performance of both SPN−a and SPN−r degrades
on the original test set T , but the performance of SPN−r
degrades at a slower rate than SPN−a. In particular, there
is an order of magnitude difference in the likelihood scores

of SPN−a and SPN−r for h = 5. For cutset networks, we
see the same picture; as we increase h, the performance of
CN−r degrades at a slower rate than CN−a on T .

Comparing between SPNs and CNs, we see that as we in-
crease h, the performance of adversarial and regularized
CNs degrades at a much slower rate on T as compared with
SPNs. This slow (and more graceful) degradation is likely
due to the fact that CNs are more biased and have fewer
parameters than SPNs; as a result CNs are less sensitive to
changes in the training data.

On the adversarial and random test sets, namely on Ta
and Tr respectively, we observe that increasing h signif-
icantly degrades the performance of SPNs and CNs which
are trained on the original training set. For instance, there
are several orders of magnitude difference between the log-
likelihood scores on Ta (and Tr) for h = 5 and h = 1. On
the other hand, as compared with SPNs (and CNs), the rate
of decrease in log-likelihoods (as we increase h) is much
smaller for SPN−a and SPN−r (CN−a and CN−r).

Choice of h: We motivate our choice of uncertainty sets
h ∈ {1, 3, 5} from two viewpoints; experimental view and
observational view. In our experiments, we noticed for the
density estimation task, a competent adversary can easily
find samples in uncertainty sets h ∈ {1, 3, 5} which can
bring down the log-likelihood scores by 2-3 fold and for
the image completion task, an adversary can easily find
samples in h = 5 which can completely change the output
of the completed image (e.g., changing from 4 to a 9 or



Table 2: Generative performance: Test set log-likelihood scores of cutset networks or models without latent variables.
h ∈ {1, 2, 3}: hamming distance thresholds. CN: Cutset networks trained on original training data, CN−a: CNs learned
from adversarially generated training data by CNs, CN−r: trained via joint maximization of standard and robust likelihoods.
T : original test data, Ta: adversarially perturbed T by CN, Tr: randomly perturbed T by CN.

Dataset h
T Ta Tr

CN CN−a CN−r CN CN−a CN−r CN CN−a CN−r

Plants
1

-13.50
-13.61 -13.56 -35.16 -29.94 -30.68 -25.43 -23.43 -23.81

3 -13.72 -13.62 -58.00 -48.74 -49.66 -38.97 -34.88 -35.27
5 -13.82 -13.63 -72.16 -58.08 -61.65 -49.94 -42.80 -44.80

Avg. -13.50 -13.72 -13.60 -55.11 -45.59 -47.33 -38.11 -33.70 -34.63

Netflix
1

-58.71
-59.96 -58.97 -66.26 -62.77 -63.59 -62.91 -62.00 -61.92

3 -61.07 -59.67 -75.09 -65.83 -67.21 -66.56 -64.10 -64.12
5 -62.35 -59.91 -81.19 -67.38 -69.92 -69.04 -65.43 -65.58

Avg. -58.71 -61.13 -59.52 -74.18 -65.33 -66.91 -66.17 -63.84 -63.87

DNA
1

-87.60
-87.82 -87.70 -95.74 -93.52 -93.88 -94.37 -93.08 -93.36

3 -89.74 -88.62 -109.12 -99.34 -101.06 -103.41 -97.78 -98.45
5 -90.71 -89.19 -121.95 -104.54 -107.37 -110.50 -100.94 -101.89

Avg. -87.60 -89.42 -88.50 -108.94 -99.13 -100.77 -102.76 -97.27 -97.90

Each Movie
1

-58.20
-58.52 -58.21 -124.66 -117.42 -119.15 -86.10 -83.96 -84.53

3 -58.70 -58.37 -184.36 -174.85 -176.03 -112.96 -109.01 -109.62
5 -58.76 -58.77 -233.61 -222.43 -214.66 -131.36 -126.49 -125.46

Avg. -58.20 -58.66 -58.45 -180.88 -171.57 -169.95 -110.14 -106.49 -106.54

BBC
1

-261.86
-261.97 -261.89 -271.99 -269.79 -270.12 -269.98 -268.97 -269.21

3 -262.61 -262.36 -288.77 -278.96 -280.94 -277.79 -275.59 -275.80
5 -264.97 -262.72 -304.09 -285.92 -290.28 -285.14 -282.64 -282.69

Avg. -261.86 -263.18 -262.32 -288.28 -278.22 -280.45 -277.64 -275.73 -275.90

3 to an 8 as shown in 1). For uncertainty sets h ≥ 5, we
observe that samples obtained may no longer be part of
the true underlying distribution (i.e., the samples are out-
of-distribution). For example, on the MNIST dataset, the
difference between (0, 8), (3, 8), (4, 9), (2, 3) etc. is ≤ 3
pixels. Similarly, the benchmark datasets used in density
estimation task are curated from user click stream, page
visits and preferences data; here, samples from h ≥ 5 can
completely alter the estimated distribution.

4.2 ROBUST PREDICTIVE PERFORMANCE

We used conditional log-likelihood (CLL) scores to evaluate
the predictive performance. Given query variables q and
evidence variables e, the CLL score of a data point x equals
log f(xq|xe). We compare the average CLL scores of all
models on T , Ta and Tr. We randomly selected different
percentages of variables as query variables and set the re-
maining variables as evidence variables. The uncertainty
sets are now computed over the evidence variables using
greedy local search for hamming distances {1, 3, 5}.

Tables 3 and 4 report the CLL scores obtained by the vari-
ous SPNs and CNs where half of the variables were set as
query variables and the remaining as evidence variables. We
observe a similar trend: {SPN−a, SPN−r } and {CN−a,
CN−r } have better CLL scores compared to SPN and CN
respectively on Ta and Tr. These results demonstrate that
our proposed method yields robust predictions.

Figure 1

Robust image completion: Fig.1 shows qualitative re-
sults on the image completion task for randomly chosen im-
ages from the binarized MNIST dataset [LeCun and Cortes,
2010]. The first row shows the original corrupted images, the
second row shows covered images (the top and left halves
are covered in the first two and the last two columns respec-
tively), and the third and fourth rows show reconstructions
based on SPNs and robust SPNs respectively. We clearly
observe that on corrupted data, robust SPNs yield better
quality completions as compared to the original SPNs.

In summary, we notice that models trained on (2) pro-



Table 3: Predictive performance: Conditional log-likelihood scores given 50% evidence for models having latent variables
(SPNs). h ∈ {1, 2, 3}: hamming distance thresholds. SPN: SPN trained original training data, SPN−a: SPN trained on
the adversarially generated training data by SPN, SPN−r: SPN trained via joint maximization of standard and robust
likelihoods. T : original test data, Ta: adversarially perturbed T by SPN, Tr: randomly perturbed T by SPN.

DATASET h
T Ta Tr

SPN SPN−a SPN−r SPN SPN−a SPN−r SPN SPN−a SPN−r

Plants
1

-5.64
-5.94 -5.73 -9.59 -7.57 -7.95 -9.46 -7.8 -7.67

3 -7.07 -6.21 -16.97 -10.01 -10.04 -14.3 -10.49 -10.73
5 -7.96 -6.13 -25.6 -12.27 -12.82 -18.96 -12.23 -12.72

Avg. -5.64 -6.99 -6.02 -17.39 -9.95 -10.27 -14.24 -10.17 -10.37

Netflix
1

-28.02
-28.52 -28.17 -29.94 -29.05 -29.07 -29.7 -29.28 -29.1

3 -29.48 -28.51 -32.57 -31.26 -30.86 -30.37 -30.54 -29.87
5 -30.53 -28.85 -34.92 -33.06 -32.25 -30.88 -31.79 -30.64

Avg. -28.02 -29.51 -28.51 -32.48 -31.12 -30.73 -30.32 -30.54 -29.87

DNA
1

-49.58
-49.52 -49.7 -52.15 -50.31 -50.66 -51.81 -50.33 -50.65

3 -49.46 -49.72 -55.4 -51.56 -52.16 -52.45 -50.7 -51.1
5 -49.41 -49.47 -57.85 -52.76 -53.58 -53.13 -51.34 -51.44

Avg. -49.58 -49.46 -49.63 -55.13 -51.54 -52.13 -52.46 -50.79 -51.06

Movie
1

-22.35
-22.82 -22.63 -25.47 -25.45 -30.59 -39.62 -31.23 -35.59

3 -24.05 -23.41 -34.9 -30.18 -41.66 -54.06 -38.95 -45.94
5 -25.99 -23.32 -50.75 -36.12 -54.6 -63.07 -45.85 -57.15

Avg. -22.35 -24.29 -23.12 -37.04 -30.58 -42.28 -52.25 -38.68 -46.23

BBC
1

-84.91
-94.40 -86.43 -92.01 -102.20 -91.75 -91.25 -101.09 -92.03

3 -90.92 -87.01 -106.37 -107.94 -102.25 -103.83 -105.91 -101.66
5 -88.91 -87.21 -119.99 -112.43 -110.49 -115.92 -110.94 -110.37

AVG. -84.91 -91.41 -86.88 -106.12 -107.52 -101.50 -103.67 -105.98 -101.36

duced better robust (conditional) log-likelihood scores than
standard models but suffer in standard (conditional) log-
likelihood scores. But, models trained on (3) have compa-
rable robust (conditional) log-likelihoods scores to those
trained on (2) and also have better standard (conditional)
log-likelihood scores comparable to standard models evalu-
ated on standard (conditional) log-likelihood scores.

5 CONCLUSION AND FUTURE WORK

In this paper, we presented an algorithm for learning robust
Tractable Probabilistic Models (TPMs) when subjected to
noise/perturbations/corruptions. At a high level, we formu-
late the robust learning problem as a max-min variant of the
standard maximum likelihood estimation task where an ad-
versary plays the role of a minimizer, affecting the training
data by adding point-wise corruptions from a deterministic
uncertainty set and the optimizer plays the role of a maxi-
mizer, learning parameters that maximize the likelihood for
worst case realization of data. We develop a gradient-based
local search technique for solving this max-min problem
and show that because TPMs admit polynomial-time gradi-
ent computations, our algorithm converges to either a local
or global optima and runs in polynomial time. Via a large
experimental evaluation on standard benchmark datasets,
we showed that our proposed methods perform reliably well,
both in terms of generative and predictive evaluation mea-
sures, when the data is corrupted.

Future work: In this work, we focused on learning robust
estimators using point-wise adversaries whose corruptions
are confined in deterministic uncertainty sets; in future, we
wish to explore learning distributionally robust estimators
using stronger adversaries that can move entire observed dis-
tribution in probabilistic uncertainty sets constructed based
on discrepancy measures such as Wasserstein distance, ϕ-
divergence, etc. We also wish to explore theoretical bounds
for robust generalization.
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