
A Complete Anytime Algorithm for Treewidth

Vibhav Gogate and Rina Dechter
School of Information and Computer Science,

University of California, Irvine, CA 92967
{vgogate,dechter}@ics.uci.edu

Abstract

In this paper, we present a Branch and Bound
algorithm called QuickBB for computing the
treewidth of an undirected graph. This al-
gorithm performs a search in the space of
perfect elimination ordering of vertices of
the graph. The algorithm uses novel prun-
ing and propagation techniques which are
derived from the theory of graph minors
and graph isomorphism. We present a new
algorithm called minor-min-width for com-
puting a lower bound on treewidth that is
used within the branch and bound algo-
rithm and which improves over earlier avail-
able lower bounds. Empirical evaluation of
QuickBB on randomly generated graphs and
benchmarks in Graph Coloring and Bayesian
Networks shows that it is consistently bet-
ter than complete algorithms like Quick-
Tree [Shoikhet and Geiger, 1997] in terms of
cpu time. QuickBB also has good anytime
performance, being able to generate a bet-
ter upper bound on treewidth of some graphs
whose optimal treewidth could not be com-
puted up to now.

1 Introduction

Given an undirected graph G and an integer k the
problem whether the treewidth of G is at most k is
known to be NP-complete [Arnborg et al., 1987]. In
this paper, we develop a complete anytime algorithm
based on branch and bound search to solve the
optimization version of this problem. In other words,
we are interested in the smallest such k. The problem
can also be rephrased as finding a triangulation or
tree-decomposition T of G such that the treewidth of
T is same as G.
A solution to this problem is important because

many algorithms that solve NP-hard problems
in Artificial Intelligence, Operations Research,
Circuit Design etc. are exponential only in the
treewidth. Examples of such algorithm are Bucket
elimination [Dechter, 1999] and junction-tree elimina-
tion [Lauritzen and Spiegelhalter, 1988] for Bayesian
Networks and Constraint Networks. These algo-
rithms operate in two steps: (1) constructing a
good tree-decomposition and (2) solving the prob-
lem on this tree-decomposition, with the second
step generally exponential in the treewidth of the
tree-decomposition computed in step 1. In this
paper, we present a complete anytime algorithm
called QuickBB for computing a tree-decomposition
of a graph that can feed into any algorithm like
Bucket elimination [Dechter, 1999] that requires a
tree-decomposition.

The majority of recent literature on
the treewidth problem is devoted to find-
ing constant factor approximation algo-
rithms [Amir, 2001, Becker and Geiger, 2001]. Other
heuristic algorithms include popular triangulation
heuristics like min-degree, max-cardinality search
and min-fill. These heuristics have no performance
guarantees and the approximation computed by them
can be exponentially bad. We discuss these heuristics
in the Section 3.
It is well known that the speed of a branch and

bound algorithm depends upon the quality of the
lower bound used. In this paper, we have developed
a new lower bound called minor-min-width that
is shown to produce a better lower bound than
max-cardinality search developed recently by Brian
Lucena [Lucena, 2003]. We implemented a branch
and bound algorithm using minor-min-width as
lower bound. However this implementation did not
terminate on some graphs having 20 vertices in 2
days of cpu time. Some analysis revealed that this
naive algorithm can be improved with some clever
modifications along two directions: (1) Reducing the
branching factor at each state, (2) Using pruning and

propagation rules to prune regions of the search space
that can not be a part of a triangulation having a
lower treewidth than the current best.
We reduce the branching factor by using Dirac’s

theorem which characterized triangulated graphs and
graph minor theory. Also, we derive various pruning
and propagation rules from the theory of graph
minors and graph isomorphism. We call the resulting
algorithm QuickBB.

Prior to our work, the best existing com-
plete algorithm for finding optimal triangulation
is due to Shoikhet and Geiger(called Quick-
Tree [Shoikhet and Geiger, 1997]). Our empirical
evaluation on randomly generated graphs shows
that QuickBB is superior to QuickTree. On some
randomly generated graphs with 100 vertices and
treewidth bounded by 10, QuickBB appears to be
50 times faster than QuickTree. Being a branch and
bound algorithm, QuickBB also has good anytime
properties. We were able to obtain better upper
bounds on treewidth of some graphs in Dimacs Graph
coloring benchmarks and Bayesian Network repository
even when the algorithm did not terminate.

2 Definitions and Preliminaries

Note that all the lemmas presented in this sec-
tion can be found in a book on treewidth by Ton
Kloks [Kloks, 1994]. All the graphs used in this pa-
per are finite, undirected, connected and simple. We
denote an undirected graph by G(VG, EG) where VG

is the set of vertices of the graph and EG is the set
of edges of the graph. The neighborhood of a vertex v
denoted NG(v) is the set of vertices that are neighbors
of v. A chord of a cycle C is an edge not in C whose
endpoints lie in C. A chordless cycle in G is a cycle of
length at least 4 in G that has no chord.

Definition 2.1. A graph is chordal or triangulated
if it has no chordless cycle.

A graph G′ = (V ′, E′) is called a subgraph of G if
V ′ ⊆ V and E′ ⊆ E. If W ⊆ V is a subset of vertices
then G[W] denotes the subgraph induced by W . A
clique is a graph G that is completely connected. A
triangulation of a graph G is a graph H such that G
is a subgraph of H, H has the same set of vertices as
G and H is chordal.

Definition 2.2. A tree decomposition of a graph
G(V, E) is a pair (T, χ) where T = (I, F) is a tree and
χ = {χi | i ∈ I} is a family of subsets of V such that:
(1)

⋃
i ∈I χi = V , (2)For each edge e = {u, v} ∈ E

there exists an i ∈ I such that both u and v belong
to χi and (3) For all v ∈ V , there is a set of nodes
{i ∈ I|v ∈ χi} forms a connected subtree of T .

The width of a tree-decomposition is given by: maxi∈I

(|χi| − 1). The treewidth of a graph G denoted by
tw(G) equals the minimum width over all possible tree
decompositions of G. The treewidth of G is the mini-
mum k ≥ 0 such that G is a subgraph of a triangulated
graph H having a maximal clique of size k + 1.

Definition 2.3. A vertex v of G is simplicial if its
neighborhood induces a clique. A vertex v is almost
simplicial if all but one of its neighbors induce a
clique. An ordering of the vertices π = [v1, v2, . . . , vn]
is called a perfect elimination ordering if for ev-
ery 1 ≤ i ≤ n, vi is a simplicial vertex in G[X] where
X = {vi, . . . , vn}.
Definition 2.4. A clique of size k + 1 is a k-tree of
size k + 1. A k-tree of size n + 1 can be constructed
from a k-tree of size n by taking the new vertex and
making it adjacent to any clique of size k in the k-tree.
A subgraph of a k-tree is called a partial k-tree.

Lemma 2.5. The treewidth of a k-tree is k. The
treewidth of a partial k-tree is at most k.

A characterization of the triangulated graphs is given
by the following lemma.

Lemma 2.6. A graph is triangulated iff there exists
a perfect elimination ordering for it. Also, if a graph
is triangulated then any simplicial vertex can start a
perfect elimination ordering for it.

Another important property is due to Dirac.

Lemma 2.7. Any non-clique triangulated graph has
at least two non-adjacent simplicial vertices.

The relation between the treewidth of a triangulated
graph and perfect elimination ordering is captured by
the following lemma.

Lemma 2.8. Given any perfect elimination ordering
f = [v1, . . . , vn] of a chordal graph T , the treewidth of
T is given by max(|N(vi)| | v ∈ V,N(v)∩{vi, . . . , vn})

A graph M is a minor of a graph G if graph M can
be obtained from a subgraph of G by edge contraction.
Edge contraction of an edge e = {u, v} is the operation
of replacing both u and v by a single vertex w such that
the neighbors of u and v are neighbors of w except u
and v themselves. A relation between graph, its minor
and the treewidth of G is given by the following lemma.

Lemma 2.9. Let G be a graph and M be a minor of
G. Then tw(G) ≥ tw(M).

We say that we eliminate a vertex v when we make
v simplicial and remove it from the graph to obtain
a new graph G′. This operation will be denoted by
elim(G, v) and it returns a graph G′ = (V \ v, E ∪
E′), where E′ = {(v1, v2)|v1, v2 ∈ N(v)}. Given a
linear ordering f = [v1, . . . , vn] of an undirected graph

G, a triangulation T of the G along the ordering can
be obtained as follows. Make each vertex vi simplicial
by connecting all its neighbors in the graph induced
by G[V], where V = {vi, . . . , vn}. It is easy to see
that the ordering f is a perfect elimination ordering
of T . The treewidth of a graph G along an ordering
f is the treewidth of the triangulation T obtained by
triangulating the graph along the ordering f .

3 Popular Heuristics

In this section, we describe three popular heuristics
for computing an upper bound on treewidth. These
heuristics run in time polynomial in the size of the
graph and therefore form important candidates that
could be used to place good upper bounds on the
branch and bound scheme. All the heuristics described
below are used to construct a perfect elimination or-
dering of the graph G.
The min-fill heuristic: Order the vertices from 1

to n as follows. First select a vertex v which adds the
least number of edges when eliminated from the graph
and place it at position 1. Eliminate v from the graph
by making it simplicial. Now select any vertex that
adds the least number of edges when eliminated and
place it at the next position in the ordering. Repeat
the process breaking ties arbitrarily.
The min-width heuristic: Order the vertices from
1 to n as follows. First, select a vertex v which has
minimum degree and place at position 1. Then remove
this vertex v from the graph and select any vertex with
minimum degree and place it at the next position in
the ordering. Repeat this process breaking ties ran-
domly.
The max-cardinality heuristic: We are ordering

n vertices of a graph G from n to 1. Label a random
vertex as 1 and place it at position n. Choose as the
next to label an unlabeled vertex v with a maximum
number of previously labeled neighbors breaking ties
arbitrarily. Place this vertex at the next position in
the ordering and label the vertices consecutively. Re-
peat the process until all vertices are ordered.
All the heuristics described above can be implemented
in polynomial time in the size of the graph but are
not guaranteed to return optimal solutions. In fact
the upper bounds on treewidth returned by them can
be exponentially worse. Other polynomial time ap-
proximation algorithms with constant approximation
factors [Amir, 2001, Becker and Geiger, 2001] however
perform worse both in terms of cpu time and quality
of approximation on real-world problems and random
graphs [Amir, 2001]. In our studies and consistent
with previous studies [Koster et al., 2001], we found
that the min-fill heuristic yields better upper bounds
than min-width and max-cardinality heuristic.

4 Lower bound on treewidth

Algorithm minor-min-width (G)
Input: A graph G.
Output: A lower bound on the treewidth of G.

1. lb=0;

2. Repeat

(a) Contract the edge between a minimum degree
vertex v and u ∈ N(v) such that the degree of
u is minimum in N(v) to form a new graph G′.

(b) lb = MAX(lb, degreeG(v)).

(c) Set G to G’.

3. until no vertices remain in G.

4. return lb

Figure 1: Algorithm minor-min-width to compute a
lower bound on the treewidth of the graph

Figure 2: Comparison of Lower bound for graphs with
100 vertices.

In this section, we consider several lower bounds
on treewidth. The oldest known lower bound that
comes from constraint theory is called the min-width
bound [Freuder, 1985] and is based on the min-width
heuristic. The idea is that if in a min-width order-
ing some vertex v has an edge with lb vertices ordered
below it in graph G, then the treewidth of the graph
is at least lb. Recently, Brian Lucena [Lucena, 2003]
developed a lower bound using the maximum cardinal-
ity search and showed that it is almost always better
than the min-width bound. The idea is that if in a
maximum cardinality ordering, some vertex v has lb
vertices which are both ordered below v and adjacent
to v, then the treewidth of G is at least lb. Hence
forth, we will refer to this bound as MCSLB.
We develop a new lower bound that improves upon

the min-width bound by using a celebrated theorem
from graph theory which states that the treewidth of
a graph is never less than the treewidth of its mi-
nor. The resulting algorithm which we call minor-min-
width (MMW) is given in Figure 4. We observe em-

Figure 3: Comparison of Lower bound for graphs with
200 vertices.

Algorithm Treewidth Branch and Bound(G)
Input: A graph G.
Output: Treewidth of G.

1. Initialize: A state s which is a two-tuple consisting
of a graph Gs = G and a partial order xs = φ, g(s) =
0, h(s) = mmw(G), f(s) = h(s). Upper bound ub is
set to the bound computed by the min-fill algorithm.

2. If(f(s) < ub) BB(s)

3. return ub

sub-procedure BB(s)

1. IF |VGs | < 2 THEN ub = MIN(ub, f(s))

2. ELSE FOR each vertex v in Gs do

(a) Create a state s′ = (Gs′ , xs′) where

Gs′ = elim(Gs, v) and xs′ = (xs, v).

(b) g(s′) = MAX(g(s), degreeGs(v))

(c) h(s′) =minor-min-width(Gs′)

(d) f(s′) = MAX(g(s′), h(s′))
(e) If f(s′) < ub then BB(s′)

Figure 4: Algorithm Treewidth Branch and Bound

pirically that the bound computed by MMW is almost
always better than MCSLB. This is shown in Figures 2
and 3. Figure 2 is a scatter plot of MCSLB and MMW
for 100 vertex random graphs while Figure 3 is a scat-
ter plot for 200 vertex random graphs. These plots
show a total domination of the MMW bound over
MCSLB. We can show that:

Theorem 4.1. Minor-min-width computes a lower
bound on the treewidth of the graph.

5 The Branch and Bound Algorithm

The naive branch and bound algorithm given in Fig-
ure 4 operates as follows. First it computes the upper
bound on treewidth of the graph by using the min-fill

heuristic. Next, it computes a lower bound by us-
ing the MMW algorithm described above. If the lower
bound equals the treewidth returned by the min-fill al-
gorithm, it is returned as the optimal solution. Other-
wise, we initialize the best solution found so far to the
min-fill solution and start a branch and bound search
for a better solution. Once a partial solution is found
whose lower bound on treewidth is greater than ub, we
prune the branch of the search. On the other hand,
if we find a complete ordering that is better than the
best so far, we update the best solution found so far
(stored in ub). Note that the algorithm performs a
search in the space of perfect elimination ordering of
vertices of G.
Each state s in the algorithm is a two-tuple: a graph
(Gs) and a partial order xs. The graph Gs at state s is
obtained by eliminating the vertices along the partial
order xs from the original graph G. The successors
of a state s can be obtained by eliminating a vertex
v ∈ VGs of the graph Gs. The g value of a state s
is the width of the ordering xs along the path from
the root while its h value is the lower bound on the
treewidth of Gs. We say that a state s′ eliminates a
vertex v if it is created from state s according to step
3(a) in Figure 4.
Theorem 5.1. When algorithm Treewidth Branch
and Bound terminates, ub stores the treewidth of G.

We improve upon this Branch and Bound algorithm
in three ways: (1) Improving the f value at each state
(2) Reducing the branching factor at each state (3)
Using propagation and pruning rules (discussed in next
section).

5.1 Graph reduction techniques

Graph reduction techniques are based on the intu-
ition that we can delete some vertices from the graph
without affecting its treewidth. In our branch and
bound setting, this translates to adding some vertices
to the partial order xs and reducing the size of the
graph Gs at a state s. We use two graph reduc-
tion techniques called the simplicial vertex rule and
the almost simplicial vertex rule due to Bodlaender
et al. [Bodlaender et al., 2001]. The simplicial vertex
rule states that if vertex v is simplicial in graph G, then
treewidth of G is MAX(degreeG(v), tw(elim(G, v))).
Similarly, the almost simplicial vertex rule states that
if v is a almost simplicial vertex in graph G and
degreeG(v) ≤ lb, then treewidth of G is tw(elim(G, v))
where lb is a lower bound on the treewidth of G. Hence
forth, we will abuse notation and use the term almost
simplicial vertices to mean those vertices that are al-
most simplicial and have degree less than the lower
bound lb. We can incorporate these rules in the algo-
rithm given in Figure 4 using the following pseudocode

(after step 3(d) in sub-procedure BB(s)). Let v be a
simplicial or almost simplicial vertex in graph Gs at
state s.
Repeat

1. Update s: Gs = elim(Gs, v), xs = (xs, v)
2. g(s) = Max(g(s), degreeGs(v)).
3. f(s) = MAX(g(s), f(s))

until Gs has no simplicial or almost simplicial ver-
tices.
By applying graph reduction techniques, we achieve

two things. First, we may reduce the branching fac-
tor at each state because we are now branching on
all vertices of a potentially smaller graph. Secondly,
the value of g at state s may increase providing us
with more pruning opportunities. Note that one could
easily prove that the resulting algorithm will correctly
compute the treewidth of the graph by using results
from [Bodlaender et al., 2001].

5.2 Simplicial vertices and chordal graphs

In this subsection, we show that at any state s, one
needs to consider only the non-neighbors of the cur-
rently ordered vertex v as successors of s.

Definition 5.2. Let P be the set of all possible order-
ings π = (V1, V2, . . . , Vn) of vertices of G constructed
in the following manner. Select an arbitrary vertex and
place it at position 1. For i = 2 to n, If there exists
a vertex v such that v /∈ N(Vi−1), make it simplicial
and remove it from G. Otherwise, select an arbitrary
vertex v and remove it from G. Place v at position i.
P is called the treewidth elimination set of G.

Lemma 5.3. Let P be a treewidth elimination set of
a graph G and let tw be the treewidth of G. There
exists an ordering π in P such that triangulating G
along the ordering π will result in a triangulation of
treewidth tw.

Lemma 5.3 can be proved using graph minor the-
ory and Dirac’s theorem on triangulated graphs
(Lemma 2.7). Based on this lemma, we can replace
the for statement in sub-procedure BB(s) in Figure 4
by “For v /∈ N(vs) do” where vs is the last vertex in
partial ordering xs.

5.3 The Edge addition rule

In this subsection, we show that we can add a set of
edges to the graph Gs at any state s without sacrific-
ing correctness. We achieve this using the following
theorem.

Theorem 5.4. Let G(V, E) be a graph. If ub is a
upper bound on the treewidth of G and there exists two
vertices v1 and v2 in G such that |N(v1) ∩ N(v2)| ≥
ub + 1, then there must be an edge between v1 and v2

in all possible perfect elimination orderings of G that
have treewidth less than or equal to ub.

Informally, Theorem 5.4 can be incorporated into the
algorithm treewidth branch and bound as follows. At
each state s, if we find two vertices that have more
than ub + 1 common neighbors then we connect them
in the graph Gs. Again by adding new edges, we can
potentially increase the pruning power and reduce the
branching factor by creating new simplicial and almost
simplicial vertices.

6 Propagation and Pruning Rules

In this section, we will state a set of theorems which
will help us prune regions of the search space that
would not result in triangulations of better treewidth
than the current best. We will skip the proofs due
to space constraints. Before we proceed, let us first
introduce some terminology commonly used in AI lit-
erature. A state s is said to be explored when all its
children are visited. The descendants of a state s can
be defined recursively as follows: (1) All children of a
state are descendants of s. (2) If c is descendant of
b and b is descendant of a, then c is a descendant of
a. We say that the algorithm treewidth branch and
bound is correct iff it outputs the treewidth of the
graph provided to it as input.
Theorem 6.1. Let A and B be two vertices in graph
Gs at state s. Let sa be the child of s that eliminates
A and sab be the child of sa that eliminates B. Also,
Let sb be the child of s that eliminates B and sba be the
child of sb that eliminates A. If Treewidth branch and
bound explores sab and prunes sba, then it is correct.
Theorem 6.2. Let A be a vertex in graph Gs at state
s. Let sa be the child of s that eliminates A. Let s′ be a
descendant of s that eliminates A such that NGsa (A) =
NGs′ . If Treewidth branch and bound explores state sa

and prunes s′, then it is correct.
Theorem 6.3. Let A and B be two vertices in graph
Gs at state s such that eliminating vertex A makes ver-
tex B simplicial or almost simplicial and eliminating
vertex B makes vertex A simplicial or almost simpli-
cial. Let sa be the child of s that eliminates A and
let sb be the child of s that eliminates B. If Treewidth
branch and bound explores sa and prunes sb, then it is
correct.
Theorem 6.4. Let A and B be two vertices in graph
Gs at state s such that E(A) ⊆ E(B) where EA and
EB are the set of edges added respectively when the op-
erations elim(Gs, A) and elim(Gs, B) are carried out
on graph Gs. Let sa be the child of s that eliminates
A and let sb be the child of s that eliminates B. If
Treewidth branch and bound explores sa and prunes
sb, then it is correct.

Figure 5: States N ′, N1, N ′′′ and N ′′ are pruned by
Theorems 6.1, 6.2, 6.3 and 6.4 respectively. Pruned
nodes are indicated by drawing a “-” through them.

All the theorems stated in this section can be easily in-
corporated into the algorithm described in Figure 4. A
pictorial view of the pruning caused by these theorems
is given in Figure 5. We call the algorithm resulting
from the addition of heuristics and pruning methods
discussed in this and the previous section as QuickBB.

7 Experimental Results

In this section, we present experimental results on
running QuickBB on random graphs, randomly gen-
erated partial k-trees and benchmarks from Bayesian
networks repository and Second Dimacs graph coloring
challenge. For comparison, we also solve each problem
by min-fill heuristic and Shoikhet et al.’s implementa-
tion [Shoikhet and Geiger, 1997] of the QuickTree al-
gorithm. The branch and bound algorithm was im-
plemented using C++ and STL. All experiments were
run on a Pentium-4 2.4 GHz machine having 2 GB of
RAM. We have implemented a randomized version of
the min-fill algorithm and in all the experiments re-
ported below, we consider only the lowest treewidth
computed in 100 runs of this randomized algorithm.
Shoikhet et al.’s implementation (QuickTree) which
solves the decision version of the treewidth problem re-
quires a value of k to be provided as input. So, we first
compute an upper bound ub (or optimal if known) on
the treewidth of the graph using QuickBB and provide
this as an input to QuickTree. Thus, we are running
QuickTree with favorable settings.
The tables use the following terminology. The

columns for QuickBB and QuickTree are labeled as
QBB and QT respectively. The column Tw gives the
treewidth output by QuickBB. The column LB gives
the lower bound output by the minor-min-width algo-

rithm. The column MF gives the treewidth computed
by the min-fill heuristic after 100 iterations. The col-
umn Nodes gives the number of nodes explored by the
QuickTree algorithm. Finally, a “*” indicates that the
algorithm did not terminate.

Table 1: Random Graphs
N E Time Nodes Tw LB MF

QBB QT

25 50 5.3671 55.3113 6406 6.3 5.5 6.4
25 100 33.14 68.6511 12398 11.8 9.5 12
25 150 24.6956 33.2384 4228 15.1 11.7 15.5
25 200 3.2196 13.1456 493 18 17.2 18.5
50 50 0.654 27.43 76.5 3.6 3.1 3.6
50 100 201.34 * 56898 10.8 8.2 11.2
50 150 745.3 * 134553 17.3 11.8 17.6
50 200 1856.7 * 345678 20.34 12.3 22.3
50 300 3267.21 * 445789 27.6 13.8 29.3
50 400 2674.3 * 345678 33.7 16.2 35.2
50 500 855.23 * 91232 34.7 19.35 34.9
50 600 876.5 * 85621 37.51 22.3 37.8
50 700 499.4 2345.67 50929 39.5 25.8 39.6
50 800 203.4 229.87 23445 41.2 28.7 41.2
50 900 33.45 121.23 8922 42.3 32.5 42.4
50 1000 5.43 36.7 453 44.2 35.6 44.7

7.1 Random graphs

All the graphs used in this subsection were generated
using the parametric model (n,m), where n is the
number of vertices in the graph and m is the num-
ber of edges. Here, we select m edges uniformly at
random from the possible set of n ∗ (n − 1)/2 edges
to create a random graph G. Table 1 shows the re-
sults of running min-fill, QuickTree and QuickBB on
randomly generated graphs having 25 and 50 vertices
respectively. Each algorithm was given a maximum of
1 and 4 hours respectively on 25 and 50 vertex graphs
after which a time-out was reported. The values in the
table are averages over 100 instances for each combi-
nation of m and n.
We can see that QuickBB is almost always faster

than QuickTree. Also, note that the min-fill algo-
rithm always yields close to optimal treewidth for these
graphs. The largest difference between the average
treewidth output by min-fill and the average optimal
value was never more than 2 and 0.5 for 50-vertex and
25-vertex random graphs respectively. We observed
that graphs of small (close to 1) and large (close to n)
treewidth are easy for both QuickTree and QuickBB
while graphs of intermediate treewidths are harder.
Note that QuickBB solved all 50-vertex graphs in less
than 2 hours each.

7.2 Randomly generated partial k-trees

All the graphs used in this subsection were generated
using the parametric model (n, k, p) that generates
partial k-trees as follows. We first generate a random
k-tree having n vertices by first forming a clique of size
k+1. We then add the remaining n−k−1 vertices by

Table 2: Random Partial K-trees

N K P Tw Time Nodes LB MF
QBB QT

50 10 20 10.0 0.4 6.1 94.4 9.2 10.3
50 10 40 10.0 0.6 32.7 157.4 9.5 10.3
50 10 60 9.9 29.6 103.1 1999.2 9.1 10.0
100 10 20 10.0 1.5 259.7 206.3 10.0 10.5
100 10 40 10.0 1.7 * 238.7 9.7 10.8
100 10 60 9.6 103.2 * 5167.5 8.9 10.3
200 10 20 10.0 15.6 * 791.1 10.0 10.7
200 10 40 10.0 8.8 * 728.3 9.6 10.4
200 10 60 9.9 3.2 * 261.7 9.2 11.0

making the new vertex adjacent to a clique of size k
selected uniformly at random from the cliques already
present in the graph. Then, we remove p percent edges
from this k-tree uniformly at random to form a partial
k-tree. Table 2 shows the results of running various al-
gorithms on randomly generated partial k-trees having
50, 100 and 200 vertices. p was varied from 20 to 60
in increments of 20. k was set to 10. The time-out for
each algorithm was set to 4 hours. The values reported
in the table are averages on 100 problem instances for
each combination of n, k and p considered. Again,
we observe that QuickBB is almost always faster than
QuickTree.

The purpose of this study was to evaluate the
performance of QuickBB on graphs having bounded
treewidth. It can be seen that the practical limit
for the QuickTree implementation is the partial k-
trees generated by the parametric model (100, 10, 20).
On the other hand, QUICKBB solved all partial k-
trees generated by the parametric model (200, 10, p)
for p = 20, 40, 60 in less than one hour of cpu time.

Table 3: Networks In Bayesian Network Repository

Network V E Tw Time Nodes LB MF

alarm 38 65 4 0.017054 1 4 4
barley 49 126 7 48.7506 14588 6 7

diabetes 414 819 4 206.023 9385 4 4
link 715 1738 13 * 136190 8 15

mildew 36 80 4 0.113972 35 4 4
munin1 190 366 11 * 373690 8 11
munin2 1004 1662 7 * 40421 6 7
munin3 1045 1745 7 109.284 2000 7 7
munin4 1042 1843 8 * 61138 7 8
oescoa42 43 72 3 0.019563 1 3 3
oesoca 40 67 3 0.018448 1 3 3

oesoca+ 68 208 11 2.78736 491 9 11
pathfinder 110 211 6 0.201469 25 6 6

pigs 442 806 10 * 182365 7 10

7.3 Bayesian networks

We also generated statistics on some well known
graphs in the Bayesian network repository1. We were
able to compute the treewidth of some graphs whose
optimal treewidth was not yet known. The results are
shown in Table 3. The time-bound used was 1 hour.

1www.cs.huji.ac.il/labs/compbio/Repository/

We were able to compute the optimal treewidth for the
following networks: Alarm, Barley, Diabetes, mildew,
munin2, oescoa42, oesoca and pathfinder. While on
other networks like Link, munin (1,3 and 4) and pigs
the algorithm ran out of time. It is interesting to note
that we were able to improve upon the treewidth out-
put by the min-fill algorithm only in the case of the
Link network. For other networks on which QuickBB
terminates, the treewidth output by the min-fill algo-
rithm was equal to the optimal value.

Table 4: Dimacs Graph Coloring Instances

Graph V E Tw Tw* Time LB

anna 139 986 12 12 1.64 11
david 88 812 13 13 77.6538 11
huck 75 602 10 10 0.041 10

homer 557 3258 31 31 * 19
jean 78 508 9 9 0.05 9

queen5-5 26 320 18 18 5.409 12
queen6-6 37 580 25 26 81.32 15
queen7-7 50 952 35 35 543.3 18
queen8-8 65 1456 46 46 * 22
queen9-9 82 2112 59 59 * 25

queen10-10 101 2940 72 73 * 29
queen11-11 122 3960 89 89 * 34
queen12-12 145 5192 110 106 * 38
queen13-13 170 6656 125 125 * 42
queen14-14 197 8372 143 145 * 47
queen15-15 226 10360 167 167 * 51
queen16-16 257 12640 205 191 * 56
fpsol2.i.1 270 11654 66 66 0.587076 66
fpsol2.i.2 364 8691 31 31 0.510367 31
fpsol2.i.3 364 8688 31 31 0.492061 31
inithx.i.1 520 18707 56 56 26.3043 55
inithx.i.2 559 13979 31 35 1.05661 31
inithx.i.3 560 13969 31 35 1.02734 31
miles1000 129 6432 49 49 * 45
miles1500 129 10396 77 77 6.759 77
miles250 126 774 9 10 1.788 9
miles500 129 2340 22 22 1704.62 21
miles750 129 4226 37 37 * 33
mulsol.i.1 139 3925 50 50 1.407 50
mulsol.i.2 174 3885 32 32 3.583 32
mulsol.i.3 175 3916 32 32 3.541 32
mulsol.i.4 176 3946 32 32 3.622 32
mulsol.i.5 177 3973 31 31 3.651 31
myciel3 12 20 5 5 0.059279 4
myciel4 24 71 10 11 0.205416 8
myciel5 48 236 19 20 112.12 14
myciel6 96 755 35 35 * 23
myciel7 192 2360 54 69 * 39
le450-5a 451 5714 307 308 * 53
le450-5b 451 5734 309 313 * 52
le450-5c 451 9803 315 340 * 75
le450-5d 451 9757 303 326 * 73
le450-15b 451 8169 289 296 * 59
le450-15c 451 16680 372 376 * 98
le450-15d 451 16750 371 371 * 96
le450-25a 451 8260 255 255 * 57
le450-25b 451 8263 251 251 * 54
le450-25c 451 17343 349 355 * 97
le450-25d 451 17425 349 356 * 95
DSJC1000.1 1001 99258 896 * * 183
DSJC1000.5 1001 499652 977 * * 469
DSJC1000.9 1001 898898 991 * * 872
DSJC125.1 126 1472 64 67 * 20
DSJC125.5 126 7782 109 110 * 56
DSJC125.9 126 13922 119 119 260.879 104
DSJC250.1 251 6436 176 179 * 43
DSJC250.5 251 31336 231 233 * 114
DSJC250.9 251 55794 243 243 * 212
DSJC500.1 501 24916 409 * * 87
DSJC500.5 501 125248 479 * * 231
DSJC500.9 501 224874 492 * * 433
DSJR500.1c 501 242550 485 * 656.198 474
DSJR500.5 501 117724 175 * * 176

7.4 Dimacs Graph coloring networks

The purpose of these experiments was to test the any-
time properties of our algorithm on large instances.
The results are shown in Table 4. The column Tw* in
Table 4 is the best upper bound on treewidth reported
by Koster et al. [Koster et al., 2001] in their rigorous
computational study on heuristics like min-fill, max-
cardinality search and a local-search like procedure
called minimum-separating-vertex-set (MSVS) heuris-
tic. QuickBB was given a maximum of 3 hours of cpu-
time on each instance. We observe that QuickBB was
able to improve upon previously known upper bounds
on most instances. On some instances like myceil7 and
le450-5c the improvement was dramatic(≈ 20) while
on other instances like DSJC250.5 and DSJC125.1 the
improvement was minor(≈ 2). We also ran Quick-
Tree algorithm (not reported in the table) on these
instances and found that QuickTree did not terminate
except on the following four instances: myceil3, my-
ceil4, queen5-5 and queen6-6.

8 Summary and Future work

We developed a complete anytime algorithm to
compute the treewidth of a graph. In the course of
the development of this algorithm, we were able to im-
prove upon the recently developed lower bound on the
treewidth of a graph by Brian Lucena [Lucena, 2003].
Experimental results suggest the promise of our
approach in that we are consistently able to compute
tree-decompositions having smaller treewidth than
those computed by the polynomial algorithms like the
min-fill heuristic. Also our algorithm scales better
than QuickTree(Tables 1 and 2). Another important
property of our algorithm is its anytime nature and it
is evident from the results on Dimacs graph coloring
instances on which a consistent improvement in the
upper bound was achieved with time.

However several avenues remain for future
work. The algorithm developed by Arnborg et
al. [Arnborg et al., 1987] has a time complexity of
O(nk+2) where n is the number of vertices of the
graph and k is the treewidth of the graph. The worst
case time complexity of QuickBB scales as O(nn−k).
In other words, QuickBB favors problems having
higher treewidth and is evident from Table 1. We
believe that QuickBB could be improved so that its
time complexity is O(min(nk, nn−k)). Other avenues
for future work include conducting rigorous empirical
tests on benchmarks like csplib, satlib and random
probabilistic networks.

Acknowledgments

This work was supported in part by the NSF grant
IIS-0086529 and the MURI ONR award N00014-00-1-
0617.

References

[Amir, 2001] Amir, E. (2001). Efficient approximation
for triangulation of minimum treewidth. In Uncer-
tainty in Artificial Intelligence, pages 7–15.

[Arnborg et al., 1987] Arnborg, S., Corneil, D., and
Proskurowski, A. (1987). Complexity of finding em-
beddings in a k-tree. SIAM J. Algebraic Discrete
Method, 8(2):277–284.

[Becker and Geiger, 2001] Becker, A. and Geiger, D.
(2001). A suciently fast algorithm for nding close to
optimal clique trees. Artificial Intelligence, 125(1-
2):3–17.

[Bodlaender et al., 2001] Bodlaender, H., Koster, A.,
van den Eijkhof, F., and van der Gaag, L. (2001).
Preprocessing for triangulation of probabilistic net-
works. In Uncertainty in Artificial Intelligence
(UAI2001), pages 32–39. Morgan Kaufmann.

[Dechter, 1999] Dechter, R. (1999). Bucket elimina-
tion: A unifying framework for reasoning. Artificial
Intelligence, 113(1-2):41–85.

[Freuder, 1985] Freuder, E. (1985). A sufficient condi-
tion for backtrack-bounded search. Journal of ACM,
32:755–761.

[Kloks, 1994] Kloks, T. (1994). Treewidth: Compu-
tations and Approximations. Springer-Verlag New
York, Incorporated.

[Koster et al., 2001] Koster, A. M., Bodlaender, H. L.,
and van Hoesel, S. P. M. (2001). Treewidth: Compu-
tational experiments. Technical report, Universiteit
Utrecht.

[Lauritzen and Spiegelhalter, 1988] Lauritzen, S. L.
and Spiegelhalter, D. J. (1988). Local computations
with probabilities on graphical structures and their
applications to expert systems. Journal of Royal
Statistical Society, 50(2):157–224.

[Lucena, 2003] Lucena, B. (2003). A new lower bound
on treewidth based on maximum cardinality search.
SIAM Journal of Discrete Mathematics.

[Shoikhet and Geiger, 1997] Shoikhet, K. and Geiger,
D. (1997). A practical algorithm for finding optimal
triangulations. In In Proc. National Conference on
Artificial Intelligence (AAAI ’97), pages 185–190.
Morgan Kaufmann.

