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Abstract

Computing the probability of a formula given
the probabilities or weights associated with other
formulas is a natural extension of logical infer-
ence to the probabilistic setting. Surprisingly,
this problem has received little attention in the lit-
erature to date, particularly considering that it in-
cludes many standard inference problems as spe-
cial cases. In this paper, we propose two algo-
rithms for this problemformula decomposition
and conditioningwhich is an exact method, and
formula importance samplingwvhich is an ap-
proximate method. The latter is, to our knowl-
edge, the first application of model counting to
approximate probabilistic inference. Unlike con-
ventional variable-based algorithms, our algo-
rithms work in thedual realm of logical formu-
las. Theoretically, we show that our algorithms
can greatly improve efficiency by exploiting the
structural information in the formulas. Empiri-
cally, we show that they are indeed quite pow-
erful, often achieving substantial performance
gains over state-of-the-art schemes.

Introduction

The standard task in the field of automated reasoning is t
determine whether a set of logical formulas (the knowledge1
baseK B) entails a query formulg). (The formulas could
be propositional or first-order; in this paper we focus on
the propositional case.) Logic’s lack of a representation f
uncertainty severely hinders its ability to model real &ppl
cations, and thus many methods for adding probability to i
have been proposed. One of the earliest is Nilsson’s pro

abilistic logic (Nilsson, 1986), which attaches probatss

and enforced (Nilsson, 1986). Another problem is that in
general a set of formula probabilities does not completely
specify a distribution, but this is naturally solved by assu
ing the maximum entropy distribution consistent with the
specified probabilities (Nilsson, 1986; Pietra et al., 1997

A more serious problem is the lack of efficient inference
procedures for probabilistic logic. This contrasts witk th
large literature on inference for graphical models, which
always specify unique and consistent distributions (Rearl
1988). However, the representational flexibility and com-
pactness of logic is highly desirable, particularly for rebd

ing complex domains. This issue has gained prominence in
the field of statistical relational learning (SRL) (Getoada
Taskar, 2007), which seeks to learn models with both log-
ical and probabilistic aspects. For example, Markov logic
represents knowledge as a set of weighted formulas, which
define a log-linear model (Domingos and Lowd, 2009).
Formulas with probabilities with the maximum entropy as-
sumption and weighted formulas are equivalent; the prob-
lem of converting the former to the latter is equivalent to
the problem of learning the maximum likelihood weights
(Pietra et al., 1997). In this paper we assume weighted for-
mulas, but our algorithms are applicable to formulas with
probabilities by first performing this conversion.

Another reason to seek efficient inference procedures for
probabilistic logic is that inference in graphical modeisic

be reduced to it (Park, 2002). Standard inference schemes
for graphical models such as junction trees (Lauritzen
qnd Spiegelhalter, 1988) and bucket elimination (Dechter,
999) have complexity exponential in the treewidth of the
model, making them impractical for complex domains.
However, treewidth can be overcome by exploiting struc-
tural properties like determinism (Chavira and Darwiche,
2008) and context-specific independence (Boutilier, 1996)

tt)S_everaI highly efficient algorithms accomplish this by en-

coding a graphical models as sets of weighted formulas and
applying logical inference techniques to them (Sang et al.,

to the formulas in the KB and uses these to compute th
probability of the query formula. One problem with this
approach is that the formula probabilities may be inconsisAll of these algorithms areariable-basedin that they ex-

tent, yielding no solution, but consistency can be verifiedplore the search space defined by truth assignments to the

©005; Chavira and Darwiche, 2008).



variables. In this paper, we propose a new class of algoA model or a solution off" is a0/1 truth assignment to
rithms that explore the search space defined by truth asll variables inX such thatF' evaluates to True. We will
signments to arbitrary formulas, including but not neces-assume throughout thdt is in CNF, namely it is a con-
sarily those contained in the original specification. Ourjunction of clauses, a clause being a disjunction of literal
formula-basedchemes generalize variable-based schemea literal is a variableX; or its negation-X;. A unit clause
because a variable is a special case of a formula, namelyia a clause with one literal. Propositional Satisfiability o
unit clause. For deriving exact answers, we propose to exSAT is the decision problem of determining whetliehas
haustively search the space of truth assignments to formwany models. This is the canonical NP-complete problem.
las, yielding the formula decomposition and conditioningModel Counting is the problem of determining the number
(FDC) scheme. FDC performs AND/OR search (Dechterof models ofF, it is a #P-complete problem.

e, ) o S conaioni CAC e i cenoe ot by e, G, i, h s
: 9, P f solutions of F' by Sol(F') and its number of solutions

Ei’n?;glfg;%nsigni;al Boolean constraint propagation an y #(F'). Variables are Qenoted by letteks and Y.. We

' denote sets by bold capital letters eX,,Y etc. Given a
Even with these techniques, large complex domains wilketX = {X;,..., X,,} of variablesx denotes a truth as-
still generally require approximate inference. For thig, w signment(z4, ..., z,), whereX; is assigned the valug,.
propose to compute an importance distribution over the forClauses are denoted by the lettétsR, S andT. Discrete
mulas, yielding formula importance sampling (FIS). Eachfunctions are denoted by small Greek letters, &,g), etc.
sample in FIS is a truth assignment to a set of formulasThe variables involved in a functiafy namely the scope of
To compute the importance weight of each such sampled is denoted by (¢). Similarly, the variables of a clauge
assignment, we need to know its model count (or numbeare denoted by (C'). Given an assignmerttto a superset
of solutions). These model counts can either be computed of Y, xy denotes the restriction afto Y.
gxactly, ifitis feas@le, or approximately using the rettgn The expected value of a random varialdlevith respect to
introduced approximate model counters such as Samplea— distribution is Eq[X] = 3° 2Q(x). The variance
Count (Gomes et al., 2007) and SampleSearch (Gogate a%q is Varg[X] = §: — “fE?X[X])QQ' )
Dechter, 2007b). To the best of our knowledge, this is the” * >~ 4@ rex(® =~ Eq ().
first work that harnesses the power of model counting forln this paper, we advocate using a collection of weighted
approximate probabilistic inference. We prove that if thepropositional formulas instead of the conventional tabula
model counts can be computed accurately, formula imporrepresentations to encode the potentials in Markov random
tance sampling will have smaller variance than variablefields (MRFs) or conditional probability tables in Bayesian
based importance sampling and thus should be preferred.networks. Specifically, we will use the following represen-
H%tion, which we call as propositional MRF Br opMRF in

We present experimental results on three classes of bencshort. APr 0pMRE is a Markov logic network (Richardson

mark problems: random Markov networks, QMR-DT net- and Domingos, 2006) in which all formulas are proposi-

works from the medical diagnosis domain and Iv"’jlrkovtional. Itis known that any discrete Markov random field or

por of variabios in he formulas mereases. formuia.based, E2YSSIan nEVIOrk can be encoded & apvRF: (Park,
' 002; Sang et al., 2005; Chavira and Darwiche, 2008).

schemes not only dominate their variable based counter-
parts but also state-of-the-art exact algorithms such aBPEFINITION 1 (Propositional MRFs). A propositional
ACE (Chavira and Darwiche, 2008) and approximateMRF (Pr opMRF), denoted byM is a triple (X,C,R)
schemes such as MC-SAT (Poon and Domingos, 2006) anghere X is a set of n Boolean variables,C =

Gibbs sampling (Geman and Geman, 1984). {(Cryw1), ..., (Cmywm)} is a set ofm soft (weighted)
. . . clauses andR = {Ri,..., R,} is a set ofp hard clauses.
The rest of the paper is organized as follows. Section Z .. soft clause is a pdi€’;, w;) whereC; is a clause and

describes background. Section 3 presents formula decom- ; ;

position and co%ditioning. Sectionp4 presents formula im-:ﬁielSCaNrEiLT;rSgege\;YﬁevélILgiﬂgti;%W czile/;/.\cgtlt/\fhé

porta}nce sampling. Experimental .results are presented iﬁrimal graph of a Pr opMRF has variables as its vertices

Section 5 and we conclude in Section 6. and an edge between any two nodes that are involved in the
same hard or soft clause.

2 Background _ _ .
We can associate a discrete functipn with each soft

21 Notation clause(C;, w; ), defined as follows:

Let X = {Xy,...,X,} be a set of propositional vari- 4, (x;. ) = { exp(w;) If x evaluates’; to True
ables that can be assigned values from the{6et} or ' 1 Otherwise
{False,Trué¢. Let F' be a propositional formula ovef.



The probability distribution associated wit is given by:
7o I, 6i(Xvs,)

0

If x € Sol(Fam)
Otherwise

Pai(x) = { )

whereZ », is the normalization constant; often referred to
as thepartition function Z,, is given by:

Zm= > Jléixve)

XESol(Fa) i=1

)

Note that if M has no soft clauses, thefi, equals the
number of models of the formul&y,. Thus, model count-
ing is a special case of computitg,,.

We will focus on the query of finding the probability of a
CNF formulaG, denoted byP(G). By definition:

>

XESol(FAmAG)

LS [[etven) @

XESOl(FMAG) i=1

P(G) Pr(x)

If we add all the clauses af to the hard clauses o1
yielding anothePr opMRF M’, then the partition function
Znm of M is given by:

S [ 6ixves)

XESol(FAMAG) i=1

(4)

Z

From Equations 3 and 4, we g&{G) = % Because
computingP(G) is equivalent to computing a ratio of two
partition functions, in the sequel, we will presdéotmula-

based algorithm$&r computingZ . only.

3 Exact Formula-based | nference

We first explain how to perform inference by variable-

ClauselD | Clause weight
S1 AVBVCVDVE | w
S2 AVBVCVFVG | w
S3 DVEVH w3
S4 FVGVJ Wy

Figure 1:An examplePr opMRF.
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are False arcs

(DVEVH,w,) (FVGVJ,w,) ~A

+wy) 2
eXP(W ) (BVCVDVE, w,) (BVCVFVG,w,)

(DVEVH,w,)
(FVGVJ,w,)

ecompo:

(DVEVH,w,)  (FVGVJ,w,)

Figure 2:Figure demonstrating the simplification steps after con-
ditioning on variable A for thé>r opMRFgiven in Figure 1.

in X have been instantiated. Conditioning by itself is not
that useful. For example, if thBr opMRF has no hard
clauses, then conditioning would perfoffh summations.
However, one can augment it with various simplification
schemes such as Boolean constraint propagation, and uti-
lize problem decomposition, yielding powerful schemes in
practice. These and other ideas form the backbone of many
state-of-the-art schemes such as ACE (Chavira and Dar-
wiche, 2008) and Cachet (Sang et al., 2005). To simplify a
Pr opMRF, we can apply any parsimonious operators - op-
erators which do not change its partition function. In par-
ticular, we can remove all clauses which evaluate to True
from the set of hard clauses. These clauses are redundant.
Examples of operations that aid in identifying such hard
clauses are unit propagation, resolution and subsumption
elimination. For example, given a hard clausethe hard
clauseA Vv B is redundant and can be removed because it
is subsumed withimd. Similarly, A could be removed af-

based conditioning and then show how it can be generaker unit propagation, because it always evaluates to True.
ized via formula-based conditioning. Consider the expresye can simplify the soft clauses based on the hard clauses

sion for Z 4 (See Equation 2). Given assignmeftsand
—X;, we can expres&, as:

> JI¢xves)

XESol(FMmAX ;) i=1

> [[¢ixve)) )

XeSol(FpmA—X;) i=1
(6)

whereM x and M_ x arePr opMRFs obtained by adding
X and—X to the set of hard clauses 8ff respectively.

ZM

+

Z/\/lxj + Z/\/lﬁxj

Then, one can perform conditioning to complZl;e,Xj and
ZMﬂXj, recursively for eaclPr opMRF until all variables

by removing all soft clauses which evaluate to either True
or False, multiplying the partition function with an appro-
priate constant to account for their removal. For example,
given a hard clausd, the soft clausel vV B having weight

w is always satisfied and can be removed, by multiplying
the partition function byxp(w)?.

Another advancement that we can use is problem decom-
position (Darwiche, 2001; Dechter and Mateescu, 2007).
The idea here is that if the soft and hard clauses of a
Pr opMRF can be partitioned inté > 1 sets such that any
two clauses in any of thg sets have no variables in com-

INote that if we remove a variable that is not a unit clause
from all the hard and soft clauses, then we have to multipty th
partition function by2.



(AVBVCVDVE, w,)

(AVBVCVFVG,wy) Algorithm 1: Formula Decomposition and Conditioning

(DVEVH,w;)

(FVGVIw,) (FDC)
Left arcs are True @ Input: A Pr opMRF M
arcs and right arcs
are False arcs Output: Zj\/[
begin 0
w = U;
(DVE, w,) (FVG,w,), “A, ~ B,~ C T
nggx?vtg) (DVEVH.wy) (FVGVa,wy) 1. Simplify
AVBVC begin
ecompose Simplify the hard and soft clauses;
Decpmpos Add the weights of all soft clauses which evaluate to
(DVEVH,w3) | (FVGVH,wd) True tow;
(DVE,w,) (FVGawy) Remove all soft clauses which evaluate to either True or
aveve  OVEVHW)  (FVGVIw) False fromM. Updatew to account for variables

completely removed from all formulas;
if F)aq has an empty claugéen

L return0
H, . .
ove 5N e S if F)aq has only unit clausethen
E -G | returnexp(w)

Figure 3: Search space of Formula Decomposition and end
o 2. Decompose
Conditioning for an examplBr opMRF

begin
- if the primal graph ofM is decomposable intb
mon, then the partition function equals the product of the componentshen
partition functions of thé: Pr opMRFs induced by each set. L Let My, Mo, ..., M, be thePr opNRF's
corresponding to the components;
The following example demonstrates simplification and de- return exp(w) x FDC(Mi) x ... x FDC(My)
composition on an exampkr opVRF. end
E ; P 3. Condition
XAMPLE 1. Consider thePr opMRF shown in Figure 1. begin
After conditioning onA and simplifying using Boolean Heuristically choose a formul® to condition on;
constraint propagation, we get tvitks opMRFs shown un- Add hard clauses logically equivalent fband—R to
der the True (left) and false (right) branches/bin Figure M yielding M r and M respectively;
2. ThePr opMRF at the True branch contains only two soft end return exp(w) x (FDC(Mg) + FDC(M-r))

clauses which have no variables in common. Thus, the
could be decomposed into twy opVRFs as shown. The
contribution to the partition function due to the True branc
of A is then simply a product of the partition functions of
the twoPr opMRFs andexp(w; + ws) x 22,

¥nd

verify that if we condition only on the variables instead of
arbitrary formulas, the best ordering scheme will explore
Our main observation is that we can condition on arbitraryl2 leaf nodes. (This search space is not shown because of
formulas instead of variables. Formally, given an arbjtrar 1ack of space. It can be worked out using Figure 2.)

formula f1;, we can expresg,, as: . iy -
Algorithm Formula Decomposition and Conditioning

m (FDC) is presented as Algorithm 1. It takes as input a
Im = Z H@'(XV(@)) PropMRF M. The first step is the simplification step
x€Sol(FpmAHy) i=1 in which we reduce the size of the hard and the soft

m clauses using techniques such as unit propagation, reso-
+ Z H@(XV(@)) (7)  lution and subsumption elimination. In the decomposi-
X€Sol(FpmA—Hj) i=1 tion step (Step 2), we decomposge into independent
= Zmy. +Zrm_ (8) PropMRFs if its primal graph is decomposable. Each of
’ ! them are then solved independently. Note that this is a
When combined with Boolean constraint propagation andsery important step and is the primary reason for efficiency
problem decomposition, this seemingly simple idea is quiteof techniques such as recursive conditioning (Darwiche,
powerful because it can yield a smaller search space, as wa01) and AND/OR search (Dechter and Mateescu, 2007).
demonstrate in the following example. In some cases, thes@ fact, the whole idea in performing simplification and
reductions could be significant. heuristic conditioning is to split ther opMRF into several
EXAMPLE 2. Consider again thBr opMRF shown in Fig-  Pr OPMRF's that can be solved independently. Finally, in
ure 1. The first two clauses share a sub-clatiseB v .  the conditioning step, we heuristically select a formila
If we condition first ond v B v C, we get the search space 0 condition on and then recurse on the true and the false
shown in Figure 3, which has onlyleaf nodes. One can assignments t@.



We summarize the dominance of FDC over VDC (where4.1 Variable-Based | mportance Sampling

VDC is same as FDC except that we condition only on unit _ S _

clauses in Step 3) in the following proposition. Importance sampling (Rubinstein, 1981) is a general

PROPOSITIONL. Given aPr opMRE M, let Sy, and scheme whlch_can be used to approximate any quantity
: ' such asZ,( which can be expressed as a sum of a func-

S,v be the number of nodes in the smallest search SPACEon over a domain. The main idea is to use an importance

explored by FDC and VDC respectively. Therr < | P

. L : X distribution @, which satisfiesPr(x) > 0 = Q(x) > 0
Sam,v. Sometimes, this inequality can be strict. and expresg , as follows:

M Q(x)

Znm S T ¢ixvis) x )
We consider two important improvements. First, note that x€Sol(F) i=1
if we are not careful, the algorithm as presented may yield IX)TTE 6i(Xv ()
a super-exponential search space. For example, if we con- Eq [ 0(x) ]
dition on a set of arbitrary formulas, none of which sim-
plify the PropMRF, we may end up conditioning on a wherel(x) is an indicator function which i$ if x is a so-
super-exponential number of formulas. Trivially, to guar- lution of F,, and0 otherwise.
antee at Ieas_t_an _exponential search space in the s_iz_e c_>f teﬁven N independent and identical (i.i.d.)
clausal specification, the formula selected for conditigni
must reduce/simplify at least one soft clause or at least on
hard clause. Second, we can augment FDC witmpo-
nent caching and clause learnirgg in Cachet (Sang et al.,

I mprovements

9)

samples
gx(l), ..., x(")) drawn fromQ, we can estimatéZ, us-
Ihg Z, defined below:

R N [(x® ™o, X(i) v
2005) and usev-cutset conditioningDechter, 1999) in a In = %Z ( )HJ‘I(Z,)J( viey) (10)
straight forward manner. We omit the details. =1 Q(x™)
31 Related work It is known (Rubinstein, 1981) thaEo[Zn] = Z,

) ] o namely it is unbiased. The mean squared error (MSE) of
FDC generalizes variable-based conditioning schemes SU@N is given by:

as recursive conditioning (Darwiche, 2001), AND/OR

search (Dechter and Mateescu, 2007) and value elimina- Vare [TOILZ, @(xww)}
tion (Bacchus et al., 2003) because all we have to do is MSE(?N) — QX (11)
restrict our conditioning to unit clauses. FDC also gener- N

alizes weighted model counting (WMC) approaches suctrhus, we can reduce the mean squared error by either re-

as ACE (Chavira and Darwiche, 2008) and Cachet (Sangucing the variance (given in the numerator) or by increas-
et al., 2005). These weighted model counting approachefg the number of samples (or both).

introduce additional Boolean variables to model each soft
clause. Conditioning on these Boolean variables is equiva 5 Formula-based Importance Sampling
alent to conditioning on the soft clauses present in the
PropMRF. Thus, FDC can simulate WMC by restricting Importance sampling can be extended to the space of
its conditioning to not only the unit clauses but also thé sof clauses (or formulas) in a straight forward manner. Let
clauses already present in tReopMRF. Finally, FDC is H = {H,,..., H,} be a set of arbitrary formulas over the
related to streamlined constraint reasoning (SCR) apjproadyariablesX of M, and leth = (hi,...,h,) be atruth as-
of (Gomes and Sellmann, 2004). The idea in SCR is to addignment to all the clauses H. Let H be such that ev-
a set ofstreamlining formulago the input formula in order ery consistent truth assignmemevaluates all soft clauses
to cut down the size of its solution space in a controlledto either True or False. Note that this condition is criti-
manner. The goal of streamlining is solving a Boolean Satcal. Trivially, if H equals the set of soft clauses, then the
isfiability (or a Constraint Satisfaction) problem while ED  condition is satisfied. Lef}, be the formula correspond-
uses (streamlined) formulas for weighted model counting.ing to conjunction(HH; = hy A ... A H, = h,) and let

Xn € Sol(Fh). Given a functionp, let x (4 be the re-

4 Formula I mportance Sampling st_ric;ion_oth to the scope od. Then, given an importance
distributionU (H), we can rewriteZ ,, as:

In this section, we generalize conventional variable-Base m

. e i . Fh A Fam) x T, di(X ,
importance sampling to formula importance sampling and Z,, = E #(Fh A Fa) Ul_r[rl il h’V(d”'))U(h)
show that our generalization yields new sampling schemes heH (h)

having smaller variance. We first present background on #(Fa A Faq) < [T, #i(Xn Vigs)
variable-based importance sampling. = Eu [ U (h) (12)




Algorithm 2: Formula Importance Sampling (FIS) 4.3 Variance Reduction
Input: A PropMRFM and an importance distributidii(H)

over a set of clauses — {H., ..., H,} The estimateZy output by AIggnthr_n 2 is likely tp have
Output: An unbiased estimate &f smaller mean sguared error thaw given in Equation 10.
begin In particular, given a variable-based importance distribu
Z=0,N=0 tion Q(X), we can always construct a formula based impor-
repeat ctrack.f iy o tance distributior/ (H) from Q(X), such that the variance
g): }fgﬁdtrr]ai Jee probability is stored here), of Zx is smaller than that of . Define:
for i = 1to |H| do _
LetG1 = G A H; andGy = G A —-H; U(h> - Z Q(Xh> (14)
if (|¥0 a;nkc‘l G have a solution (Checked using a SAT Xn €SOl (FhAF )
solver)then . ; ;
Sampleh; from U(H;|h) _Intumvely_, each sample frorﬁ/(H) given by Equation 14
h=hU h, is heavy in the sense that it corres.ponds%t(FM A Fh)_
qb = qb x U(H; = hs|h) samples from)(xn). Because of this larger sample size,
L G=GA(Hi=hi) the variance ofZy is smaller than that o y (assuming
else . o that#(Fy A Fr) can be computed efficiently). The only
if G is Satisfiablethen caveat is that generating samples fr6fH) is more ex-
h=hu(H: =0) pensive. Formally
G=GA(H; =0) ' o .
dse THEOREM 1. Given aPr opMRF M, a proposal distribu-
h=huU(H;, =1) tion Q(X) defined over the variables o#1, a set of formu-
G=GA(H;=1) lasH = {H;, ..., H,} and a distributionU (H) defined as
w = sum of weights of soft clauses satisfiediby It?] thl;%tlon 14, the variance diy is less than or equal to
s = Estimate of model counts @ atorzn.
Z =7+ s x exp(w)/qb . . . .
N=N+1 Proof. For notational convenience, given an assignmxent
until timeout let®(x) = [T, ¢i(Xv(4:))- Also, without loss of general-
Z=17ZIN ity, let the set of hard clauses 8l be empty. By definition
endreturn Z the variance of/ is given by:
Vo { 2 (x) }
5 Q(X)
VolZn] N (15)
GivenN sample™ ... h™) generated fron/ (H), we ,
can estimateZ , asZy, where: _ ! < (I)EX))QQ(X) _ Zz) (16)
N Q(x
N m XeX
~ 1 #(Fi) N Fa) Hj:l @5 (Xne) V(¢-))
In = — . (a3 2
N N ; U(h(z)) (13) _ % < (g((x)) o Z2> (17)
X
xex
There are two issues that need to be addressed in order
to use Equation 13 for any practical purposes. First, the _ 1 Z Z P(xn)? ~ 22 |as)
importance distributior/ (h) may suffer from the rejec- N

tion problem (Gogate and Dechter, 2007a) in that we may
generate truth assignments (to clauses) which are incorﬁecause for each assignmentd(x,) is the same, it acts
sistent, namely their model count is zero. Note that thisaS a con,stant in the inner sum of Equation 18 'i'herefore
could happen even if there are no hard clausesfrbe- . . ) ' '
S . . we can rewrite Equation 18 as:

cause the formula combinations considered may be incon-
sistent. Fortunately, if we ensure thth) = 0 when- N 1 1
everh is inconsistent, namely makié(h) backtrack-free VolZn] = N Z(I)(Xh)Q Z — 72
(Gogate and Dechter, 2007a), we can avoid this problem heH Xn€Sol (Fh) Q(Xn)
altogether. Algorithm 2 outlines a procedure for construct (19)
ing such a distribution using a complete SAT solver (for &X"The variance of/y

s is given by:
ample Minisat (Sorensson and Een, 2005)). Second, com-

puting # (F,» A Faq) exactly may be too time consum- _ Vu [%}
ing. In such cases, we can use state-of-the-art approximate Vy[Zny] = — N (20)

counting techniques such as ApproxCount (Wei and Sel- ) 5
man, 2005), SampleCount (Gomes et al., 2007) and Sam- 1 T (xn)°#(Fh)” s (21)
pleSearch (Gogate and Dechter, 2007b). N U(h)

heH



Substituting Equation 14 in Equation 21, we get: Em%'em w FDC VDC | ACE | VE
andom

) ) 40-40-3| 10.80| 0.08| 0.08| 0.60] 0.01
VU[ZN]:i )" H#(FR)” o 22) 40-40-5| 23.00| 11.81| 1057 108.37| 1.69

£ 2oxesou(m) @(Xn) 40-40-7 | 29.80| 1177 | 24563| 1337| X
40-40-9| 3340 171 | 32642| 1437| X

_ _ 50-50-3 | 12.60 0.02 002 | 0.73] 002
Comparing Equations 19 and 22, we see that to prove[ 50505 28.40 | 278.25| 257.45| 56.94 X
VolZn] > V[ Zn], all we have to prove is that: 50-50-7 | 36.00| 167.79 | 1139.06| 294.30| X
50-50-9 | 42.20 20.97 | 1187.28| 113.52 X
1 #(Fh)2 60-60-3 | 15.00 0.08 0.11 0.58 | 0.04
> S oy 23 60-60-5 | 33.80 X X X | X
x€ Sol(F) x€Sol (Fp) WL 60-60-7 | 44.00 X X X X
60-60-9 | 49.60 | 218.28 X X X
This follows from standard number theory in that givn QX)FZE())TS — — S - E—
positive real number§a, ..., ay}, we have: 104071 22.90 =25 =3 3571703
N A2 40-40-9 | 24.00 22.20 44.51 9.40 X
Zi (24) 40-40-11| 25.20| 1820| 69.00] 1008 | X
— q; Z a: 50-50-5| 22.80 14.53 14.96 9.14 | 3.63
=1 = 50-50-7 | 30.00 | 545.23| 517.71| 37941 | X
0 50-50-9 | 34.00 33.30 883.04 | 357.06 X
50-50-11| 33.00 28.43 554.01 | 495.96 X
o . . 60-60-5| 26.00 | 244.05| 203.32 | 310.37 X
We can easily integrate FIS with other variance re- [ 60-60-7 | 34.60 56.40 | 1096.62 | 637.23 X
duction schemes such as Rao-Blackwellisation (Casella  60-60-9 | 40.40 97.20 | 1180.94| 554.01 X
and Robert, 1996) and AND/OR sampling (Gogate and| 60-60-11| 45.00 | 72.10 X 148810 X
Dechter, 2008). These combinations can lead to interesting FS
time versus variance tradeoffs. We leave these improve- ;Sggg gi-gg 122-22 152-2825 ggg-ég 8-5)3(‘5
ments for future work. We describe h@w(H) can be con- Sef- : : : :
structed in practice in the next sectior?m( : fs-29°5 | 26.60 | 39165] 371.74] 119.23 X
’ fs-31-5 | 29.40 | 1312.90| 892.20| 357.65 X
Cora
5 Experiments Cora2 | 12.00 0.17 0.14 1.84 | 0.04
Cora3 | 32.00 | 3902.20 X X X
5.1 Exact Inference Table 1:Average runtime in seconds of the four algorithms used

in our study ovel 0 random instances for each problem. We gave
We compared “Formula Decomposition and Cond|t|on|ngeach solver a time-bound of 3 hrs and a memory bound of 2GB.
(FDC)” against “Variable Decomposition and Condition- X indicates that either the memory or time bound was exceeded
ing (VDC)", variable elimination (VE) (Dechter, 1999) and ' ¢ Sécond column gives the average treewidth.
ACE (Chavira and Darwiche, 2008) (which internally uses
the C2D compiler (Darwiche, 2004)) for computing the
partition function on benchmark problems from three do-
mains: (a) Random networks, (b) medical diagnosis netSince FDC is a DPLL-style backtracking search scheme,
works and (c) Relational networks. ACE, FDC and VDC its performance is highly dependent upon a good branch-
use the same clausal representation while VE uses tabularg heuristic (that selects the next clause to condition on)
representation. Note that the domains are deliberately chdn our implementation, we used a simple dynamic heuris-
sen to elucidate the properties of FDC, in particular, te vertic of conditioning on the largest sub-clause (unit clause i
ify our intuition that as size of the clauses increases, FDGase of VDC) that is common to most hard and soft clauses,
is likely to dominate VDC. ties broken arbitrarily. The main intuition for this heuits

. is that branching on the largest common sub-clause would
Vl\ée t;mfleSneIBnted dFDJC andd \;Dr? or;] tl?nggoRELEA:; .cause the most propagation, yielding the most reduction in
é gA‘?'rr(r)]odel ?:)(l)irnt(l)ngraIZZrlthri 0;’; r?]entlone)d \évarl(fer the search space size. We also tried a few other heuristics,
after conditioning on a formula, We use various Boolear,lbo'[h static and dynamic, such as (i) conditioning on a sub-
propagation, pruning techniques such as unit propaga cIauseC(and its negation) that causes the most unit propa-
tion, clause learning, subsumption elimination and resolugatlons (but one has to perform unit propagations for each
tion’ Also, similar to, Cachet (Sang et al., 2005), we u candldate clause, which can be quite expensive in practice)
component caching and similar to w-cutset cond|t|on|ng(”) graph partitioning heuristics based on the min-fill i

degree and hmetis orderings; these heuristics are used by
(Dechter, 1999), we invoke bucket elimination at a node €olvers such as ACE (Chavira and Darwiche, 2008) and

if the treewidth of the (remainind@r opMRF at the node is
less thanl6.



AND/OR search (Dechter and Mateescu, 2007) and (iii)5.1.3 Relational networks

Entropy-based heuristics. The results for these hewsistic

show a similar trend as the results for the heuristic used i?Ur final domain is that of relational networks. We exper-

our experiments, with the latter performing better on an avimented with the Friends and Smokers networks and the

erage. We leave the development of sophisticated formuld=ntity resolution networks.
ordering heuristics for future work. In the friends and smokers networks (FS), we have

Table 1 shows the results. For each problem, we generatdfree first order predicatesmokes(x), which indicates
10 random instances. For each instance, wé%eof ran-  Whether a person smokesgncer(x), which indicates

domly chosen variables as evidence. Each row shows th¥hether a person has cancer, afidends(z,y), which
average time in seconds for each problem. indicates who are friends of whom. The probabilistic

model is defined by assigning weights to two logical con-
511 Random networks straints, friends(z,y) A smokes(x) = smokes(y) and

smokes(x) = cancer(z). Given a domain forz and
Our first domain is that of random networks. The net-y, a Pr opMRF can be generated from these two logical
works are generated using the modelm, s), wheren ~ constraints by considering all possible groundings of each
is the number of (Boolean) variables; is the number predicate. We experimented with different domain sizes for
of weighted clauses angl is the size of each weighted = andy ranging from25 to 34. From Table 1, we can see
clause. Givem variablesX = {X1,..., X,,}, each clause that the time required by FDC is almost the same as VDC.
C; (for i = 1 to m) is generated by randomly selecting This is because the size of the clauses is smaB). ACE
s (distinct) random variables frorX and negating each dominates both FDC and VDC.
with probability0.5. For our experiments, we set= m
and experimented with three values foandm: n,m €
{40, 50, 60}. s was varied fronB to 9 in increments of.

Entity resolution is the problem of determining which
observations correspond to the same entity. In our ex-
periments, we consider the problem of matching ci-
A random problenin, m, s) is designated as — m — sin  tations of scientific papers. = We used the CORA
Table 1. We see that FDC dominates VDCsdacreases. Markov logic network given in the Alchemy tuto-
ACE is often inferior to FDC and often inferiorto VDC. As rial (Kok et al.,, 2004). This MLN has ten pred-
expected, variable elimination which does not take advanicates such asAuthor(bib, author), Title(bib,title),
tage of the structure of the formulas is the fastest schem&ameAuthor(author, author), SameT'itle(title,title)
when the treewidth is small but is unable to solve any probetc. and clauses ranging from si2eto 6. The clauses

lems having treewidth greater thah. express relationship such as: if two fields have high simi-
larity, then they are (probably) the same; if two records are
5.1.2 Medical Diagnosis the same, their fields are the same, and vice-versa; etc. We

o _ _ ~ experimented with domain sizes ®and3 for each of the
Our second domain is a version of QMR-DT medical diag-5 first-order variables present in the domain. The problems
nosis networks (Shwe et al., 1991) as used in Cachet (Sangte denoted as cora2 and cora3 respectively. From Table

et al., 2005). Each problem can be specified using a twa  we can see that FDC is the only algorithm capable of
layer bipartite graph in which the top layer consists of dis-solving the largest instance.

eases and the bottom layer consists of symptoms. If a dis-

ease causes a symptom, there is an edge from the diseagg Approximate | nference

to the symptom. We have a weighted unit clause for each

disease and a Weighted clause for each symptom, which We Compared “Formula importance Samp“ng (F|S)"
simply a logical OR of the diseases that cause it (in (Sanggainst “Variable importance sampling (VIS)” and state-
et al., 2005), this clause was hard. We attach an arbitrangf-the-art schemes such as MC-SAT (Poon and Domin-
weight to it to make the problem harder). For our exper-gos, 2006) and Gibbs sampling available in Alchemy (Kok
iments, we varied the numbers of diseases and symptomg al., 2004) on the three domains described above. For both
from 40 to 60. For each symptom, we varied the number ofy|S and FIS, we chose to construct the importance distri-
diseases that can cause it fréno 11 in increments of. bution Q from the output of a Belief propagation scheme
The diseases for each symptom are chosen randomly.  (BP), because BP was shown to yield a better importance

A QMR-DT problem(d, f, s) is designated ag— f — s in function than other .approaches in previous studies (Yuan
Table 1. We can see that as the size of the clauses increas@8d Druzdzel, 2006; Gogate and Dechter, 2005).
FDC performs better than VDC. FDC also dominates ACEwe describe next, how the method described in (Gogate

as the problem size increases. and Dechter, 2005) can be adapted to construct an impor-
tance distribution over formulas. Here, we first run BP
(or Generalized Belief Propagation (Yedidia et al., 2004))



over a factor (or region) graph in which the nodes are the 10
variables and the factors are the hard and the soft clauses.

Let (C4,...,C,,) be an ordering over the soft clauses.

Given a truth assignment to the first— 1 soft clauses 01t
Ci—1 = (c1,...,¢i—1), we computd/(C;|c;_1) as follows.
We first simplify the formulal” = Fxq A Ft, ,, possibly
deriving new unit clauses. Leéf-, be the marginal distri- 0.001 | X
bution at the factor corresponding to the clad$ein the
output of BP. Thenl/(C;|c;—1) is given by:

0.01

Sum KLD

0.0001 ¢

1le-05 - L L I .
U(Ci _ True|Ci_1) - Z IF,Ci (Y)¢qu (Y) (25) 0 200 4O9I'ime i:s]ogecong(s)o 1000 1200

yede; ‘ MC-SAT —— Formulals -
Gibbs sampling _-=-3¢--- VariablelS {3

wherelr ¢, (y) = 1if y evaluates”; to True but does not (a) Random problenin = 50, m = 50, s = 5)
violate any unit clause ift’, and0 otherwise. Note that the 100
importance distributior) over the variables is a special

case of the scheme described above in which we construct

10 £

a distribution over all the unit clauses. 1p
o
We implemented Algorithm 2 as follows. Notice thatthe £  °*
algorithm requires a SAT solver and a model counter. We U% oo1f B
used Minisat (Sorensson and Een, 2005) as our SAT solver. T T — S
For model counting, we use the RELSAT model counter w0001 .

whenever exact counting was feasfolend the approxi-
mate solver SampleSearch (Gogate and Dechter, 2007b) 1e05 -

. . . . .
200 400 600 800 1000 1200

whenever it wasn't. Time in seconds
. ‘ ~ MC-SAT —+— FormulalS ¥
We measure the performance of the sampling schemes us- Gibbs sampling --3¢-- VariablelS -

ing the sum Kullback-Leibler divergence (KLD) between (b) Random problenin = 50, m = 50, s = 7)

the_exact gnd the. approxim.ate posterior marginals for eac&igure 4:Time versus Sum KLD plots fat Random instances.
variable given evidence. Time versus sum KLD plots for

two representative problems from each domain are showggential can be summarized using a constant number of
in Figures 4, 5 and 6. We can clearly see that as the size Qi ses, we only require linear space. Since an efficient
the clauses increases, FIS outperforms VIS, MC-SAT anghference scheme is one of the main bottleneck in learn-

Gibbs sampling. ing Pr opMRFs having large clauses, we believe that our
formula-based approach to inference can lead to new struc-

6 Summary and Conclusion ture and weight learning schemes that learn large weighted
clauses from data.

:{n this ?apgr, we mtrodudced anew formu}l{a-based_ approﬁpbur work can be extended in several ways. In particular,
or performing exact and approximate inference in grap e envision formula-based versions of various inference

cal models. Formula-based inference is attractive becausrgchemeS such as variable elimination, belief propagation

(E,i)lit general:zes stz:fndard vlaria_bllqe-bars],ed inferencef ('b)l and Markov Chain Monte Carlo (MCMC) sampling. One
yields several new efficient algorithms that are not poesibl ¢ oo schemes, namely formula elimination triviallyfol

by reasoning just over the variables and (c) it fits naturaIIy|OWS from this work, as it is known that conditioning works

within th_e r_ecen_t_r(_asearch_efforts in combining logical andalong the reverse direction of elimination (Dechter, 1999)
probabilistic Artificial Intelligence. Also, we envision the development of lifted versions of all
Our empirical evaluation shows that formula-based apthe formula-based schemes proposed in this paper.
proach is especially suitable for domains having large

clauses. Such clauses are one of the main reasons for useknowledgements

ing logic instead of tables for representing potentials OrTh' h dv funded by ARG  WOLLNF
; ; ; ; _This research was partly funded by gran -
CPTsin graphlc_al models_,. In particular, con\(en_tlonal tab 08-1-0242, AFRL contract FA8750-09-C-0181, DARPA

ular representations require space exponential in the NUNEg tracts  FA8750-05-2-0283 FA8750-07-D-0185
ber of variables in the scope of the potential, while if the HR0011-06-C-0025, HRO011-07-C-0060 and NBCH-
.. , _ . D030010, NSF grants 11S-0534881 and [1S-0803481, and
Exact counting was invoked if the number of variables WasONR grant N0O0014-08-1-0670. The views and conclu-

less than 100, which was the case for most networks that we exsjons contained in this document are those of the authors
perimented with, except the relational benchmarks.
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