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Motivation

» Explicit representation of the joint distribution is unmanageable

» Computationally: Memory intensive to store and manipulate
» Cognitively: Impossible to acquire so many numbers from human experts
» Statistically: We will need ridiculously large amount of data to learn.

» Solution: Exploit Independence properties and Represent the distribution using a
graph
» Trouble: Mapping the logic of probability theory into graph theory!



Properties of Independence

The statement /(X, Z,Y) means that X is independent of Y given Z.
Namely, Pr(X|Y,Z) = Pr(X|Z) and Pr(X,Y|Z) = Pr(X|Z) Pr(Y|Z)
Symmetry /(X,Z,Y) = I(Y,Z,X)

Decomposition /(X,Z, Y UW) = [(X,Z,Y)

Weak Union /(X,Z,Y UW) = [(X,ZUW,Y)

Contraction /(X,ZUY W)&/(X,Z,Y) = I(X,Z,Y UW)

Intersection For any positive distribution:
I(X,ZUW,Y)&I(X,ZUY,W) = [(X,Z,Y UW)
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Proof of Symmetry

» Assume that /(X,Z,Y) holds. This implies that:
Pr(X,Y|Z) = Pr(X|Z) x Pr(Y|Z)

i.e. 1(Y,Z,X) holds too (exchanging the positions of X and Y).



Proof of Decomposition

» Assume that /(X,Z,Y UW) holds. Then,
Pr(X,Y,W|Z) = Pr(X|Z) x Pr(Y,W|Z)
Pr(X,Y|Z) = ) Pr(X,Y,w|Z)
= > Pr(X|Z) x Pr(Y,w|Z)
w

= Pr(X|2)) _Pr(Y,w|Z)
= Pr(X|Z)Pr(Y|2)

i.e. 1(X,Z,Y) holds too.



Proof of Weak Union

» Assume that /(X,Z,Y UW) holds. Then,
Pr(X,Y,W|Z) = Pr(X|Z) x Pr(Y,W|Z)
Pr(X,Y,W|Z)

Pr(W|Z)
Pr(X|Z) x Pr(Y,W|Z)

Pr(X,Y|W,Z) =

Pr(W|Z)
= Pr(X|Z) x Pr(Y|W, Z)

| stopped here: Homework problem
Which of the previous properties can you use to prove that:

Pr(X, Y|W, Z) = Pr(X|W, Z) x Pr(Y|W, Z)



Bayesian networks: Directed-Graphs

» Mapping a distribution to a Graph!!

The graph can be viewed in two different ways:
> As a data structure to represent the joint distribution compactly
> As a compact representation of a set of conditional independence assumptions
about a distribution

The two views are equivalent



Bayesian networks: Data Structure view

> Bayesian network = Use Chain rule + Conditional Independence properties

» Chain rule:

n
P(X,..., Xa) = [[ PCXil X, Xima)
i=1



Bayesian networks: Data Structure view

» Chain rule: P(X1,...,X,) =11 P(Xi| X4, ..., Xi—1)
Use the chain rule to represent the joint distribution rather than a giant table!

Example
Intelligence “I” and SAT Score “S"

P(1,S) = P(I)P(S|I)

0 1 0 1
S S 0 1 S

91 0.95%0.7 | 0.05 *0.7 | = x| 9 10.95 ] 0.05
it 0.2%0.3 | 0.8%0.3 : : it 02108




Bayesian networks: Data Structure view

» However, we don't gain anything by using the chain rule. Space complexity is the
same.

» Exploit conditional independence properties

» What if | tell you that you are representing a joint distribution over 2 coin tosses?

Chain rule : P(X1, Xz) = P(X1)P(Xa2|X1)

Conditional Independence : P(X1, X2) = P(X1)P(X2)



Bayesian networks: Data Structure view

» Chain rule P(X1,...,X,) =[]/, P(Xi|X1,...,Xi—1) as a directed graph.
> Xi,...,Xj_1 are the parents of X;. Complete Graph

> If we know that P(X;|X1,...,Xi—1) = P(X;|Y;) where Y; is a subset of
{X1,...,Xi—1}. Then, we get a sparse graph (a Bayesian network).



Bayesian networks: Data structure view

» Random variables are nodes and edges
represent direct influence of one
variable on other

i.d° 04
i%d" | 005|025 07
i%d° [09 Jo0s | 0.02]
i%d" [os Jo3 Joz2 |

» Each node is associated with a
L ' conditional probability table (CPT).

g* |04 |06
g2 [ 0.99 | 0.01

» The joint distribution is product of all CPTs
P(D,1,G,5,L) = P(D)P(1)P(G|D, 1)P(L|G)P(S]I)
» What is P(i1,d°, g2, st,10)?



Bayesian networks: Data structure view

Space complexity?

» Assume each variable has d values in
its domain.

» O(d**t1) for each variable having k
parents.

g o1 |09
g* |04 |06
g2 0.99 | 0.01




Graph terms

variables N with an edge from N to V \

Descendants( V)

variables N with a directed path from V to N.
V is said to be an ancestor of N

Non_Descendants( V)
variables other than V/, Parents(V) and Descendants(V)




Bayesian networks: Compact Representation of Conditional Independence
statements view

» A directed acyclic graph G represents the following independence statements
Markov(G) = I(V, Parents(V), Non — Descendants(V))

» Parents(V) denote the direct causes of V and Descendants(V) denote the effects
of V

» Given the direct causes of a variable, our beliefs in that variable become
independent of its non-effects.



Bayesian networks: Compact Representation of Conditional Independence
statements view

Earthquake? Burglary?
(E) B

Markovian assumptions?
> 1.
| 2

>
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Bayesian networks: Compact Representation of Conditional Independence

statements view

Earthquake?
(E)

Burglary?
(B)

Markovian assumptions,
Markov(G):

I(CTAHIE ERRE)
I(R,E,{A,B,C})
I(A. {B, E}, R)
I(B,0,{E,R})
I(E, 0, B)




Expanding Markov (G) using properties of probabilistic independence

v

Markov(G) is not comprehensive. We can expand it using properties such as
symmetry, decomposition, weak-union, contraction and intersection.

Given W C Non — Descendants(X)), how can we strengthen Markov(G) =
(X, Parents(X), Non — Descendants(X))

Decomposition: /(X,Z,Y UW) = [(X,Z,Y)
(X, Parents(X), W)
Weak Union: /(X,Z,Y UW) = /(X,Z UW.,Y)
(X, Parents(X) U W, Non — Decendants(X) \ W)

and so on.



Expanding Markov(G) using Symmetry

Burglary?
@ @ Ipe(X, Z,Y) iff Ipx(Y,Z, X)

Learning y does not influence

m m our belief in x iff learning x does

not influence our belief in'y

From Markov(G), we have Ip.(A, {B, E}, R). Using Symmetry, we
get Ip(R, {B, E}, A) which is not part of Markov(G)




Expanding Markov(G) using Weak-union

Markov(G) gives
I(C,A {B,E,R})

By Weak Union

I(C,{A, B, E}, R) which is not
part of Markov(G)




Graphoid Axioms
Triviality: Ipr(X, Z,0)

Symmetry, Decomposition, Weak Union, and Contraction,
combined with Triviality, are known as the graphoid axioms. J

With Intersection, the set is known as the positive graphoid axioms.J

Decomposition, Weak Union, and Contraction in one statement
Ipe(X,Z, Y UW) iff Ip(X,Z,Y) and Ip(X,ZUY,W)

The terms semi-graphoid and graphoid are sometimes used instead
of graphoid and positive graphoid, respectively. J




Capturing independence graphically

» Question: Is there a purely graphical test that can find all of these independence
statements, namely Markov(G) plus the ones inferred using the properties of
conditional independence?

» YES, it is called d-separation.



D-separation

X and Y are d-separated by Z, written dsep¢(X,Z,Y)

iff every path between a node in X and a node in Y is blocked by Z

The definition of d-separation relies on

the notion of blocking a path by a set of variables Z

dsepg(X,Z,Y) implies Ipr(X,Z,Y)

for every probability distribution Pr induced by G




D-separation

View the path as a

and view each variable W on the path as a valve.

|

A valve W is either or

depending on some conditions that we state later.

If at least one of the valves on the path is closed
the whole path is blocked. Otherwise, the path is not blocked.




D-separation

The type of a valve
is determined by its relationship to its neighbors on the path.

sequential —=W— ) divergent —W— | convergent —W— J

ceo /. Qp




D-separation

A path with 6 valves J

From left to right



D-separation

A path with 6 valves )

From left to right

convergent, divergent, sequential, convergent, sequential, and
sequential.




D-separation

Given that we know Z
when is a divergent valve closed?

Valve R—E—A is closed iff

we know the value of variable
E, otherwise a radio report on
an earthquake may change our
belief in the alarm triggering.

A divergent valve «W— is closed iff variable W appears in Z J




D-separation

Given that we know Z
when is a convergent valve closed?

Valve E—A«~B is closed iff

neither the value of variable A
nor the value of C are known,
otherwise, a burglary may
change our belief in an
earthquake.

A convergent valve —W+— is closed iff neither variable W nor any
of its descendants appears in Z J




D-separation

Given that we know Z
when is a sequential valve closed?

Valve E—A—C is closed iff

we know the value of variable
A, otherwise an earthquake E
may change our belief in
getting a call C.

A sequential valve —W— is closed iff variable W appears in Z |




D-separation

X and Y are by Z, written dsepc(X,Z,Y), iff

every path between a node in X and a node in Y is blocked by Z

A path is blocked by Z iff
at least one valve on the path is closed given Z

A path with no valves (i.e., X — Y) is never blocked. ]




D-separation

Burglary?
(B)

Are B and R d-separated by E
and C?

Yes

The closure of only one valve is
sufficient to block the path,
therefore, establishing
d-separation.




D-separation

Are C and R d-separated? )

(B)
m
Both valves are open. Hence,

(R) the path is not blocked and

d-separation does not hold.




D-separation

Are C and B d-separated by S?J

Both paths between them are
blocked by S.




D-separation

The definition of d-separation, dsep¢(X,Z,Y), calls for

considering all paths connecting a node in X with a node in Y. The
number of such paths can be exponential, yet one can implement the test
without having to enumerate these paths explicitly.

Deciding dsepg (X, Z,Y) is equivalent to testing whether X and Y are

in a new DAG G’ obtained by pruning DAG G

@ Delete any leaf node W from DAG G as long as W not in
XUY UZ. Repeat until no more nodes can be deleted.

@ Delete all edges outgoing from nodes in Z.

Decided in time and space that are linear in the size of DAG G




D-separation

Nodes in Z are shaded. Pruned nodes and edges are dotted. J

Bronchitis?
(B)

Is X = {A, S} d-separated from Y = {D, X} by Z = {B, P}?




D-separation

Nodes in Z are shaded. Pruned nodes and edges are dotted.

Smoker?
)
Bronchitis?
(B)

Positive X-Ray?
X)

Is X ={T,C} d-separated from Y = {B} by Z = {S, X}?




D-separation

» The d-separation test is sound
If distribution Pr is induced by Bayesian network G, then

dsepc(X,Z,Y) only if Ip(X,Z,Y)

» The proof of soundness is constructive showing that every independence claimed
by d-separation can indeed be derived using the graphoid axioms.



I-map, D-map and P-map

v

A directed acyclic graph (a Bayesian network) describes a set of conditional
independence assumptions /¢.

» It is an |I-map of a distribution Ip, if Ig = Ip, or Ig C Ip,

> Itisa D-mapif Ip, = Ig or Ip, C Ig

> It is a P-map if it is both an I-map and a D-map. Namely, I = Ip,

> |-maps and D-maps can be constructed trivially. Therefore, we enforce minimality.



Minimal I-maps

Given a distribution Pr, how can we construct a DAG G which is
guaranteed to be a minimal I-MAP of Pr? J

Given an ordering Xi, ..., X, of the variables in Pr:
@ Start with an empty DAG G (no edges)
o Consider the variables X; one by one, for i =1,...,n

@ For each variable X;, identify a minimal subset P of the
variables in Xi, ..., Xj_1 such that
° IPr(Xi7 P7 {X17 s 7Xl'—1} \ P)
o Make P the parents of X; in DAG G

The resulting DAG is a minimal I-MAP of Pr



Minimal I-maps

» Minimal |I-maps are not unique.

» Different orderings give rise to different I-maps

OO (2)—(1)
OO !‘0

(a) (b)

Ordering for (b):
c):

L, S, G, 1, D)
Ordering for ( L,D,S I, G)



Blankets and Boundaries

for variable X

is a set of variables which, when known, will render every other
variable irrelevant to X

A Markov blanket B is iff
no strict subset of B is also a Markov blanket.

A minimal Markov blanket
is called a Markov Boundary.

—

The Markov Boundary is not unique

unless the distribution is strictly positive.




Blankets and Boundaries

If distribution Pr is induced by DAG G

then a Markov blanket for variable X with respect to Pr can be
constructed using its parents, children, and spouses in DAG G

Variable Y is a spouse of X iff
the two variables have a common child in DAG G




Blankets and Boundaries

@_. ﬁ@ .......... .

Markov blanket for S;, t > 1
St—la 5t+17 Ot

Markov blanket for C



