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Motivation

I Explicit representation of the joint distribution is unmanageable
I Computationally: Memory intensive to store and manipulate
I Cognitively: Impossible to acquire so many numbers from human experts
I Statistically: We will need ridiculously large amount of data to learn.

I Solution: Exploit Independence properties and Represent the distribution using a
graph

I Trouble: Mapping the logic of probability theory into graph theory!



Properties of Independence

The statement I (X,Z,Y) means that X is independent of Y given Z.
Namely, Pr(X|Y,Z) = Pr(X|Z) and Pr(X,Y|Z) = Pr(X|Z) Pr(Y|Z)

I Symmetry I (X,Z,Y)⇒ I (Y,Z,X)

I Decomposition I (X,Z,Y ∪W)⇒ I (X,Z,Y)

I Weak Union I (X,Z,Y ∪W)⇒ I (X,Z ∪W,Y)

I Contraction I (X,Z ∪ Y,W)&I (X,Z,Y)⇒ I (X,Z,Y ∪W)

I Intersection For any positive distribution:
I (X,Z ∪W,Y)&I (X,Z ∪ Y,W)⇒ I (X,Z,Y ∪W)



Proof of Symmetry

I Assume that I (X,Z,Y) holds. This implies that:

Pr(X,Y|Z) = Pr(X|Z)× Pr(Y|Z) (1)

i.e. I (Y,Z,X) holds too (exchanging the positions of X and Y).



Proof of Decomposition

I Assume that I (X,Z,Y ∪W) holds. Then,

Pr(X,Y,W|Z) = Pr(X|Z)× Pr(Y,W|Z)

Pr(X,Y|Z) =
∑
w

Pr(X,Y,w|Z) (2)

=
∑
w

Pr(X|Z)× Pr(Y,w|Z) (3)

= Pr(X|Z)
∑
w

Pr(Y,w|Z) (4)

= Pr(X|Z) Pr(Y|Z) (5)

i.e. I (X,Z,Y) holds too.



Proof of Weak Union

I Assume that I (X,Z,Y ∪W) holds. Then,

Pr(X,Y,W|Z) = Pr(X|Z)× Pr(Y,W|Z)

Pr(X,Y|W,Z) =
Pr(X,Y,W|Z)

Pr(W|Z)
(6)

=
Pr(X|Z)× Pr(Y,W|Z)

Pr(W|Z)
(7)

= Pr(X|Z)× Pr(Y|W,Z) (8)

I stopped here: Homework problem
Which of the previous properties can you use to prove that:

Pr(X,Y|W,Z) = Pr(X|W,Z)× Pr(Y|W,Z)



Bayesian networks: Directed-Graphs

I Mapping a distribution to a Graph!!

The graph can be viewed in two different ways:

I As a data structure to represent the joint distribution compactly

I As a compact representation of a set of conditional independence assumptions
about a distribution

The two views are equivalent



Bayesian networks: Data Structure view

I Bayesian network = Use Chain rule + Conditional Independence properties

I Chain rule:

P(X1, . . . ,Xn) =
n∏

i=1

P(Xi |X1, . . . ,Xi−1)



Bayesian networks: Data Structure view

I Chain rule: P(X1, . . . ,Xn) =
∏n

i=1 P(Xi |X1, . . . ,Xi−1)

Use the chain rule to represent the joint distribution rather than a giant table!

Example

Intelligence “I” and SAT Score “S”

P(I , S) = P(I )P(S |I )

s0 s1

i0 0.95*0.7 0.05 *0.7

i1 0.2*0.3 0.8*0.3

=
i0 i1

0.7 0.3
×

s0 s1

i0 0.95 0.05

i1 0.2 0.8



Bayesian networks: Data Structure view

I However, we don’t gain anything by using the chain rule. Space complexity is the
same.

I Exploit conditional independence properties

I What if I tell you that you are representing a joint distribution over 2 coin tosses?

Chain rule : P(X1,X2) = P(X1)P(X2|X1)

Conditional Independence : P(X1,X2) = P(X1)P(X2)



Bayesian networks: Data Structure view

I Chain rule P(X1, . . . ,Xn) =
∏n

i=1 P(Xi |X1, . . . ,Xi−1) as a directed graph.

I X1, . . . ,Xi−1 are the parents of Xi . Complete Graph

I If we know that P(Xi |X1, . . . ,Xi−1) = P(Xi |Yi ) where Yi is a subset of
{X1, . . . ,Xi−1}. Then, we get a sparse graph (a Bayesian network).



Bayesian networks: Data structure view

Grade

Letter

SAT

IntelligenceDifficulty

d1d0

0.6 0.4

i1i0

0.7 0.3

i0

i1
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g1

g2

g2

l1l 0

0.1

0.4
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0.9

0.6

0.01

i0,d0

i0,d1

i0,d0

i0,d1

g2 g3g1

0.3

0.05

0.9

0.5

0.4

0.25

0.08

0.3

0.3

0.7

0.02

0.2

I Random variables are nodes and edges
represent direct influence of one
variable on other

I Each node is associated with a
conditional probability table (CPT).

I The joint distribution is product of all CPTs
P(D, I ,G , S , L) = P(D)P(I )P(G |D, I )P(L|G )P(S |I )

I What is P(i1, d0, g2, s1, l0)?



Bayesian networks: Data structure view

Grade

Letter

SAT

IntelligenceDifficulty

d1d0

0.6 0.4

i1i0

0.7 0.3
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i1
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g2
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0.6
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i0,d0
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0.05
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0.08

0.3

0.3

0.7

0.02

0.2

Space complexity?

I Assume each variable has d values in
its domain.

I O(dk+1) for each variable having k
parents.



Graph terms



Bayesian networks: Compact Representation of Conditional Independence
statements view

I A directed acyclic graph G represents the following independence statements

Markov(G ) = I (V ,Parents(V ),Non − Descendants(V ))

I Parents(V) denote the direct causes of V and Descendants(V) denote the effects
of V

I Given the direct causes of a variable, our beliefs in that variable become
independent of its non-effects.



Bayesian networks: Compact Representation of Conditional Independence
statements view

Markovian assumptions?

I 1.

I 2.

I 3.

I 4.

I 5.



Bayesian networks: Compact Representation of Conditional Independence
statements view



Expanding Markov (G) using properties of probabilistic independence

I Markov(G ) is not comprehensive. We can expand it using properties such as
symmetry, decomposition, weak-union, contraction and intersection.

I Given W ⊆ Non − Descendants(X )), how can we strengthen Markov(G ) =
I (X ,Parents(X ),Non − Descendants(X ))

I Decomposition: I (X,Z,Y ∪W)⇒ I (X,Z,Y)

I (X ,Parents(X ),W)

I Weak Union: I (X,Z,Y ∪W)⇒ I (X,Z ∪W,Y)

I (X ,Parents(X ) ∪W,Non − Decendants(X ) \W)

I and so on.



Expanding Markov(G) using Symmetry



Expanding Markov(G) using Weak-union



Graphoid Axioms



Capturing independence graphically

I Question: Is there a purely graphical test that can find all of these independence
statements, namely Markov(G ) plus the ones inferred using the properties of
conditional independence?

I YES, it is called d-separation.



D-separation



D-separation



D-separation
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D-separation
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D-separation



D-separation



D-separation

I The d-separation test is sound
If distribution Pr is induced by Bayesian network G , then

dsepG (X,Z,Y) only if IPr(X,Z,Y)

I The proof of soundness is constructive showing that every independence claimed
by d-separation can indeed be derived using the graphoid axioms.



I-map, D-map and P-map

I A directed acyclic graph (a Bayesian network) describes a set of conditional
independence assumptions IG .

I It is an I-map of a distribution IPr if IG ⇒ IPr or IG ⊆ IPr
I It is a D-map if IPr ⇒ IG or IPr ⊆ IG
I It is a P-map if it is both an I-map and a D-map. Namely, IG = IPr
I I-maps and D-maps can be constructed trivially. Therefore, we enforce minimality.



Minimal I-maps



Minimal I-maps

I Minimal I-maps are not unique.

I Different orderings give rise to different I-maps

(a) (b) (c)

G

L L

ID

S G

D

S

I

L

G

D

S

I

Ordering for (b): (L, S, G, I, D)
Ordering for (c): (L, D, S, I, G)



Blankets and Boundaries
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Blankets and Boundaries


