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use clique-tree message passing schemes on structures other than trees. This class of methods,
which includes the famous loopy belief propagation algorithm, can be understood as optimizing
approximate versions of the energy functional. The second category includes methods that use
message propagation on clique trees with approximate messages. This class of methods, often
known as the expectation propagation algorithm, maximize the exact energy functional, but with
relaxed consistency constraints on the representation Q. Finally, in the third category there are
methods that generalize the mean field method originating in statistical physics. These methods
use the exact energy functional, but they restrict attention to a class Q consisting of distributions
Q that have a particular simple factorization. This factorization is chosen to be simple enough
to ensure that we can perform inference with Q.
More broadly, each of these algorithms can be described from two perspectives: as a proce-

dural description of a message passing algorithm, or as an optimization problem consisting of
an objective and a constraint space. Historically, the message passing algorithm generally origi-
nated first, sometimes long before the optimization interpretation was understood. However, the
optimization perspective provides a much deeper understanding of these methods, and it shows
that message passing is only one way of performing the optimization; it also helps point the
way toward useful generalizations. In the ensuing discussion, we usually begin the presentation
of each class of methods by describing a simple variant of the algorithm, providing a concrete
manifestation to ground the concepts. We then present the optimization perspective on the
algorithm, allowing a deeper understanding of the algorithm. Finally, we discuss generalizations
of the simple algorithm, often ones that are derived directly from the optimization perspective.

11.1.1 Exact Inference Revisited !

Before considering approximate inference methods, we start by casting exact inference as an
optimization problem. The concepts we introduce here will serve in the discussion of the
following approximate inference methods.
Assume we have a factorized distribution of the form

PΦ(X ) =
1
Z

∏

φ∈Φ

φ(Uφ), (11.1)

where the factors φ in Φ comprise the distribution, and the variables Uφ = Scope[φ] ⊆ X
are the scope of each factor. For example, the factors might be CPDs in a Bayesian network,
generally restricted by an evidence set, or they might be potentials in a Markov network. We are
interested in answering queries about the distribution PΦ. These include queries about marginal
probabilities of variables and queries about the partition function Z . As we discussed, if PΦ is
a Bayesian network with instantiated evidence on some variables, then the partition function Z
is the probability of the evidence.
Recall that the end product of belief propagation is a calibrated cluster tree. Also recall that

a calibrated set of beliefs for the cluster tree represents a distribution. In exact inference we
find a set of calibrated beliefs that represent PΦ(X ). That is, we find beliefs that match the
distribution represented by given set of initial potentials. Thus, we can view exact inference
as searching over the set of distributions Q that are representable by the cluster tree to find a
distribution Q∗ that matches PΦ.
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Intuitively, we can rephrase this question as searching for a calibrated distribution that is as
close as possible to PΦ. There are many possible ways of measuring the distance between two
distributions, such as the Euclidean distance (L2), or the L1 distance and the related variational
distance (see appendix A.1.3.3). As we will see, our main challenge, however, is our aim to avoid
performing inference with the distribution PΦ; in particular, we cannot effectively compute
marginal distributions in PΦ. Hence, we need methods that allow us to optimize the distance
between Q and PΦ without answering hard queries about PΦ. A priori, this requirement may
seem impossible to satisfy. However, it turns out that there exists a distance measure — the
relative entropy (or KL-divergence) — that allows us to exploit the structure of PΦ without
performing reasoning with it.
Recall that the relative entropy between P1 and P2 is defined as1

ID(P1||P2) = IEP1

[
ln

P1(X )
P2(X )

]
.

Also recall that the relative entropy is always nonnegative, and equal to 0 if and only if P1 = P2.
Thus, we can use it as a distance measure, and choose to find an approximation Q to PΦ that
minimizes the relative entropy.
However, as we discussed, the relative entropy is not symmetric — ID(P1||P2) != ID(P2||P1).

In section 8.5, we discussed the use of relative entropy for projecting a distribution into a
restricted class; this projection can aim to minimize either ID(PΦ||Q), via the M-projection,M-projection

or ID(Q||PΦ), via the I-projection. A priori, it might appear that the M-projection is moreI-projection
appropriate, since one of the main information-theoretic justifications for the relative entropy
ID(PΦ||Q) is the number of bits lost when coding a true message distribution PΦ using an
(approximate) estimate Q. However, as the discussion of section 8.5.2 shows, computing the
M-projection Q — arg minQ ID(PΦ||Q) — requires that we compute marginals of PΦ and is
therefore equivalent to running inference in PΦ. Somewhat surprisingly, as we show in the
subsequent discussion, this does not apply to I-projection: we can exploit the structure of PΦ

to optimize arg minQ ID(Q||PΦ) efficiently, without running inference in PΦ.
To summarize this discussion, we want to search for a distribution Q that minimizes

ID(Q||PΦ). To define and analyze this optimization problem formally, we also need to spec-
ify the objects we optimize over. Suppose we are given a cluster tree structure T for PΦ. That
is, T satisfies the running intersection property and the family preservation property. Moreover,
suppose we are given a set of beliefs

Q = {βi : i ∈ VT } ∪ {µi,j : (i–j) ∈ ET , }

where Ci denotes clusters in T , βi denotes beliefs over Ci, and µi,j denotes beliefs over Si,j

of edges in T .
As in definition 10.6, the set of beliefs in T defines a distribution Q by the formula

Q(X ) =
∏

i∈VT
βi∏

(i–j)∈ET
µi,j

. (11.2)

1. Note that, until now, we defined the relative entropy and other information-theoretic terms, such as mutual informa-
tion, using logarithms to base 2. As will become apparent, in the context of the discussion in this chapter, the natural
logarithm (base e) is more suitable. This change is a simple rescaling of the relevant information-theoretic quantities
and does not change their basic properties.
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(See section 10.2.3.) Due to the calibration requirement, the set of beliefs Q satisfies the marginalcalibration

marginal
consistency

consistency constraints if, for each (i–j) ∈ ET , the beliefs on Si,j are the marginal of βi (and
βj ). Recall that theorem 10.4 shows that if Q is a set of calibrated beliefs for T and Q is the
distribution defined by equation (11.2), then

βi[ci] = Q(ci)
µi,j [si,j ] = Q(si,j).

Thus, the beliefs correspond to marginals of the distribution Q defined by equation (11.2).
Thus, we are now searching over a set of distributions Q that are representable by a set of

beliefs Q over the cliques and sepsets in a particular clique tree structure T . Note that when
deciding on the representation of Q we are actually making two decisions: We are deciding both
on the space of distributions that we are considering (all distributions for which T is an I-map),
and on the representation of these distributions (as a set of calibrated clique beliefs). Both of
these decisions are significant components in the specification of our optimization problem.
With these definitions in hand, we can now view exact inference as maximizing −ID(Q||PΦ)

over the space of calibrated sets Q.

CTree-Optimize-KL:

Find Q = {βi : i ∈ VT } ∪ {µi,j : (i–j) ∈ ET }
maximizing −ID(Q||PΦ)
subject to

µi,j [si,j ] =
∑

Ci−Si,j

βi(ci) ∀(i–j) ∈ ET ,∀si,j ∈ Val(Si,j)

∑

ci

βi(ci) = 1 ∀i ∈ VT .

In solving this optimization problem, we conceptually examine different configurations of
beliefs that satisfy the marginal consistency constraints, and we select the configuration that
maximizes the objective. Such an exhaustive examination, of course, is impossible to perform
in practice. However, there are effective solutions to this problem that find the maximum point.
We have already seen that, if T is a proper cluster tree for the set of original potentials Φ, we
know that there is a set Q that induces, via equation (11.2), a distribution Q = PΦ. Because this
solution achieves a relative entropy of 0, which is the highest value possible, it is the unique
global optimum of this optimization.

Theorem 11.1 If T is an I-map of PΦ, then there is a unique solution to CTree-Optimize-KL.

This optimum can be found using the exact inference algorithms we developed in chapter 10.

11.1.2 The Energy Functional

The preceding discussion suggests a strategy for constructing approximations of PΦ. Instead of
searching over the space of all calibrated cluster trees, we can search over a space of “simpler”
distributions. In this search we will not find a distribution equivalent to PΦ, yet we might

such that

Your task is to find a tree decomposition such that
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Energy Functional
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find one that is reasonably close to PΦ. Moreover, as part of the design of the target set of
distributions, we can ensure that these distributions are ones in which we can perform inference
efficiently.
One problem that we will face is that the target of the optimization ID(Q||PΦ) is unwieldy for

direct optimization. The relative entropy term contains an explicit summation over all possible
instantiations of X , an operation that is infeasible in practice. However, since we know the form
of lnPΦ(ξ) from equation (11.1), we can exploit its structure to rewrite the relative entropy in a
simpler form, as shown in the following theorem.

Theorem 11.2 ID(Q||PΦ) = lnZ − F [P̃Φ, Q]
where F [P̃Φ, Q] is the energy functionalenergy functional

F [P̃Φ, Q] = IEQ

[
ln P̃ (X )

]
+ IHQ(X ) =

∑

φ∈Φ

IEQ[lnφ] + IHQ(X ). (11.3)

Proof

ID(Q||PΦ) = IEQ[lnQ(X )] − IEQ[lnPΦ(X )]. (11.4)

Using the product form of PΦ, we have that

lnPΦ(X ) =
∑

φ∈Φ

lnφ(Uφ) − lnZ.

Moreover, recall that IHQ(X ) = −IEQ[lnQ(X )]. Plugging these into equation (11.4), we get

ID(Q||PΦ) = −IHQ(X ) − IEQ




∑

φ∈Φ

lnφ(Uφ)



 + IEQ[lnZ]

= −F [P̃Φ, Q] + lnZ.

Importantly, the term lnZ does not depend on Q. Hence, minimizing the relative entropy
ID(Q||PΦ) is equivalent to maximizing the energy functional F [P̃Φ, Q].
This latter term relates to concepts from statistical physics, and it is the negative of what

is referred to in that field as the (Helmholtz) free energy. While explaining the physics-basedfree energy

motivation for this term is out of the scope of this book, we continue to use the standard
terminology of energy functional.
The energy functional contains two terms. The first, called the energy term, involves expecta-energy term

tions of the logarithms of factors in Φ. Here, each factor in Φ appears as a separate term. Thus,
if the factors that comprise Φ are small, each expectation deals with relatively few variables.
The difficulties in dealing with these expectations depends on the properties of the distribution
Q. Assuming that inference is “easy” in Q, we should be able to evaluate such expectations
relatively easily. The second term, called the entropy term, is the entropy of Q. Again, the choiceentropy term

of Q determines whether we can evaluate this term. However, we will see that, for the choices
we make, this term will also be tractable.
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where ψi is the initial potential assigned to Ci:

ψi =
∏

φ,α(φ)=i

φ,

and IECi∼βi [·] denotes expectation on the value Ci given the beliefs βi

Before we prove that the energy functional is equivalent to its factored variant, let us first
study its components. The first term is a sum of terms of the form IECi∼βi [lnψi]. Recall that ψi

is a factor (not necessarily a distribution) over the scope Ci, that is, a function from Val(Ci) to
IR+. Its logarithm is therefore a function from Val(Ci) to IR. The beliefs βi are a distribution
over Val(Ci). We can therefore compute the expectation

∑
ci

βi(ci) lnψi. The last two terms
are entropies of the beliefs associated with the clusters and sepsets in the tree. The important
benefit of this reformulation is that all the terms are local, in the sense that they refer to a
specific belief factor. As we will see, this will make our tasks much simpler.

Proposition 11.1 If Q is a set of calibrated beliefs for T , and Q is defined by equation (11.2), then

F̃ [P̃Φ, Q] = F [P̃Φ, Q].

Proof Note that lnψi =
∑
φ,α(φ)=i lnφ. Moreover, since βi(ci) = Q(ci), we conclude that

∑

i

IECi∼βi [lnψi] =
∑

φ

IECi∼Q[lnφ].

It remains to show that

IHQ(X ) =
∑

i∈VT

IHβi(Ci) −
∑

(i–j)∈ET

IHµi,j (Si,j).

This equality follows directly from equation (11.2) and theorem 10.4.

Using this form of the energy, we can now define the optimization problem. We first need
to define the space over which we are optimizing. If Q is factorized according to T , we can
represent it by a set of calibrated beliefs. Marginal consistency is a constraint on the beliefs
that requires neighboring beliefs to agree on the marginal distribution on their joint subset. It
is equivalent to requiring that the beliefs be calibrated. Thus, we pose the following constrained
optimization procedure:

CTree-Optimize:

Find Q = {βi : i ∈ VT } ∪ {µi,j : (i–j) ∈ ET }
maximizing F̃ [P̃Φ, Q]
subject to

µi,j [si,j ] =
∑

Ci−Si,j

βi(ci) (11.7)

∀(i–j) ∈ ET ,∀si,j ∈ Val(Si,j)∑

ci

βi(ci) = 1 ∀i ∈ VT (11.8)

βi(ci) ≥ 0 ∀i ∈ VT , ci ∈ Val(Ci). (11.9)
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11.1.3 Optimizing the Energy Functional

In the remainder of this chapter, we pose the problem of finding a good approximation
Q as one of maximizing the energy functional, or, equivalently, minimizing the relative
entropy. Importantly, the energy functional involves expectations in Q. As we show, by choosing
approximations Q that allow for efficient inference, we can both evaluate the energy functional
and optimize it effectively.
Moreover, since ID(Q||PΦ) ≥ 0, we have that

lnZ ≥ F [P̃Φ, Q]. (11.5)

That is, the energy functional is a lower bound on the logarithm of the partition function Z ,lower bound

for any choice of Q. Why is this fact significant? Recall that, in directed models, the partition
function Z is the probability of the evidence. Computing the partition function is often the
hardest part of inference. And so, this theorem shows that if we have a good approximation (that
is, ID(Q||PΦ) is small), then we can get a good lower-bound approximation to Z . The fact that
this approximation is a lower bound will play an important role in later chapters on learning.
In this chapter, we explore inference methods that can be viewed as strategies for optimizing

the energy functional. These kinds of methods are often referred to as variational methods.variational
method The name refers to a general strategy in which we want to solve a problem by introducing new

variational parameters that increase the degrees of freedom over which we optimize. Each choice
of these parameters gives an approximate answer. We then attempt to optimize the variational
parameters to get the best approximation. In our case, the task is to answer queries about PΦ,
and the variational parameters describe the distribution Q. In the methods we consider, we
vary these parameters to try to find a good approximation to the target query.

11.2 Exact Inference as Optimization

Before considering approximate inference methods, we illustrate the the use of a variational
approach to rederive an exact inference procedure. The concepts we introduce here will serve
in discussion of the following approximate inference methods.
As we have already seen, the optimization problem CTree-Optimize-KL has a unique solution.

We start by reformulating the optimization problem in terms of the energy functional. As we
have seen, maximizing the energy functional is equivalent to minimizing the relative entropy
between Q and PΦ.
Once we restrict attention to calibrated cluster trees, we can further simplify the objective

function. More precisely, we can rewrite the energy functional in a factored form as a sum of
terms each of which depends directly only on one of the beliefs in Q. This form reveals the
structure in the distribution, and it is therefore a much better starting point for further analysis.
As we will see, this form is also the basis for our approximations in subsequent sections.

Definition 11.1 Given a cluster tree T with a set of beliefs Q and an assignment α that maps factors in PΦ to
clusters in T , we define the factored energy functional:factored energy

functional

F̃ [P̃Φ,Q] =
∑

i∈VT

IECi∼βi [lnψi] +
∑

i∈VT

IHβi(Ci) −
∑

(i–j)∈ET

IHµi,j (Si,j), (11.6)
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11.1.3 Optimizing the Energy Functional
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this constant normalizes the clique beliefs βi. We note that if the original factors define a
distribution that sums to 1, then the solution for λi that satisfies equation (11.8) will be one
where λi = 1

2 (|Nbi|− 1), that is, the normalizing constant is 1.
This derivation proves the following result.

Theorem 11.3 A set of beliefs Q is a stationary point of CTree-Optimize if and only if there exists a set of factors
{δi→j [Si,j ] : (i–j) ∈ ET } such that

δi→j ∝
∑

Ci−Si,j

ψi




∏

k∈Nbi−{j}

δk→i



 (11.10)

and moreover, we have that

βi ∝ ψi




∏

j∈Nbi

δj→i





µi,j = δj→i · δi→j .

This theorem characterizes the solution of the optimization problem in terms of fixed-

fixed-point
equations

point equations that must hold when we find a maximal Q. These fixed-point equations
define the relationships that must hold between the different parameters involved in the
optimization problem. Most importantly, equation (11.10) defines each message in terms of
other messages, allowing an easy iterative approach to solving the fixed point equations.
These same themes appear in all the approaches we will discuss later in this chapter.

11.2.2 Inference as Optimization

The fixed-point characterization of theorem 11.3 focuses on the relationships that hold at the
maximum point (or points). However, they also hint at a way of achieving these relationships.
Intuitively, a change in Q that reduces the differences between the left-hand and right-hand
side of these equations will get us closer to a maximum point. The most direct way of reducing
such discrepancies is to apply the equations as assignments and iteratively apply equations to
the current values of the right-hand side to define a new value for the left-hand side.
More precisely, we initialize all of the δi→j ’s to 1 and then iteratively apply equation (11.10),

computing the left-hand side δi→j of each equality in terms of the right-hand side (essentially
converting each equality sign to an assignment). Clearly, a single iteration of this process does
not usually suffice to make the equalities hold; however, under certain conditions (which hold
in a clique tree), we can guarantee that this process converges to a solution satisfying all of the
equations in equation (11.10); the other equations are now easy to satisfy.
Each assignment step defined by a fixed-point equation corresponds to a message passing

step, where an outgoing message δi→j is defined in terms of incoming messages δk→i. The
fact that the process requires multiple assignments to converge corresponds to the fact that
inference requires multiple message passing steps. In this specific example, a particular order of
applying the fixed-point equation reconstructs the sum-product message passing algorithm in
cluster trees shown in algorithm 10.2. As we will see, however, when we consider other variants
of the optimization problem, the associated fixed-point equations result in new algorithms.
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marginal polytope is a computationally difficult task that is generally as hard as exact inference
over the cluster graph. To circumvent these problems, we perform our optimization over the
local consistency polytope:local consistency

polytope

Local[U ] = (11.16)




{βi : i ∈ VU}∪

{µi,j : (i–j) ∈ EU}

∣∣∣∣∣∣

µi,j [si,j ] =
∑

Ci−Si,j
βi(ci) ∀(i–j) ∈ EU ,∀si,j ∈ Val(Si,j)

1 =
∑

ci
βi(ci) ∀i ∈ VU

βi(ci) ≥ 0 ∀i ∈ VU , ci ∈ Val(Ci).






We can think of the local consistency polytope as defining a set of pseudo-marginal distri-pseudo-marginals

butions, each one over the variables in one cluster. The constraints imply that these pseudo-
marginals must be calibrated and therefore locally consistent with each other. However, they are
not necessarily marginals of a single underlying joint distribution.
Overall, we can write down an optimization problem as follows:

CGraph-Optimize:

Find Q
maximizing F̃ [P̃Φ, Q]
subject to

Q ∈ Local[U ] (11.17)

Thus, our optimization problem contains two approximations: We are using an approx-
imation, rather than an exact, energy functional; and we are optimizing it over the space
of pseudo-marginals, which is a relaxation (a superspace) of the space of all coherent
probability distributions that factorize over the cluster graph.
In section 11.1, we noted that the energy functional is a lower bound on the log-partition

function; thus, by maximizing it, we get better approximations of PΦ. Unfortunately, the
factored energy functional, which is only an approximation to the true energy functional, is not
necessarily also a lower bound. Nonetheless, it is still a reasonable strategy to maximize the
approximate energy functional, since it may lead to a good approximation of the log-partition
function.
This maximization problem directly generalizes CTree-Optimize to the case of cluster graphs.

Not surprisingly, we can derive a similar analogue to theorem 11.3, where we characterize the
stationary points of this optimization problem as solutions to a set of fixed-point equations.fixed-point

equations

Theorem 11.5
A set of beliefs Q is a stationary point of CGraph-Optimize if and only if for every edge (i–j) ∈ EU
there are auxiliary factors δi→j(Si,j) and δj→i(Sj,i) so that

δi→j ∝
∑

Ci−Si,j

ψi ·
∏

k∈Nbi−{j}

δk→i. (11.18)

and moreover, we have that

βi ∝ ψi ·
∏

j∈Nbi

δj→i

µi,j = δj→i · δi→j .
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Other Approximations

• Propagation using Approximate Messages

• Structured Variational Approximations


