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What we will cover

» Fully observed

» Partially observed

» Parameter Learning

» Structure Learning

» Maximum likelihood estimation approach

» Bayesian approach

» Bayesian network

» Markov network

We will learn 16 classes of learning algorithms



PART 1

Fully Observed Data
Parameter Learning
MLE approach
Bayesian network



Maximum Likelihood Estimation Principle

» ldea: Given candidate probabilistic models {My, ..., M;}, select a candidate M,
such that the data is most probable w.r.t. M;.

> Given dataset D = {X(™) ... X(™} and a probabilistic model Pr defined using a
set of parameters ©, find a setting of the parameters in © such that the likelihood
of generating the data, namely L(D,0) = [, Pr(X(); ©) is maximized.
Mathetmatically

" = argmaxHPr 0. 0)
i=1
Example: A Biased coin

» Variable x having two outcomes: H=head and T=tail

» Data set: Tosses of the coin. Example: 100 tosses with 60 heads and 40 tails.

» Let Pr(x = h) = 6. Candidates are models with different values of 6.

» Value of MLE, 6* if 60 out of 100 tosses are heads.



MLE scoring for the coin example
Distribution: Pr(x =h) =6 and Pr(x =t) =1-6
» Evaluation metric: How well we can predict the data?

» Example data: H,H, T, H, T
» Likelihood of data = [[; Pr(x;) = 60.6.(1 — 6).0.(1 — 0)

L(6:D)




MLE scoring for the coin example: Analytical derivation

Distribution: Pr(x =h) =60 and Pr(x =t) =1—¢.
» Log-Likelihood function

LogL(Q) — |Og(9#heads.(1 . 9)#taiI5)

= #heads. log(0) + #tails. log(1 — 0)
» MLE Aim: Find 6* such that LogL(#*) is maximum.

» Differentiate the likelihood function with respect to 6 and set the derivative to

zero. We get:
. #heads

- #heads + #tails




Extending the MLE to Bayesian networks

Demonstrate the approach using an Example
Given: X1 — Xa with parameters © = {01, 050,01} and a Dataset D
To do: Find © such that the following likelihood function is maximized:

L('D,@) — (Gfﬁv(xlzo)(l _ 91)#D(X1=1)) >
(gﬁg(xzzo,xlzm(l _ 92‘0)#9(&:1,&:0)) % (eﬁf(xfo,xlzl)(l _ 92‘1)#D(X2:1,x1:1))

(Log) Likelihood is decomposable. Each parameter is involved in just two terms.
LL('D7 @) = #D(Xl = 0) |Og(91) + #D(X1 = 1) |0g(1 — 91) +
#’D(X2 = 0,X1 = 0) |0g(92|0) + #'D(Xz = 1,X1 = 0) |0g(1 - 92|0) —+
#p(Xe = 0, X1 = 1) log(0a)1) + #p(Xo = 1, X1 = 1) log(1 — 0211)



Extending the MLE to Bayesian networks

(Log) Likelihood is decomposable. Each parameter is involved in just two terms.

LL(D,®) = #p(X1=0)log(61)+ #p(X1 = 1)log(l —61) +
#p(Xe = 0, X1 = 0) log(6a)0) + #p (X2 = 1, X1 = 0) log(1 — 0210) +
#D(Xz = 0,X1 = 1) |0g(92|1) + #D(Xz = 1,X1 = 1) |Og(1 — 92|1)

Taking derivatives and equating them to zero, we get:

6, — #p(X1 = 0)
#o(X1 =0) + #p(X1 =1)
02‘0 _ #p(X2 =0,X1 =0) _ #p(X2 =0,X1 =0)
#D(XQZO,Xl :0)—|—#D(X2 :1,X1 :0) #D(X1:0)
ba1 #p(Xo=0,X1 =1) . #p(X2=0,X1 =1)

T H(e=0X =)+ #00e=1X=1)  #o(X=1)



Extending the MLE principle to a Bayesian network

Given a Bayesian network:
» Given (fully observed) data D, MLE solution is:

0* _ #D(Xiv pa(Xi))
$lpabi) = #p(pa(x)))
where #p(x;, pa(x;)) is the number of times the tuple (x;, pa(x;)) appears in D.
#p(pa(x;)) is the number of times the tuple pa(x;) appears in D.
> #p(xi, pa(x;)) is called the sufficient statistic.

» Any function of the data is called a statistic. A sufficient statistic is a statistic
that contains all of the information in the data set that is needed for a particular
estimation task.



MLE Learning example: Bayesian network
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MLE Learning example: Bayesian network

~ Health Aware ™,
(H)

/Smokes\u. (/ Exerﬂses ™
O S R

We have the following parameter estimates:

3/4

o> > I

a5

1/4

H s o, H E a8,
h 1/6 h e 11/12
h 5 5/6 h & 1/12
h s 1/4 h e 1/2
h 5 3/4 h & 1/2



MLE Learning: Bayesian network (fully observable case)

Impact of data set size
» ML estimate will have different values depending upon the size of the data set
» The variance of the estimate will decrease as the data set increases in size.

» Estimating probabilities that are quite small (or quite large) is hard because a
large number of samples are required to reach a reliable estimate.

Other Properties
> Likelihood Function is unimodal. Namely, the ML estimate is unique.

» ML estimate can be computed in closed form. Computational Complexity is linear
in the number of variables, parameters and the number of examples.



PART 2

Partially Observed Data
Parameter Learning
MLE approach
Bayesian network

» Examples: missing data, hidden variables, some variables are just not observable
» Gradient Ascent

» Expectation maximization (The EM algorithm)



Partially Observed Data (POD)

» Missing data, hidden variables
» H T ,H?T,7 ...
» Why is the data missing?

» Randomly missing
» Deliberately missing



Why is parameter learning in presence of POD challenging?

Likelihood function for POD:

m

L0,%) = 3 Prx,y)

J=1 ygx0)
Compare with Likelihood function for FOD:

m

Lo, x)=1] F;r(x(j))
j=1

Likelihood function for POD:
» is not unimodal.

> is not decomposable because of the sum over Y.

As a result, there is no closed form solution.



Why is parameter learning in presence of POD challenging?

) g8
g s
~
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POD case: FOD case:
Each point in the sum yields a unimodal distribution. Unimodal distribution

When combined, we get a multi-modal distribution.
» The optimization problem, a.k.a. maximizing our objective, the likelihood of the
data is hard. We need an iterative approach.



Approach 1: The Expectation Maximization (EM) Algorithm

» Start with random parameters

» Repeat until convergence
1. Complete the incomplete data using current parameters.
2. Update the parameters based on the completed data

STEP 1: computes expected sufficient statistics (E-step)
STEP 2: maximizes the likelihood (M-step)



The Expectation Maximization Algorithm: Example (E-step)

e e 0p = :3 E-step details:

ec\éb = .83 » STEP 1: Complete each partially observed
e Ocap = .09 example in all possible ways
Ocjap =6 » STEP 2: Compute how likely each completed
Ocjap = -2 example is according to the current parameters.
e Oaje = -1 Data set is now bigger and weighted
Qd‘c - 8
» (a,?,7,d) corresponds to four weighted examples
> (a,b,c,d), weight = .0492
> (a,b,¢,d), weight = .8852
> (a, b, c,d), weight = .0164
» (a,b,c,d), weight = .0492



The Expectation Maximization Algorithm: Example (E-step)

0,=.3
0pb=.9
55 = 83
Ocjsp = -09
Hc\a,t_) =.6
gc\a,b =.2
Ogz = -1
ed‘c — 8

Let us say we have just two examples in our dataset:
(a,?,?,c{) and (7, b,c,d).
(a,7,7,d) corresponds to four weighted examples
> (a, b, c,d), weight = .0492
> (a,b,C,d), weight = .8852
> (a,b,c,d), weight = .0164
> (a,b,c,d), weight = .0492
(7, b, c,d) corresponds to two weighted examples
» (a,b,c,d), weight = 0.4878
» (3,b,c,d), weight = 0.5122



The Expectation Maximization Algorithm: Example (M-step)

M-step: Update the parameters based on the

e e Z" i 3 bigger and weighted dataset.
b=~ > (a, b, c,d), weight = .0492
055 = -83
Ocjsp = -09 > (a, b, E,d), weight = .8852
e Ocjap = -6 > (a, b,c,d), weight = .0164
Ociap = -2 > (a, b, ¢, d), weight = .0492
e Zd‘a B 1 » (a,b,c,d), weight = 0.4878
dle > (3, b, c,d), weight = 0.5122

Updated Parameters:

> 0, = 0.0492+0.8852+4-0.0164+-0.0492+0.4878 _ L 4878 — 0.7439
" 0.0492-+0.8852+0.0164+0.0492+0.4878+-0.5122 -




The EM Algorithm: Improving Time and Space Complexity

» Time complexity of the algorithm as presented is impractical when large number
of variables are missing. Given N incomplete examples, each having p missing
values, the Time complexity is Q(N x 2P).

> Instead, we could use the following expected sufficient statistics to compute the
parameter P(x|u) = 0, given a dataset {0 ... oM}

0. sum-weight(x,u) ZJN:;l Pr(x,ulo"))
Xu = sum-weight(u) > Pr(ujo())

» Recall that in the unweighted case, the counts over data points were the sufficient
statistics. Here, the sum-weights are the sufficient statistics.

> In other words, for each example indexed by j, we only need to compute
Pr(x,u|oY)) for each parameter Oxju using an inference algorithm. Complexity of
the new scheme O(N x Inf) where Inf is the complexity of the inference scheme.



The EM Algorithm

Procedure Compute-ESS (
G, /I Bayesian network structure over X1,..., Xy
0, /I Set of parameters for G
D /I Partially observed data set

)
1 /I Initialize data structures
2 for cachi=1....,n
3 for each =;, u; € Val(Xi,Pag’Q)
4 A\i[[LLl’uq] — 0
5 Il Collect probabilities from all instances
6 for eachm =1... M
7 Run inference on (G. 8) using evidence o[m]
8 for eachi=1,....n
9 for each x5, u; € Val(X;, Pag’;i)
10 Mz, u;] = Mz, w;] + P(x;,u; | o[m])
1 return {M[r;,w;] Vi =1,... . n Vo, u; € Va.l(Xi,Pa?{i)}



The EM Algorithm

Procedure Expectation-Maximization (

G, Il Bayesian network structure over X1, ...,
BO, /I Initial set of parameters for G
D Il Partially observed data set
)
1 for each # =0,1..., until convergence
2 /I E-step
3 {M,[x;,u;]} — Compute-ESS(G, 6", D)
4 /I M-step
5 foreachi=1,....n
6 for each w;, u; € Val(X;, Pa%}i)
7 eff\h b Mmf‘z[j [ZL?]Z]
8 return 6"



EM:

Properties and Summary

» Each iteration of EM (the E plus M step) can only increase the likelihood and
never decrease it. Therefore, EM will always converge to a local maxima.

» EM may converge to different parameters, with different likelihoods, depending on
the initial estimates #(%) that it starts with.

» Each iteration of the EM algorithm will have to perform inference on a Bayesian
network. The sufficient statistics are the posterior probabilities of all the
parameters.

» Since Inference will be exponential in general, one often has to use approximate
inference algorithms such as IJGP or sampling algorithms in practice.
Convergence guarantees do not exist when approximate algorithms are used.



Gradient Ascent: Algorithm

» A generic optimization algorithm

» Operates by moving the parameters in the direction of the gradient.

Algorithm A.10 Simple gradient ascent algorithm
Procedure Gradient-Ascent ( _
0, J/ nitial starting point Lo 0.5 | 05 Lo

fobj» /I Function to be optimized 1]

& 1/ Convergence threshold

) i

1 te— 1 ,

2 do 'f

3 0" — 0"+ nV fur;(6") 4| \
4 te t+1 ;
5 while [|6" — 0" || > § / 5| \
6 return (0) / |

» Remember: Derivative is the slope of the line that is tangent to the function

» Question: What if the learning rate is small? (Slow convergence) or large? (Fail
to converge; even diverge)



Gradient Ascent: Example

0,=.3

0p =9
055 = 83
Oci5.p = 09
9c|a,l_) =.6
9c|a,b 2

Data instance: (a,?,?,d)
Gradient w.r.t. 64z =7 Gradient w.r.t.
0‘;‘6 =7 Gradient w.r.t. 6y =7 Gradient



Gradient Ascent: Gradient of Log Likelihood

» How to compute the gradient?

For a data instance:
dPr(e) 1

OPr(x|u)  Pr(x|u)

Pr(x,u,0)

For a data-set:

OLL(0,X) ™
Pr( )
9 Pr(x|u) x| ; oyl



Gradient Ascent: Algorithm for computing the gradient

Algorithm 19.1 Computing the gradient in a network with table-CPDs
Procedure Compute-Gradient |

G, I Bayesian network structure over X1,.... Xn
6, I Set of parameters for &
D I Partially ohserved data set

]
1 N Initialize data structures
2 foreachi=1,..., n
3 for each z;. u; £ Val(X,. Pa?‘-‘]
4 Mziuw]— 0
5 I/l Collect probabilities from all instances
& foreachm=1...0M
7 Run clique tree calibration on (&, #) using evidence o]m]|
8 foreachi=1.....n
9 for each x;, u; € Val(X;, Pai‘_)
10 J.}::,-.u,: — .-‘I_J’:J?,-.u‘-; + Pz, u; | o[m])
u /I Compute components of the gradient vector
12 foreachi=1,..., n
13 for each z;, u; € Val(X,. Pa?\-‘]
14 Bajuy — Mz i

LEA

15 return {d; o, :¥Vi=1,..., 0¥z, u;) € Val(X;, Pa?\-‘_}}




