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LEARNING: Lecture 3



What we will cover in the next two lectures?

I Parameter Learning in Bayesian networks (FOD and POD)
I Bayesian Approach

I Structure Learning in Bayesian Networks (FOD and POD)
I Maximum Likelihood and Bayesian Approach



Bayesian Learning

I Remember our biased coin example. What is the MLE of P(x = h) = θ when:
I Coin tossed 10 times and we get 6 heads
I Coin tossed 100 times and we get 53 heads
I Coin tossed 1000 times and we get 520 heads

I Which answer will you believe?

I Relying on data may be problematic especially when you have access to only a few
examples.

I A better strategy for learning: Combine data with prior knowledge.
I Believe prior knowledge especially when you feel strongly about the knowledge when

you don’t have enough data.

I Bayesian Approach: A formal approach that implements this strategy



Bayes Theorem and Bayesian Statistics

Dataset D and Parameter θ

I MLE: Find a value for θ such that the likelihood of the data is maximized.
Namely maxθ P(D|θ)

I Bayesian approach: Given a prior distribution P(θ) on θ, find a posterior
distribution over θ given the data. Namely, find P(θ|D).

I How to find the Posterior? (Remember: Bayes rule)

P(θ|D) =
P(D|θ)P(θ)

P(D)
∝ P(D|θ)P(θ)

I In other words, Posterior ∝ Likelihood × Prior

I Maximum-a-Posteriori Estimate (MAP): Find a value for θ such that the
posterior is maximized. Namely maxθ P(θ|D). If P(θ) is uniform, MAP=MLE.
Thus, MAP generalizes MLE.



Bayesian Learning: Point Estimation Example (Discrete Priors)

What is the MLE of P(x = h) = θ:

I 6 heads out of 10. MLE = 6/10=0.6

I 53 heads out of 100. MLE = 53/100=0.53

I 520 heads out of 1000. MLE=520/1000=0.52

Prior Knowledge:
Domain of θ: {0.49, 0.52, 0.55}.
The distribution P(θ):(0.45, 0.39, 0.16).
What is the MAP estimate of θ:

I 6 heads out of 10. MAP solution = 0.49.

I 53 heads out of 100. MAP solution = 0.52

I 520 heads out of 1000. MAP solution = 0.52

Posterior calculations:
Posterior ∝ Likelihood × Prior
Dataset 1: 6 heads out of 10:
P(θ = 0.49|Data) ∝ 0.496(1− 0.49)4 × 0.45
P(θ = 0.52|Data) ∝ 0.526(1− 0.52)4 × 0.39
P(θ = 0.55|Data) ∝ 0.556(1− 0.55)4 × 0.16
Dataset 2: 53 heads out of 100:
P(θ = 0.49|Data) ∝ 0.4953(1− 0.49)47 × 0.45
P(θ = 0.52|Data) ∝ 0.5253(1− 0.52)47 × 0.39
P(θ = 0.55|Data) ∝ 0.5553(1− 0.55)47 × 0.16
Dataset 3: 520 heads out of 1000:
P(θ = 0.49|Data) ∝ 0.49520(1− 0.49)480 × 0.45
P(θ = 0.52|Data) ∝ 0.52520(1− 0.52)480 × 0.39

P(θ = 0.55|Data) ∝ 0.55520(1− 0.55)480 × 0.16



Bayesian Learning: Point Estimation Example (Continuous Priors)

I Likelihood Function is Binomial:
θ#heads(1− θ)#tails .

I Use a conjugate prior. P(θ) is
given by the Beta Distribution.
Given two real numbers α > 0
and β > 0, the Beta PDF is
proportional to θα−1(1− θ)β−1.
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I Why Conjugate Prior1? So that the posterior which is a product of the
likelihood and the prior is also a Beta Distribution.

I Posterior = Likelihood × Prior = Beta(α + #heads, β + #tails)

I MAP estimate = α+#heads−1
α+#heads+β+#tails−2 . Compare with MLE = #heads

#heads+#tails

1when the posterior distribution is in the same family as the prior



Bayesian Learning: Some Terms

I The marginal likelihood is the distribution of the Data marginalized over the

parameter(s), i.e. P(D) =

∫
P(D | θ)P(θ) dθ .

I The posterior predictive distribution is the distribution of a new data point,

marginalized over the posterior: P(x | D) =

∫
P(x | θ)P(θ | D) dθ

I The prior predictive distribution is the distribution of a new data point,

marginalized over the posterior: P(x) =

∫
P(x | θ)P(θ) dθ

I Conjugate Priors for parameter of binary variables: Beta Distribution.

I Conjugate Priors for parameter of variables having more than two values:
Dirichlet distribution.



Bayesian Learning: From One Parameter to Bayesian Networks (FOD)
I Assume that each parameter has a separate prior and the priors on the parameters

are independent. Namely, given a set of parameters Θ = {θ1, . . . , θm}, we have:

P(Θ) =
m∏
i=1

P(θi )

Under this assumption, each parameter can be estimated independently. For example
given the Prior Distribution P(θx |u) = Beta(αx |u, βx |u) for a parameter θx |u

I Posterior of θx |u:

P(θx |u|D) = Beta(#[x ,u] + αx |u,#[x̄ ,u] + βx |u)

I MAP Estimate:

θMAP
x |u =

#[x ,u] + αx |u − 1

#[x ,u] + αx |u + #[x̄ ,u] + βx |u − 2

I Compare to MLE:

θML
x |u =

#[x ,u]

#[x ,u] + #[x̄ ,u]



Bayesian Approach for Parameter Learning in Bayesian Networks: POD

I Similar to the Likelihood, Posterior will generally be highly complex and
multi-modal in the POD case.

I Bayesian inference would require a complex integration procedure, which generally
has no analytic solution.

I However, if we use MAP estimation, then we can use EM and Gradient Ascent
with minor modifications

max
Θ

logP(Θ|D) = max
Θ

log{P(D|Θ)P(Θ)} = max
Θ
{logP(D|Θ) + log(P(Θ))}

I Perform Full Bayesian Inference via Approximate Inference techniques such as
sampling and variational inference.



Bayesian Approach: Summary

I Put a prior on the parameters. Namely, set the parameters by leveraging
prior/background knowledge.

I Use the data to improve the prior yielding a posterior.

I As the number of examples tend to infinity, the effect of the prior disappears.
However, for a finite data size, the learned model depends on the prior.

I Yields a distribution on the parameters instead of a value.

I Generally harder than MLE. Use MAP Estimates to approximate full Bayesian
Inference.



Some Jokes: Bayesians vs Frequentists

I A Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a
donkey, strongly believes he has seen a mule.

I A Bayesian and a Frequentist were to be executed. The judge asked them what
were their last wishes. The Bayesian replied that he would like to give the
Frequentist one more lecture. The judge granted the Bayesian’s wish and then
turned to the Frequentist for his last wish. The Frequentist quickly responded
that he wished to hear the lecture again and again and again and again



Next Up

I Structure Learning in Bayesian Networks
I FOD vs POD
I MLE vs Bayesian Approach

Some of you asked me about too many mentions of “Bayesian.”

I The word “Bayesian Inference” comes from Statistics because we use the Bayes
rule to estimate the posterior.

I In my opinion, “Bayesian networks” is a misnomer. As we saw, it uses the chain
rule and conditional independence. We should call them sparse chain networks or
suggest a better name!



Learning the Structure of Bayesian Networks given Data: FOD and MLE

I Goal is to find a maximum likelihood structure (and parameters)

I Goal is problematic: a complete DAG is provably the best structure.

Theorem
If a DAG G ∗ is the result of adding edges to G, then LL(G ∗|D) ≥ LL(G |D).

I Overfitting/Underfitting, Bias versus Variance tradeoff

Underfitting Overfitting
High Bias/Low Variance Low Bias/High Variance

Small # of parents Large # of parents
Sparse DAG Dense DAG

I Prefer Sparser structures (simpler models) even if the model is unlikely to
capture the data generating distribution accurately. Sparse structures are
likely to yield better generalization in limited data settings.



Learning the Structure of Bayesian Networks given Data:
Solving the Overfitting/Underfitting Problems

I Bias the model: Put Constraints on the type of Bayesian network that is induced
by the learning algorithm

I Treewidth is Bounded by a Constant.
I Use a scoring function which penalizes models having large number of edges or

parents (soft, sparsity constraints)

I Use Latent Variables to eliminate underfitting issues or learn diverse models
(nowadays called deep architectures)

I Start with the most Biased Model, reduce the bias gradually and use a validation
set (or cross validation) to choose a model



Learning Bounded Treewidth Models

I Good news: Models with treewidth 1 can be learned optimally in polynomial time!
Recall that such Bayesian networks are called Singly-connected Bayesian networks
and their primal graph is a tree.

I Bad news: Models having treewidth > 1 are NP-hard to learn.



Naive Approach to Learning Optimal Tree Bayesian Networks for FOD

Algorithm

I BestLL = −∞;

I BestTree is initialized to NULL.

I Generate all possible Singly-Connected Tree structures and store them in a set T
I For each tree T in T do

I Learn parameters of T (recall: closed form solution for the FOD case)
I If LL(T ) > Best LL Then

I BestLL = LL(T )
I BestTree = T (with its parameters)

I Return BestTree.



Chow-Liu Algorithm: Learning optimal trees for FOD

I Chow and Liu (1968) proved that for trees (does not apply for graphs):

argmaxGLL(G |D) = argmaxG
∑
U→X

MI (X ,U)

Mutual Information

MI (X ,U) =
∑
x ,u

Pr(x , u) log

[
Pr(x , u)

Pr(x) Pr(u)

]

I measures the dependence between the variables.
I Higher the value, higher the dependence.
I is zero only when X and U are independent

I What this means? Given MI (X ,U) for all pairs (X ,U), find a spanning tree
having the maximum

∑
U→X MI (X ,U)



Learning Bounded Treewidth Bayesian Networks

I NP-hard Task. No efficient algorithm exists.

I Best known approach by Elidan and Gould, JMLR 2008.

I In practice, adding Latent Variables with Trees works best.



Chow-Liu Algorithm: Learning optimal trees given complete data

Log likelihood = -12.1

I Construct the complete graph with
edges weighted by mutual information

I Find a maximal spanning tree (e.g.,
using Kruskal’s algorithm)

I Convert the tree to a rooted tree
(think: root at the top) and orient the
arcs from the top to bottom.

I Learn the parameters of the tree
Bayesian network using the FOD
closed form solution.

I Complexity: O(n2M + n2 log n)



Chow-Liu Trees with Latent Variables

I Mixtures of Tree Bayesian networks. Add one latent variable with k values

P(X) =
k∑

i=1

piQi (X; Θi )

where p1, . . . , pk are called mixture weights; pi ≥ 0 and
∑k

i=1 pi = 1; and
Qi (X; Θi ) is a tree Bayesian Network.

I How to Learn these networks? The EM Algorithm
I Begin with a random model (randomly choose trees and parameters for each tree as

well as randomly choose pi ’s)
I Repeat until convergence

I Complete the data using current model
I Estimate the parameters using the completed data

I More sophisticated deep network of latent variables (Cutset networks, Sum
Product Networks, Probabilistic Sentential Decision Diagrams)



Score-Based Methods

I Using Likelihood is problematic! Therefore, add a penalty term that will prefer
simpler models over complicated, highly connected ones.

I Score of model = LL(G |D) + Penalty
I Penalty = −φ(M)× Dim(G )

I φ(M) is a function of the number of data points
I Dim(G ) is the number of parameters in the Bayesian network

I Akaike Information criteria: φ(M) = constant

I Minimum description length (Bayesian information criteria): φ(M) = log2(M)
2



Likelihood vs MDL scores

Likelihoods from left to right: -12.1 and -10.1
MDL or BIC Penalty = − log2(5)

2 (7) = −8.1

MDL or BIC Penalty = − log2(5)
2 (9) = −10.4

I Which one will you prefer if you use just
likelihood?

I Which one will you prefer if you use MDL?



Searching for network structure that optimizes a given score

I Expensive because we have to consider a large number of network structures

I Greedy algorithms, local search style algorithms

I Score should be decomposable over the families for fast search

Score(G |D) =
∑
XU

Score(X ,U|D)



Local search

Score after deleting A→ B is

Current Score − Score(B,A) + Score(B)

Remove changes one
family
Add changes one family
Reverse changes two
families



Constraining the Search Space

Similar to the algorithm for generating I-maps

I Assume a total ordering of variables

I For each variable find a set of previous variables Ui that maximize the
corresponding local score Score(Xi ,Ui |D).

Problems

I Everything depends upon the ordering used



Greedy Search: The K3 algorithm

For X5

I X3 yields the best score

I X3,X2 yields the best score

I No extension of X3,X2 improves the
score. Therefore Stop.

For each variable

I Start with empty set of parents

I Successively add variables (as parents) until the score does not increase. At each
step, add the variable that increases the score the most.



Branch and Bound Search, Structural EM etc.

I Branch and Bound search. Complicated. Seldom used in practice. Homework,
read chapter 17 from the book by Adnan Darwiche.

I Learning Bayesian Networks in the Presence of POD (Structural EM: Not
covered). Read chapter 19 from the book by Koller & Friedman.



Summary

I Why Structure Learning using LL score is problematic?

I Learning Bounded Treewidth Networks: The Chow-Liu algorithm

I Using Latent variables and Mixtures

I Score-Based Methods: Greedy and Local Search methods.


