Exploiting Logical Structure in Probabilistic Inference

Vibhav Gogate

RECAP

- ► Graph-based Exact methods.
- Bucket elimination and Junction tree elimination
 - Convert the primal graph to a tree-decomposition
 - Perform message passing over the tree-decomposition
- w-cutset conditioning
 - Remove variables until treewidth is bounded by w
 - Conditioning on the removed variables and Bucket elimination on each assignment.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

- Space: $O(\exp(w))$. Time: $O(\exp(w + k))$. What is k?
- AND/OR search space (Treewidth: w*)
 - ► Space: O(n) vs. O(exp(w*))
 - Time: $O(\exp(w^*))$ vs. $O(\exp(w^*\log(n)))$

Today: Logic-based AND/OR search

- Can yield substantial reduction in complexity
 - Use logical propagation and pruning techniques
- Exploit context-specific independence (CSI) and determinism
 - CSI: Identical values in a factor (a CPT or a potential)

Determinism: Zeros in a factor

Graphical models as Weighted Logic

Α	В	Value	Formula	Weight
0	0	0	$ eg A \land eg B$	0
0	1	0.27	$ eg A \wedge B$	0.27
1	0	0.56	$A \wedge eg B$	0.56
1	1	0.1	$A \wedge B$	0.1

- A graphical model is a set of mutually exclusive and exhaustive weighted formulas (F_i, w_i)
- The distribution it represents is given by

$$\Pr(\mathbf{x}) = \frac{1}{Z} \prod_{i} \phi_i(\mathbf{x})$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

where $\phi_i(\mathbf{x}) = w_i$ if \mathbf{x} satisfies F_i and 1 otherwise.

Logic-based dynamic AND/OR Search: Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

- $\blacktriangleright (A \lor B \lor C \lor D \lor E, w_1)$
- $\blacktriangleright (A \lor B \lor C \lor F \lor G, w_2)$
- $(D \lor E \lor H, w_3)$
- $(F \lor G \lor J, w_4)$

What If I condition on A?

Logic-based dynamic AND/OR Search: Example

- $\blacktriangleright (A \lor B \lor C \lor D \lor E, w_1)$
- $(A \lor B \lor C \lor F \lor G, w_2)$
- $(D \lor E \lor H, w_3)$
- $(F \lor G \lor J, w_4)$

For A = True

- ► $2^2 \times (w_1 \times w_2)$
- $(D \lor E \lor H, w_3)$
- $(F \lor G \lor J, w_4)$

The two formulas are independent

For A = False

- $\blacktriangleright (B \lor C \lor D \lor E, w_1)$
- $(B \lor C \lor F \lor G, w_2)$
- $(D \lor E \lor H, w_3)$
- $(F \lor G \lor J, w_4)$

Can further condition on B

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Logical Conditioning and Decomposition Algorithm

Algorithm LCD($\mathcal{F} = \{F_i, w_i\}$)

- If \mathcal{F} is empty **Return** 1
- If F can be decomposed into k subsets such that no two subsets share a variable then Return ∏^k_{i=1} LCD(F_i)
- Select a variable X_i to condition on.
- ► v = 0
- For $x_i \in \{ True, False \}$ do
 - w = Product of weights of all clauses in \mathcal{F} that evaluate to true given $X_i = x_i$.
 - $\mathcal{F}' = \text{Remove all clauses in } \mathcal{F} \text{ that evaluate to true or false given } X_i = x_i$.
 - Let p be the number of variables that appear in \mathcal{F} but not in \mathcal{F}' . Multiply w with 2^p

- $v = v + w \times LCD(\mathcal{F}')$
- **Return** v

Logical Conditioning and Decomposition Algorithm

Improvements

- Heuristics for Conditioning
- Condition on Formulas instead of variables!
 - ▶ (Gogate and Domingos, UAI 2010)
- Caching
- Complexity
 - Same as AND/OR search (worst case)
 - Much smaller than AND/OR search (average case) if the problem has local structure (i.e., CSI and determinism)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

- Logical Elimination?
- Logical Elimination and Conditioning?