Exploiting Logical Structure in Probabilistic Inference

Vibhav Gogate

THE UNIVERSITY OF TEXAS AT DALLAS
Erik Jonsson School of Engineering and Computer Science

RECAP

- Graph-based Exact methods.
- Bucket elimination and Junction tree elimination
- Convert the primal graph to a tree-decomposition
- Perform message passing over the tree-decomposition
- w-cutset conditioning
- Remove variables until treewidth is bounded by w
- Conditioning on the removed variables and Bucket elimination on each assignment.
- Space: $O(\exp (w))$. Time: $O(\exp (w+k))$. What is k ?
- AND/OR search space (Treewidth: w^{*})
- Space: $O(n)$ vs. $O\left(\exp \left(w^{*}\right)\right)$
- Time: $O\left(\exp \left(w^{*}\right)\right)$ vs. $O\left(\exp \left(w^{*} \log (n)\right)\right)$

Today: Logic-based AND/OR search

- Can yield substantial reduction in complexity
- Use logical propagation and pruning techniques
- Exploit context-specific independence (CSI) and determinism
- CSI: Identical values in a factor (a CPT or a potential)
- Determinism: Zeros in a factor

Graphical models as Weighted Logic

A	\mathbf{B}	Value	Formula	Weight
0	0	0	$\neg A \wedge \neg B$	0
0	1	0.27	$\neg A \wedge B$	0.27
1	0	0.56	$A \wedge \neg B$	0.56
1	1	0.1	$A \wedge B$	0.1

- A graphical model is a set of mutually exclusive and exhaustive weighted formulas $\left(F_{i}, w_{i}\right)$
- The distribution it represents is given by

$$
\operatorname{Pr}(\mathbf{x})=\frac{1}{Z} \prod_{i} \phi_{i}(\mathbf{x})
$$

where $\phi_{i}(\mathbf{x})=w_{i}$ if \mathbf{x} satisfies F_{i} and 1 otherwise.

Logic-based dynamic AND/OR Search: Example

- $\left(A \vee B \vee C \vee D \vee E, w_{1}\right)$
- ($\left.A \vee B \vee C \vee F \vee G, w_{2}\right)$
- ($D \vee E \vee H, w_{3}$)
- ($\left.F \vee G \vee J, w_{4}\right)$

What If I condition on A?

Logic-based dynamic AND/OR Search: Example

- ($\left.A \vee B \vee C \vee D \vee E, w_{1}\right)$
- ($\left.A \vee B \vee C \vee F \vee G, w_{2}\right)$
- ($\left.D \vee E \vee H, w_{3}\right)$
- ($\left.F \vee G \vee J, w_{4}\right)$

For $\mathrm{A}=$ True

- $2^{2} \times\left(w_{1} \times w_{2}\right)$
- $\left(D \vee E \vee H, w_{3}\right)$
- $\left(F \vee G \vee J, w_{4}\right)$

The two formulas are independent

$$
\begin{aligned}
\text { For } A=\text { False } \\
\text { - }\left(B \vee C \vee D \vee E, w_{1}\right) \\
\text { - }\left(B \vee C \vee F \vee G, w_{2}\right) \\
\text { - }\left(D \vee E \vee H, w_{3}\right) \\
\text { - }\left(F \vee G \vee J, w_{4}\right) \\
\text { Can further condition on } B
\end{aligned}
$$

Logical Conditioning and Decomposition Algorithm

Algorithm $\operatorname{LCD}\left(\mathcal{F}=\left\{F_{i}, w_{i}\right\}\right)$

- If \mathcal{F} is empty Return 1
- If \mathcal{F} can be decomposed into k subsets such that no two subsets share a variable then Return $\prod_{i=1}^{k} L C D\left(\mathcal{F}_{i}\right)$
- Select a variable X_{i} to condition on.
- $v=0$
- For $x_{i} \in\{$ True, False $\}$ do
- $w=$ Product of weights of all clauses in \mathcal{F} that evaluate to true given $X_{i}=x_{i}$.
- $\mathcal{F}^{\prime}=$ Remove all clauses in \mathcal{F} that evaluate to true or false given $X_{i}=x_{i}$.
- Let p be the number of variables that appear in \mathcal{F} but not in \mathcal{F}^{\prime}. Multiply w with 2^{p}
- $v=v+w \times \operatorname{LCD}\left(\mathcal{F}^{\prime}\right)$
- Return v

Logical Conditioning and Decomposition Algorithm

- Improvements
- Heuristics for Conditioning
- Condition on Formulas instead of variables!
- (Gogate and Domingos, UAI 2010)
- Caching
- Complexity
- Same as AND/OR search (worst case)
- Much smaller than AND/OR search (average case) if the problem has local structure (i.e., CSI and determinism)
- Logical Elimination?
- Logical Elimination and Conditioning?

