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What we will cover?

- MPE= most probable explanation
- The tuple with the highest probability in the joint distribution Pr(X|e)

- MAP=maximum a posteriori

- Given a subset of variables Y, the tuple with the highest probability
in the distribution P(Y|e)

- Exact Algorithms

- Variable elimination
- DFS search
- Branch and Bound Search

- Approximations

- Upper bounds
- Local search < D>>
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Running Example: Cheating in UTD CS

Population

-

S C T> 0t2|c,s T1 T> A ealtl,tg
male yes +ve .80 +ve +ve yes 1
male yes —ve .20 +ve +ve no 0
male no +ve .20 +ve —ve yes 0
male no —ve .80 +ve —ve no 1
female yes +ve .95 —ve +ve yes 0
female yes —ve .05 —ve +ve no 1
female no +ve .05 —ve —ve yes 1
female no —ve .95 —ve —ve no 0
S C | Ocls C T1 | 9t1 e
S | 6s male yes .05 yes  ve .80
male .55 male no .95 yes —ve .20
female .45 female yes .01 no +ve .20
female no .99 no —ve .80

Sex (S), Cheating (C), Tests (T1 and T2) and Agreement (A)
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Most likely instantiations

- MPE = Most likely assignment to all non-evidence
variables (given evidence)

- MAP = Most likely assignment to a subset of non-
evidence variables (given evidence)
- A person takes a test and the test administrator says
- The two tests agree (A = true)

- Query: Most likely instantiation of Sex and Cheating
given evidence A = true

- Is this a MAP or an MPE problem?

- Answer: Sex=male and Cheating=no. \
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MPE vs MAP: Properties

- MPE is a special case of MAP

- Hardness
- Computing MPE is NP-hard (Max-product problem)
- Computing MAP is NPPP-hard (Max-sum-product problem believed to
be much harder than NP-hard)
- MPE projected on to the MAP variables does not yield the
correct answer.
- MPE given A=yes
- S=female, C=no, T =negative and T,=negative
- MPE projected on MAP variables S and C
- S=female, C=no is incorrect!
- MAP given A=yes
- S=male, C=no is correct!
- We will distinguish between
- MPE and MAP probabilities
- MPE and MAP instantiations <
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Bucket Elimination for MPE

- Same schematic algorithm as before
- Replace “elimination operator” by “maximization operator”

S ___C__|value

male  yes 0.05 yes 0.05
male no 0.95 = |
MAX no 0.99
S female yes 0.01
female no 0.99

Collect all instantiations that agree on all other variables
except S and return the maximum value among them.
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Bucket elimination: order (S, C, T1,T2) ~ "

v(C,T,)  MAX; ES)CP(C, S)$(C,S, Tzi
W(T, T) MAXCE ¢ (C, Ty) l/)(C,'Ij

Y(T>) MAXrq E &(Ty, T2) Y(T1,T2)

MAX s E Y(T>) j

~ -

Evidence: A=true MPE probability

Factors: ¢(S)
¢(C,S)
(I)(C, S' TZ)
(I)(C' Tl)
(I)(Tli TZ)
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Bucket elimination: Recovering MPE tuple
SetT, = —ve,C = no
max (S tuple) =? ES)CI)(C» S)$(C,S, Tzﬂ
S = female
max(C tuple) =? E ¢ (C, Ty lP(C,E
=no
SetT, = —ve
max(T 1 tuple) =? E ¢ (T, T2) l/’(Tl'@
E Y(T2) j

SetT, =—ve, T, =

Factors: ¢(S)
$(C,S)
(I)(C, S' TZ)
(I)(C' Tl)
¢ (T, T2)

max(T , tuple) =?
= —ve

‘-V

Evidence: A=true MPE probability
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Bucket elimination: MPE vs PE (Z)

- Maximization vs summation
- Complexity: Same

- Time and Space exponential in the width (w) of the given order:
O(n exp(w+1)) timewise and O(n exp(w)) spacewise.
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OR search for MPE <)
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- At leaf nodes compute probabilities by taking product of
factors

- Select the path with the highest leaf probability
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Branch and Bound Search )
)

male female

C

no yes

. 00342
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X e X
0209 004455
TZ T2
A X N\
3344 33858

- Let us say we have a method to upper bound MPE at each node
- Prune nodes which have smaller upper bound than the current MPE solution

- Amount of pruning depends on the quality of the upper bound. Lower the upper
bound (i.e., better the upper bound), better the pruning.



Mini-Bucket Approximation: Idea ])

Split a bucket into mini-buckets => bound complexity

bucket (Y) =
{\¢1l nuny ¢rl ¢I‘+1l nuny ¢n/}

/V(m)\

{¢ll nEny ¢r {¢r+1l nnny ¢;1n }
h, = MAX, (1_[ &, ) h, = MAX, ( 1_[ qbl-)
i=r+1

g < hyxh,
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Mini Bucket elimination: (max-size=3 vars)

I

W(S, T, (S, TMAX | ¢(S)P(C, S)¢(C,TE $(C,S, T2)

Y(Ty, T MAX E Y(S, T, P(S,Tr) j
l/)(Tz) MAXTl E(I) (Tli TZ) l/)(Tlrﬁ
(I)(C, S, TZ)
(I)(Cr Tl)

¢(Ty, Ty) MAX E Y(T>) j
;

Evidence: A=true

Factors: (S)
$(C,S)

Upper bound on the MPE probability
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Mini-bucket (I-bounds)

13k

- A parameter “i” which controls the size of (number of
variables in) each mini-bucket

- Algorithm exponential in “" : O(n exp(i))
- Example

- 1=2, quadratic

- =3, cubed

- efc

- Higher the i-bound, better the upper bound
- In practice, can use i-bounds as high as 22-25.
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Branch and Bound Search ®)

S
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C C
no yes no yes
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- Run MBE at each branch point.
- Prune nodes which have smaller upper bound than the current MPE solution

- Radu Marinescu’s PhD thesis (AND/OR branch and bound search plus more):
https://www.ics.uci.edu/~dechter/publications/r158.pdf



https://www.ics.uci.edu/~dechter/publications/r158.pdf

Computing MAP probabillities: Bucket
Elimination

- Given MAP variables “M” and evidence be “e”

- Can compute the MAP probability using bucket elimination by
first summing out all non-MAP variables, and then maximizing
out MAP variables.

- By summing out non-MAP variables we are effectively
computing the joint marginal Pr(M, e) in factored form. :

- By maximizing out MAP variables M, we are effectively solving
an MPE problem over the resulting marginal.

- The variable order used in BE_MAP is constrained as it
requires MAP variables M to appear last in the order.

- Best case: BE_MAP is exponential in constrained treewidth
which is the minimum width over (constrained) orders in which
non-MAP variables are ordered before MAP variables.
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MAP and constrained width

DRSO

- Treewidth = 2
- MAP variables = {Y,..,Y}

- Any order in which M variables come first has width greater
than or equal to n

- BE_ MPE is exponential in 3 and BE__MAP is exponential in

O(n).
1)
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MAP by branch and bound search

- MAP can be solved using depth-first brand-and-bound
search, just as we did for MPE.

- Algorithm BB_MAP resembles the one for computing
MPE with two exceptions.

- Exception 1: The search space consists only of the MAP
variables

- Exception 2: We use a version of MBE_MAP for
computing the bounds
- Order all MAP variables after the non-MAP variables.
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MAP by Local Search

- Given a network with n variables and an elimination order
of width w

- Complexity: O(r nexp(w+1)) where “r" is the number of local search
steps

- Start with an initial random instantiation of MAP variables

- Neighbors of the instantiation “m” are instantiations that
result from changing the value of one variable in “m”

- Score for neighbor “m”: Pr(m,e)

- How to compute Pr(m,e)?
- Bucket elimination.



MAP: Local search algorithm

LSMAP(N, M, e)

input:
N: Bayesian network
M: some network variables
e: evidence (ENM = ()

output: instantiation m of M which (approximately) maximizes Pr(m|e).
main:

1: r— number of local search steps

2: P¢«+— probability of randomly choosing a neighbor

3: m* — some instantiation of variables M {best instantiation }
4: m—m* {current instantiation}

5: for r times do

6: p«— random number in [0, 1]

7 if p < P¢ then

8 m+«— randomly selected neighbor of m

else
10: compute the score Pr(m — X, x, e) for each neighbor m — X, x
11: if no neighbor has a higher score than the score for m then
12: m+«— randomly selected neighbor of m
13: else
14: m<«— a neighbor of m with a highest score

15 end if

16 end if

17: if Pr(m,e) > Pr(m*,e), then m* «<—m
182 end for

19: return m*
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Recap

- Exact MPE and MAP

- Bucket elimination
- Branch and Bound Search

- Approximations
- Mini bucket elimination
- Branch and Bound Search
- Local Search



