MPE, MAP AND APPROXIMATIONS

Statistical Methods in AI/ML
Vibhav Gogate
The University of Texas at Dallas

What we will cover?

- MPE= most probable explanation
- The tuple with the highest probability in the joint distribution $\operatorname{Pr}(\mathrm{X} \mid \mathrm{e})$
- MAP=maximum a posteriori
- Given a subset of variables Y, the tuple with the highest probability in the distribution $\mathrm{P}(\mathrm{Y} \mid \mathrm{e})$
- Exact Algorithms
- Variable elimination
- DFS search
- Branch and Bound Search
- Approximations
- Upper bounds
- Local search

Running Example: Cheating in UTD CS Population

S	C	T_{2}	$\theta_{t_{2} \mid c, s}$
male	yes	+ve	.80
male	yes	-ve	.20
male	no	+ve	.20
male	no	-ve	.80
female	yes	tve	.95
female	yes	-ve	.05
female	no	+ve	.05
female	no	-ve	.95

T_{1}	T_{2}	A	$\theta_{a \mid t_{1}, t_{2}}$
+ve	+ve	yes	1
+ve	tre	no	0
tre	-ve	yes	0
tre	-ve	no	1
-ve	tre	yes	0
-ve	tre	no	1
-ve	-ve	yes	1
-ve	-ve	no	0

S	θ_{s}
male	.55
female	.45

S	C	$\theta_{c \mid s}$
male	yes	.05
male	no	.95
female	yes	.01
female	no	.99

C	T_{1}	$\theta_{t_{1} \mid c}$
yes	+ve	.80
yes	-ve	.20
no	+ve	.20
no	-ve	.80

Sex (S), Cheating (C), Tests (T1 and T2) and Agreement (A)

Most likely instantiations

- MPE = Most likely assignment to all non-evidence variables (given evidence)
- MAP = Most likely assignment to a subset of nonevidence variables (given evidence)
- A person takes a test and the test administrator says
- The two tests agree ($\mathrm{A}=$ true)
- Query: Most likely instantiation of Sex and Cheating given evidence A = true
- Is this a MAP or an MPE problem?
- Answer: Sex=male and Cheating=no.

MPE vs MAP: Properties

- MPE is a special case of MAP
- Hardness
- Computing MPE is NP-hard (Max-product problem)
- Computing MAP is NPPP-hard (Max-sum-product problem believed to be much harder than NP-hard)
- MPE projected on to the MAP variables does not yield the correct answer.
- MPE given A=yes
- $\mathrm{S}=$ female, $\mathrm{C}=$ no, $\mathrm{T}_{1}=$ negative and $\mathrm{T}_{2}=$ negative
- MPE projected on MAP variables S and C
- S=female, C=no is incorrect!
- MAP given A=yes
- $\mathrm{S}=$ male, $\mathrm{C}=\mathrm{no}$ is correct!
- We will distinguish between
- MPE and MAP probabilities
- MPE and MAP instantiations

Bucket Elimination for MPE

- Same schematic algorithm as before
- Replace "elimination operator" by "maximization operator"

$M A X_{S}$	S	C	Value		C	Value
	male	yes	0.05	$=$	yes	0.05
	male	no	0.95		no	0.99
	female	yes	0.01			
	female	no	0.99			

Collect all instantiations that agree on all other variables except S and return the maximum value among them.

Bucket elimination: order (S, C, T1, T2)

Evidence: A=true
MPE probability

Bucket elimination: Recovering MPE tuple

Factors: $\phi(\mathrm{S})$ $\phi(\mathrm{C}, \mathrm{S})$ $\phi\left(\mathrm{C}, \mathrm{S}, \mathrm{T}_{2}\right)$ $\phi\left(\mathrm{C}, \mathrm{T}_{1}\right)$
$\phi\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$

Set $T_{2}=-v e, C=n o$ $\max (S$ tuple $)=$?
$S=$ female

$$
\begin{gathered}
\text { Set } T_{2}=-v e, T_{1}=-v e \\
\max (C \text { tuple })=?
\end{gathered} \quad \phi\left(\mathrm{C}, \mathrm{~T}_{1}\right) \psi\left(C, T_{2}\right)
$$

```
\phi(S)\phi(C,S)\phi(C,S, T2)
```

$$
C=n o
$$

Set $T_{2}=-v e$ $\max \left(T_{1}\right.$ tuple $)=$?

$$
T_{1}=-v e
$$

MPE probability

Bucket elimination: MPE vs PE (Z)

- Maximization vs summation
- Complexity: Same
- Time and Space exponential in the width (w) of the given order: $O(n \exp (w+1))$ timewise and $O(n \exp (w))$ spacewise.

OR search for MPE

- At leaf nodes compute probabilities by taking product of factors
- Select the path with the highest leaf probability

Branch and Bound Search

- Let us say we have a method to upper bound MPE at each node
- Prune nodes which have smaller upper bound than the current MPE solution
- Amount of pruning depends on the quality of the upper bound. Lower the upper bound (i.e., better the upper bound), better the pruning.

Mini-Bucket Approximation: Idea

Split a bucket into mini-buckets => bound complexity

$$
\begin{aligned}
& \text { bucket }(\mathrm{Y})= \\
& \left\{\phi_{1}, \ldots, \phi_{r}, \phi_{r+1}, \ldots, \phi_{\mathrm{n}}\right\} \\
& / g=M A X_{Y}\left(\prod_{i=1}^{n} \phi_{i}\right) \\
& \left\{\phi_{1}, \ldots, \phi_{r}\right\} \\
& \mathrm{h}_{1}=M A X_{Y}\left(\prod_{i=1}^{r} \phi_{i}\right) \\
& \mathrm{h}_{2}=M A X_{Y}\left(\prod_{i=r+1} \boldsymbol{l}_{\mathrm{r}+1 \boldsymbol{1}} \boldsymbol{\phi}_{i}\right) \\
& g \leq \mathrm{h}_{1} \times \mathrm{h}_{2}
\end{aligned}
$$

Mini Bucket elimination: (max-size=3 vars)

Evidence: $A=$ true

Mini-bucket (i-bounds)

- A parameter "i" which controls the size of (number of variables in) each mini-bucket
- Algorithm exponential in "i" : O(n exp(i))
- Example
- i=2, quadratic
- $i=3$, cubed
- etc
- Higher the i-bound, better the upper bound
- In practice, can use i-bounds as high as 22-25.

Branch and Bound Search

- Run MBE at each branch point.
- Prune nodes which have smaller upper bound than the current MPE solution
- Radu Marinescu's PhD thesis (AND/OR branch and bound search plus more): https://www.ics.uci.edu/~dechter/publications/r158.pdf

Computing MAP probabilities: Bucket Elimination

- Given MAP variables "M" and evidence be "e"
- Can compute the MAP probability using bucket elimination by first summing out all non-MAP variables, and then maximizing out MAP variables.
- By summing out non-MAP variables we are effectively computing the joint marginal $\operatorname{Pr}(\mathrm{M}, \mathrm{e})$ in factored form.
- By maximizing out MAP variables M, we are effectively solving an MPE problem over the resulting marginal.
- The variable order used in BE_MAP is constrained as it requires MAP variables M to appear last in the order.
- Best case: BE_MAP is exponential in constrained treewidth which is the minimum width over (constrained) orders in which non-MAP variables are ordered before MAP variables.

MAP and constrained width

- Treewidth = 2
- MAP variables $=\left\{Y_{1}, . ., Y_{n}\right\}$
- Any order in which M variables come first has width greater than or equal to n
- BE_MPE is exponential in 3 and BE_MAP is exponential in $\mathrm{O}(\overline{\mathrm{n}})$.

MAP by branch and bound search

- MAP can be solved using depth-first brand-and-bound search, just as we did for MPE.
- Algorithm BB_MAP resembles the one for computing MPE with two exceptions.
- Exception 1: The search space consists only of the MAP variables
- Exception 2: We use a version of MBE_MAP for computing the bounds
- Order all MAP variables after the non-MAP variables.

MAP by Local Search

- Given a network with n variables and an elimination order of width w
- Complexity: $O(r \operatorname{nexp}(w+1))$ where " r " is the number of local search steps
- Start with an initial random instantiation of MAP variables
- Neighbors of the instantiation "m" are instantiations that result from changing the value of one variable in "m"
- Score for neighbor "m": Pr(m,e)
- How to compute $\operatorname{Pr}(\mathrm{m}, \mathrm{e})$?
- Bucket elimination.

MAP: Local search algorithm

```
LS_MAP( \(\mathcal{N}, \mathbf{M}, \mathbf{e})\)
input:
\(\mathcal{N}: \quad\) Bayesian network
M: some network variables
e: \(\quad\) evidence \((\mathbf{E} \cap \mathbf{M}=\emptyset)\)
output: instantiation \(\mathbf{m}\) of \(\mathbf{M}\) which (approximately) maximizes \(\operatorname{Pr}(\mathbf{m} \mid \mathbf{e})\).
main:
1: \(r \leftarrow\) number of local search steps
2: \(P_{f} \leftarrow\) probability of randomly choosing a neighbor
3: \(\boldsymbol{m}^{\star} \leftarrow\) some instantiation of variables \(\mathbf{M}\) \{best instantiation \}
4: \(\mathbf{m} \leftarrow \mathbf{m}^{\star}\) \{current instantiation\}
5: for \(r\) times do
6: \(\quad p \leftarrow\) random number in \([0,1]\)
7: \(\quad\) if \(p \leq P_{f}\) then
8: \(\quad \mathbf{m} \leftarrow\) randomly selected neighbor of \(\mathbf{m}\)
9: else
10: compute the score \(\operatorname{Pr}(\mathbf{m}-X, x, \mathbf{e})\) for each neighbor \(\mathbf{m}-X, x\)
11: if no neighbor has a higher score than the score for \(\boldsymbol{m}\) then
12: \(\quad \mathbf{m} \leftarrow\) randomly selected neighbor of \(\mathbf{m}\)
13: else
14: \(\quad \mathbf{m} \leftarrow\) a neighbor of \(\boldsymbol{m}\) with a highest score
15: end if
16: end if
17: \(\quad\) if \(\operatorname{Pr}(\mathbf{m}, \mathbf{e})>\operatorname{Pr}\left(\mathbf{m}^{\star}, \mathbf{e}\right)\), then \(\mathbf{m}^{\star} \leftarrow \mathbf{m}\)
18: end for
19: return \(\mathrm{m}^{\star}\)
```


Recap

- Exact MPE and MAP
- Bucket elimination
- Branch and Bound Search
- Approximations
- Mini bucket elimination
- Branch and Bound Search
- Local Search

