MPE, MAP AND APPROXIMATIONS

Statistical Methods in Al/ML Vibhav Gogate The University of Texas at Dallas

What we will cover?

- MPE= most probable explanation
 - The tuple with the highest probability in the joint distribution Pr(X|e)
- MAP=maximum a posteriori
 - Given a subset of variables Y, the tuple with the highest probability in the distribution P(Y|e)

Exact Algorithms

- Variable elimination
- DFS search
- Branch and Bound Search
- Approximations
 - Upper bounds
 - Local search

Running Example: Cheating in UTD CS Population

(s)	
(I_1) (I_2)	
A	

S	С	T_2	$\theta_{t_2 c,s}$
male	yes	+ve	.80
male	yes	—ve	.20
male	no	+ve	.20
male	no	—ve	.80
female	yes	+ve	.95
female	yes	—ve	.05
female	no	+ve	.05
female	no	—ve	.95

T_1	T_2	A	$\theta_{a t_1,t_2}$
+ve	+ve	yes	1
+ve	+ve	no	0
+ve	—ve	yes	0
+ve	—ve	no	1
—ve	+ve	yes	0
—ve	+ve	no	1
—ve	—ve	yes	1
—ve	—ve	no	0

	_	S	С	$\theta_{c s}$	С	T_1	$\theta_{t_1 c}$
S	θ_s	male	yes	.05	yes	+ve	.80
male	.55	male	no	.95	yes	—ve	.20
female	.45	female	yes	.01	no	+ve	.20
		female	no	.99	no	—ve	.80

Sex (S), Cheating (C), Tests (T1 and T2) and Agreement (A)

Most likely instantiations

- MPE = Most likely assignment to all non-evidence variables (given evidence)
- MAP = Most likely assignment to a subset of nonevidence variables (given evidence)
- A person takes a test and the test administrator says
 - The two tests agree (A = true)
- Query: Most likely instantiation of Sex and Cheating given evidence A = true
- Is this a MAP or an MPE problem?
- Answer: Sex=male and Cheating=no.

MPE vs MAP: Properties

- MPE is a special case of MAP
- Hardness
 - Computing MPE is NP-hard (Max-product problem)
 - Computing MAP is NP^{PP}-hard (Max-sum-product problem believed to be much harder than NP-hard)
- MPE projected on to the MAP variables does not yield the correct answer.
 - MPE given A=yes
 - S=female, C=no, T_1 =negative and T_2 =negative
 - MPE projected on MAP variables S and C
 - S=female, C=no is incorrect!
 - MAP given A=yes
 - S=male, C=no is correct!
- We will distinguish between
 - MPE and MAP probabilities
 - MPE and MAP instantiations

Bucket Elimination for MPE

- Same schematic algorithm as before
- Replace "elimination operator" by "maximization operator"

	S	С	Value		С	Value
MAX _S	male	yes	0.05	=	ves	0.05
	male	no	0.95		no	0.99
	female	yes	0.01			
	female	no	0.99			

Collect all instantiations that agree on all other variables except S and return the maximum value among them.

Bucket elimination: Recovering MPE tuple

Bucket elimination: MPE vs PE (Z)

- Maximization vs summation
- Complexity: Same
 - Time and Space exponential in the width (w) of the given order:
 O(n exp(w+1)) timewise and O(n exp(w)) spacewise.

OR search for MPE

- At leaf nodes compute probabilities by taking product of factors
- Select the path with the highest leaf probability

Branch and Bound Search

- Let us say we have a method to upper bound MPE at each node
- Prune nodes which have smaller upper bound than the current MPE solution
- Amount of pruning depends on the quality of the upper bound. Lower the upper bound (i.e., better the upper bound), better the pruning.

Mini-Bucket Approximation: Idea

Split a bucket into mini-buckets => bound complexity

bucket (Y) =
{
$$\phi_1, ..., \phi_r, \phi_{r+1}, ..., \phi_n$$
}
 $g = MAX_Y \left(\prod_{i=1}^n \phi_i\right)$
{ $\phi_1, ..., \phi_r$ }
 $h_1 = MAX_Y \left(\prod_{i=1}^r \phi_i\right)$
 $h_2 = MAX_Y \left(\prod_{i=r+1}^n \phi_i\right)$

 $g \leq h_1 \times h_2$

Mini Bucket elimination: (max-size=3 vars)

Mini-bucket (i-bounds)

- A parameter "i" which controls the size of (number of variables in) each mini-bucket
- Algorithm exponential in "i" : O(n exp(i))
- Example
 - i=2, quadratic
 - i=3, cubed
 - etc
- Higher the i-bound, better the upper bound
- In practice, can use i-bounds as high as 22-25.

Branch and Bound Search

- Run MBE at each branch point.
- Prune nodes which have smaller upper bound than the current MPE solution
- Radu Marinescu's PhD thesis (AND/OR branch and bound search plus more): <u>https://www.ics.uci.edu/~dechter/publications/r158.pdf</u>

Computing MAP probabilities: Bucket Elimination

- Given MAP variables "M" and evidence be "e"
- Can compute the MAP probability using bucket elimination by first summing out all non-MAP variables, and then maximizing out MAP variables.
- By summing out non-MAP variables we are effectively computing the joint marginal Pr(M, e) in factored form.
- By maximizing out MAP variables M, we are effectively solving an MPE problem over the resulting marginal.
- The variable order used in BE_MAP is constrained as it requires MAP variables M to appear last in the order.
- Best case: BE_MAP is exponential in constrained treewidth which is the minimum width over (constrained) orders in which non-MAP variables are ordered before MAP variables.

MAP and constrained width

- Treewidth = 2
- MAP variables = {Y₁,...,Y_n}
- Any order in which M variables come first has width greater than or equal to n
- BE_MPE is exponential in 3 and BE_MAP is exponential in O(n).

MAP by branch and bound search

- MAP can be solved using depth-first brand-and-bound search, just as we did for MPE.
- Algorithm BB_MAP resembles the one for computing MPE with two exceptions.
- Exception 1: The search space consists only of the MAP variables
- Exception 2: We use a version of MBE_MAP for computing the bounds
 - Order all MAP variables after the non-MAP variables.

MAP by Local Search

- Given a network with n variables and an elimination order of width w
 - Complexity: O(r nexp(w+1)) where "r" is the number of local search steps
- Start with an initial random instantiation of MAP variables
- Neighbors of the instantiation "m" are instantiations that result from changing the value of one variable in "m"
- Score for neighbor "m": Pr(m,e)
- How to compute Pr(m,e)?
 - Bucket elimination.

MAP: Local search algorithm

$LS_MAP(\mathcal{N}, \mathbf{M}, \mathbf{e})$

input:

- \mathcal{N} : Bayesian network
- M: some network variables
- e: evidence ($\mathbf{E} \cap \mathbf{M} = \emptyset$)

output: instantiation m of M which (approximately) maximizes $\Pr(m|e)$.

main:

1: $r \leftarrow$ number of local search steps 2: $P_f \leftarrow$ probability of randomly choosing a neighbor 3: $\mathbf{m}^* \leftarrow$ some instantiation of variables **M** {best instantiation} 4: $\mathbf{m} \leftarrow \mathbf{m}^*$ {current instantiation} 5: for r times do 6: $p \leftarrow$ rando $p \leftarrow$ random number in [0, 1] 7: if $p < P_f$ then 8: 9: 10: $\mathbf{m} \leftarrow$ randomly selected neighbor of \mathbf{m} else compute the score $Pr(\mathbf{m} - X, x, \mathbf{e})$ for each neighbor $\mathbf{m} - X, x$ 11:if no neighbor has a higher score than the score for m then 12: $\mathbf{m} \leftarrow$ randomly selected neighbor of \mathbf{m} 13: 14: else $\mathbf{m} \leftarrow$ a neighbor of \mathbf{m} with a highest score 15: 16: end if end if if $Pr(\mathbf{m}, \mathbf{e}) > Pr(\mathbf{m}^{\star}, \mathbf{e})$, then $\mathbf{m}^{\star} \leftarrow \mathbf{m}$ 18: end for 19: return m*

Recap

- Exact MPE and MAP
 - Bucket elimination
 - Branch and Bound Search
- Approximations
 - Mini bucket elimination
 - Branch and Bound Search
 - Local Search