Local Search Algorithms

* A general class of algorithms for solving optimization problems

* Some terms:
* A state is defined as an assignment of values to all variables of interest

* Define a neighborhood function, which defines a set of states that you can
move/hop to from your current state. To manage the computational
complexity, a neighborhood function is selected in such a way that each state
has linear or in the worst-case polynomial number of states as its neighbors

* Example neighborhood function: Change the value of exactly one variable from the
current state

Example of State and Neighborhood

* A Markov network over 5 binary variables {A,B,C,D,E}

* Example of a state:
» State s: A=0, B=1, C=0, D=0, E=1

* Let neighborhood function of each state be defined as follows:
 All states which differ from the current state in value of just one variable

* The following are neighbors of state

nelghborhood
* s1: A=1, B=1, C=0, D=0, E=1
* s2: A=0, B=0, C=0, D=0, E=1
* s3: A=0, B=1, C=1, D=0, E=1
* s4: A=0, B=1, C=0, D=1, E=1
* s5: A=0, B=1, C=0, D=0, E=0

-
-
-

ll 2

according to our definition of

A flipped from O to 1
B flipped from 1to O
C flipped from O to 1
D flipped fromOto 1
E flipped from1to 0

_ocal Search: Basic Algorithm for a
Maximization Problem

o_7

* Assumption: given a state “s”, we can easily calculate the value of the objective function
denoted by score(s)

e Algorithm:
* s=arandom state
* Best=s
e Until time runs out do
* s’ =aneighbor of s having the highest score
 |f score(Best) < score(s’) then
* Best=s’
* |f score(s’)>=score(s) then
e s=¢’
* Return Best

* |ssues:

* Algorithm will get stuck in a local maxima if there does not exist a neighbor s’ of s such that
score(s’)>=score(s)

» Algorithm will get stuck in a plateau if there does not exist a neighbor s’ of s such that score(s’)=score(s)

Advanced Local Search Algorithm

e Escape local maximas and plateaus using random walks

e Algorithm (Input: a random walk probability p):
* s =arandom state
* Best=s
e Until time runs out do
* With probability p // random walk step
e s’=arandom neighbor of s
e Else (with probability 1-p):
* s’ =aneighbor of s having the highest score // locally optimal move
* |f score(Best) < score(s’) then
e Best=s’
* s=¢
* Return Best

Random walks for SAT solving:
https://www.cs.rochester.edu/u/kautz/walksat/

https://www.cs.rochester.edu/u/kautz/walksat/

MPE by Local Search

e Straight-forward
» State = assignment of values to all non-evidence variables

e Scoring function: score(s) is P(x,e) where e is evidence and x is
the assignment of values to all the non-evidence variables in
state s

* In Bayesian networks, this is easy. Project the assignment (x,e) on
each CPT to yield a probability value and take the product of all these
probability values

* In Markov networks, this is also easy. We need to know P(x,e) up to a
normalization constant and therefore we don’t have to compute the
partition function Z.

* Project the assignment (x,e) on each potential to yield a potential value
and take the product of all these potential values.

MAP by Local Search

 State = Assignment of values to the MAP variables “Y”

 Score of a state having assignment Y=y is P(y,e)

* P(y,e) can be computed by summing out all the non-MAP
variables from the graphical model via Bucket elimination

* Thus, given a network with “n” non-MAP variables and
an elimination order of width “w” over the non-MAP
variables

* Complexity of computing the score is O(nexp(w+1))

* MAP is a hard problem. Even local search requires that
inference over the non-MAP variables is tractable (has
low polynomial complexity).

Recap

e Exact MPE and MAP

* Bucket elimination
e Branch and Bound Search

* Approximations
* Mini bucket elimination
* Branch and Bound Search
* Local Search

STATISTICAL METHODS IN Al/ML

Vibhav Gogate
University of Texas, Dallas

LEARNING: Lecture 1

u D THE UNIVERSITY OF TEXAS AT DALLAS
Erik Jonsson School of Engineering and Computer Science

Learning Graphical models: Basic Framework 2

» Generating a graphical model by hand, expert, etc. is not possible
» Thousands and sometimes millions of variables (e.g., the Web domain)

> Input: A data set X = {x[1],...,x[M]} having M examples or samples.
(Assumption: the M examples are independent and identically distributed (IID);
generated from P*)

» Qutput: A graphical model M representing a distribution P such that

» it is as close as possible to P*
> it solves the task/problem that you are interested in as accurately as possible

Evaluating Learning Performance

» Given candidate models, how do | evaluate which is better?
» Non-trivial task. How do | define the notion of best?

» Various performance metrics depending upon your learning goal.

Performance metric 1: Relative Entropy or KL distance

D(P*[|P) =) P*(x)log(P*(x)) = > _ P*(x)log(P(x))

» We can not evaluate this directly (exponentially large). However, we can consider
our data as samples and use the following Monte Carlo estimate:

. ~ 1 M | 1 [M .
D(P*||P) = MZ'°€(P*(X('))) Y {Zlog(/’(x(')))}

> The first term is a constant (no need to evaluate). The term in [...] is called the
log-likelihood of the data.

Performance metric 1: Maximum likelihood learning (MLE)

D(P*||P) = Zlog(P*(x(N -+ {Z log(P(x)))}

> We should prefer models that have the maximum value for .7, log(P(x(7))
(log-likelihood)

» Will likely minimize the error (i.e., improve accuracy)

» Since logarithm is monotonic, maximizing the log-likelihood is same as
maximizing the likelihood:

M M
L(x(l), . ,x(M)) — exp [Z Iog(ﬁ(x(")))} = H ﬁ(x(i))
i=1 i=1

Performance metric 2: Task directed learning

» You may be interested in a specific task

» Classification task: Given a set of documents, find the topic of each document

» Classification error: # of mis-classified instances.

» Hamming loss: When we are interested in multi-class labeling, we count the number
of variables that are mis-classified

» Query Variables Y: You may be interested in querying only a subset of the variables.
Let the other variables X \ Y be denoted by Z.

» Maximize conditional log likelihood of data:

M ~ . .
Z log (P (y(') |z(')))
i=1

Basic Machine learning Concepts: Review :

» QOverfitting: the learned model to the training set. Extreme example: The data is
the model.

» Generalization: the data is a sample, there is vast amount of samples that you
have never seen. Your model should generalize well to these “never-seen” samples.

» Bias-Variance tradeoff: Richer vs constrained models. Example: high treewidth vs
low treewidth models

» Can learn low treewidth models (Example: learning trees is easy). However, a tree
may not represent all independencies of P* (not a minimal I-map).

» Cannot learn high treewidth models (limited data). However, they may be closer to
P*.

Basic Machine learning Concepts: Review B

» Regularization: Encode a soft constraint for simpler models in our objective
function.

» Note: Restricting our model class reduces over-fitting. This imposes a hard
constraint. Regularization is a soft constraint.

» Training versus Test-set: Hold out some data as test data.

» k-fold cross validation: A special way of holding out data. Divide the data into k
bins. Run your algorithm k times. Each time use the i-th bin as test data.

Data Observability

» Fully observed: Complete data so that each of our training instances is an
assignment of values to all variables

» Partially observed: There exists training instances t such that one or more
variables in t are not observed (missing values)

» Hidden variables: The data contains hidden variables whose value is never

observed.

