
Local Search Algorithms

• A general class of algorithms for solving optimization problems
• Some terms:
• A state is defined as an assignment of values to all variables of interest
• Define a neighborhood function, which defines a set of states that you can 

move/hop to from your current state. To manage the computational 
complexity, a neighborhood function is selected in such a way that each state 
has linear or in the worst-case polynomial number of states as its neighbors
• Example neighborhood function: Change the value of exactly one variable from the 

current state



Example of State and Neighborhood

• A Markov network over 5 binary variables {A,B,C,D,E}
• Example of a state:

• State s: A=0, B=1, C=0, D=0, E=1
• Let neighborhood function of each state be defined as follows:

• All states which differ from the current state in value of just one variable
• The following are neighbors of state “s” according to our definition of 

neighborhood:
• s1: A=1, B=1, C=0, D=0, E=1 …… A flipped from 0 to 1
• s2: A=0, B=0, C=0, D=0, E=1 …… B flipped from 1 to 0
• s3: A=0, B=1, C=1, D=0, E=1 …… C flipped from 0 to 1
• s4: A=0, B=1, C=0, D=1, E=1 …… D flipped from 0 to 1
• s5: A=0, B=1, C=0, D=0, E=0 …… E flipped from 1 to 0



Local Search: Basic Algorithm for a 
Maximization Problem

• Assumption: given a state “s”, we can easily calculate the value of the objective function 
denoted by score(s)

• Algorithm:
• s = a random state
• Best = s
• Until time runs out do

• s’  = a neighbor of s having the highest score
• If score(Best) < score(s’) then 

• Best=s’
• If score(s’)>=score(s) then

• s=s’
• Return Best

• Issues:
• Algorithm will get stuck in a local maxima if there does not exist a neighbor s’ of s such that 

score(s’)>=score(s)
• Algorithm will get stuck in a plateau if there does not exist a neighbor s’ of s such that score(s’)=score(s)



Advanced Local Search Algorithm

• Escape local maximas and plateaus using random walks
• Algorithm (Input: a random walk probability p):

• s = a random state
• Best = s
• Until time runs out do

• With probability p   // random walk step
• s’= a random neighbor of s

• Else (with probability 1-p):
• s’  = a neighbor of s having the highest score // locally optimal move

• If score(Best) < score(s’) then 
• Best=s’

• s=s’
• Return Best

Random walks for SAT solving: 
https://www.cs.rochester.edu/u/kautz/walksat/

https://www.cs.rochester.edu/u/kautz/walksat/


MPE by Local Search
• Straight-forward
• State = assignment of values to all non-evidence variables
• Scoring function: score(s) is P(x,e) where e is evidence and x is 

the assignment of values to all the non-evidence variables in 
state s
• In Bayesian networks, this is easy. Project the assignment (x,e) on 

each CPT to yield a probability value and take the product of all these 
probability values

• In Markov networks, this is also easy. We need to know P(x,e) up to a 
normalization constant and therefore we don’t have to compute the 
partition function Z.
• Project the assignment (x,e) on each potential to yield a potential value 

and take the product of all these potential values.



MAP by Local Search
• State = Assignment of values to the MAP variables “Y”
• Score of a state having assignment Y=y is P(y,e)
• P(y,e) can be computed by summing out all the non-MAP 

variables from the graphical model via Bucket elimination

• Thus, given a network with “n” non-MAP variables and 
an elimination order of width “w” over the non-MAP 
variables
• Complexity of computing the score is O(nexp(w+1))

• MAP is a hard problem. Even local search requires that 
inference over the non-MAP variables is tractable (has 
low polynomial complexity).



Recap

• Exact MPE and MAP
• Bucket elimination
• Branch and Bound Search

• Approximations
• Mini bucket elimination
• Branch and Bound Search
• Local Search




















