Markov Logic: Representation

Overview

- Statistical relational learning
- Markov logic
- Basic inference
- Basic learning

Statistical Relational Learning

Goals:

- Combine (subsets of) logic and probability into a single language
- Develop efficient inference algorithms
- Develop efficient learning algorithms
- Apply to real-world problems

L. Getoor & B. Taskar (eds.), *Introduction to Statistical Relational Learning*, MIT Press, 2007.

Plethora of Approaches

- Knowledge-based model construction [Wellman et al., 1992]
- Stochastic logic programs [Muggleton, 1996]
- Probabilistic relational models [Friedman et al., 1999]
- Relational Markov networks [Taskar et al., 2002]
- Bayesian logic [Milch et al., 2005]
- Markov logic [Richardson & Domingos, 2006]
- And many others!

Key Dimensions

- Logical language First-order logic, Horn clauses, frame systems
- Probabilistic language Bayes nets, Markov nets, PCFGs
- Type of learning
 - Generative / Discriminative
 - Structure / Parameters
 - Knowledge-rich / Knowledge-poor
- Type of inference
 - MAP / Marginal
 - Full grounding / Partial grounding / Lifted

First-Order Logic

- Constants, variables, functions, predicates
 E.g.: Anna, x, MotherOf(x), Friends(x, y)
- Literal: Predicate or its negation
- Clause: Disjunction of literals
- Grounding: Replace all variables by constants
 E.g.: Friends (Anna, Bob)
- World (model, interpretation): Assignment of truth values to all ground predicates

Smoking causes cancer.

Friends have similar smoking habits.

 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$ $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

Inference in First-Order Logic

- Traditionally done by theorem proving (e.g.: Prolog)
- Propositionalization followed by model checking turns out to be faster (often a lot)
- Propositionalization:
 Create all ground atoms and clauses
- Model checking: Satisfiability testing
- Two main approaches:
 - Backtracking (e.g.: DPLL)
 - Stochastic local search (e.g.: WalkSAT)

Satisfiability

- Input: Set of clauses (Convert KB to conjunctive normal form (CNF))
- Output: Truth assignment that satisfies all clauses, or failure
- The paradigmatic NP-complete problem
- Solution: Search
- Key point:

Most SAT problems are actually easy

 Hard region: Narrow range of #Clauses / #Variables

Backtracking

- Assign truth values by depth-first search
- Assigning a variable deletes false literals and satisfied clauses
- Empty set of clauses: Success
- Empty clause: Failure
- Additional improvements:
 - Unit propagation (unit clause forces truth value)
 - **Pure literals** (same truth value everywhere)

The DPLL Algorithm

```
if CNF is empty then
    return true
else if CNF contains an empty clause then
    return false
else if CNF contains a pure literal x then
    return DPLL(CNF(x))
else if CNF contains a unit clause {u} then
    return DPLL(CNF(u))
```

else

choose a variable x that appears in CNFif DPLL(CNF(x)) = true then return true else return $DPLL(CNF(\neg x))$

Stochastic Local Search

- Uses complete assignments instead of partial
- Start with random state
- Flip variables in unsatisfied clauses
- Hill-climbing: Minimize # unsatisfied clauses
- Avoid local minima: Random flips
- Multiple restarts

The WalkSAT Algorithm

for $i \leftarrow 1$ to max-tries do solution = random truth assignment for $i \leftarrow 1$ to max-flips do if all clauses satisfied then return solution $c \leftarrow$ random unsatisfied clause with probability p flip a random variable in c else flip variable in c that maximizes number of satisfied clauses return failure

Potential functions defined over cliques

$$P(x) = \frac{1}{Z} \prod_{c} \Phi_{c}(x_{c})$$

$$Z = \sum_{x} \prod_{c} \Phi_{c}(x_{c})$$

Smoking	Cancer	Φ(S,C)
False	False	4.5
False	True	4.5
True	False	2.7
True	True	4.5

Hammersley-Clifford Theorem

If Distribution is strictly positive (P(x) > 0)
 And Graph encodes conditional independences
 Then Distribution is product of potentials over cliques of graph

Inverse is also true.

("Markov network = Gibbs distribution")

Markov Nets vs. Bayes Nets

Property	Markov Nets	Bayes Nets
Form	Prod. potentials	Prod. potentials
Potentials	Arbitrary	Cond. probabilities
Cycles	Allowed	Forbidden
Partition func.	Z = ?	Z = 1
Indep. check	Graph separation	D-separation
Indep. props.	Some	Some
Inference	MCMC, BP, etc.	Convert to Markov

Inference in Markov Networks

Computing probabilities

- Markov chain Monte Carlo
- Belief propagation
- MAP inference

Markov Logic

- Logical language: First-order logic
- Probabilistic language: Markov networks
 - **Syntax:** First-order formulas with weights
 - **Semantics:** Templates for Markov net features

• Learning:

- **Parameters:** Generative or discriminative
- Structure: ILP with arbitrary clauses and MAP score

Inference:

- **MAP:** Weighted satisfiability
- Marginal: MCMC with moves proposed by SAT solver
- Partial grounding + Lazy inference / Lifted inference

Markov Logic: Intuition

- A logical KB is a set of hard constraints on the set of possible worlds
- Let's make them soft constraints: When a world violates a formula, It becomes less probable, not impossible
- Give each formula a weight
 (Higher weight ⇒ Stronger constraint)

 $P(world) \propto exp(\sum weights of formulas it satisfies)$

Markov Logic: Definition

- A Markov Logic Network (MLN) is a set of pairs (F, w) where
 - F is a formula in first-order logic
 - w is a real number
- Together with a set of constants, it defines a Markov network with
 - One node for each grounding of each predicate in the MLN
 - One feature for each grounding of each formula F in the MLN, with the corresponding weight w

Smoking causes cancer.

Friends have similar smoking habits.

 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$ $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

1.5
$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$

1.5
$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$

$$1.1 \quad \forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$

$$1.1 \quad \forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$

1.5
$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$

Markov Logic Networks

- MLN is template for ground Markov nets
- Probability of a world *x*:

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} n_{i}(x)\right)$$

Weight of formula *i* No. of true groundings of formula *i* in *x*

- Typed variables and constants greatly reduce size of ground Markov net
- Functions, existential quantifiers, etc.
- Infinite and continuous domains

Relation to Statistical Models

- Special cases:
 - Markov networks
 - Markov random fields
 - Bayesian networks
 - Log-linear models
 - Exponential models
 - Max. entropy models
 - Gibbs distributions
 - Boltzmann machines
 - Logistic regression
 - Hidden Markov models
 - Conditional random fields

- Obtained by making all predicates zero-arity
- Markov logic allows objects to be interdependent (non-i.i.d.)

Relation to First-Order Logic

- Infinite weights \Rightarrow First-order logic
- Satisfiable KB, positive weights ⇒
 Satisfying assignments = Modes of distribution
- Markov logic allows contradictions between formulas

Problem: Find most likely state of world given evidence

Problem: Find most likely state of world given evidence

$$\underset{y}{\operatorname{arg\,max}} \quad \frac{1}{Z_{x}} \exp\left(\sum_{i} w_{i} n_{i}(x, y)\right)$$

• **Problem:** Find most likely state of world given evidence

• **Problem:** Find most likely state of world given evidence

$$\underset{y}{\operatorname{arg\,max}} \sum_{i} w_{i} n_{i}(x, y)$$

- This is just the weighted MaxSAT problem
- Use weighted SAT solver
 (e.g., MaxWalkSAT [Kautz et al., 1997]

The MaxWalkSAT Algorithm

Computing Probabilities

- P(Formula|MLN,C) = ?
- Brute force: Sum probs. of worlds where formula holds
- MCMC: Sample worlds, check formula holds
- P(Formula1|Formula2,MLN,C) = ?
- Discard worlds where Formula 2 does not hold
- In practice: More efficient alternatives

Learning

- Data is a relational database
- For now: Closed world assumption (if not: EM)
- Learning parameters (weights)
 - Similar to learning weights for Markov networks
- Learning structure (formulas)
 - A form of inductive logic programming
 - Also related to learning features for Markov nets

Weight Learning

Parameter tying: Groundings of same clause

- Generative learning: Pseudo-likelihood
- Discriminative learning: Cond. likelihood, use MaxWalkSAT for inference

Alchemy

Open-source software including:

- Full first-order logic syntax
- Inference (MAP and conditional probabilities)
- Weight learning (generative and discriminative)
- Structure learning
- Programming language features

alchemy.cs.washington.edu