
Learning Markov Networks: Parameters and Structure

Vibhav Gogate
(Some slides borrowed from Pedro Domingos)

What we will cover?

I Learning parameters (or weights) given structure: FOD + MLE/Bayesian
I Generatively: Learn P(X,Y)
I Discriminatively: Learn P(Y|X)

I Learning with incomplete data given structure: POD+ MLE/Bayesian

I Learning structure (features): Two algorithms

Alternative Parameterization for Convenience:

I Write the Markov network as a log-linear model

PΘ(x) =
1

Z (Θ)
exp

(∑
i

θi fi (xi)

)

where fi is a feature, namely a 0/1 function, θi is the weight associated with
feature fi , xi is the projection of x on fi and Z (Θ) is the partition function.

Generative Weight/Parameter Learning: FOD case

I Learn P(X) by Maximizing likelihood or posterior probability

I Unlike Bayesian networks, no closed-form solution. Use iterative optimization
algorithms such as gradient ascent.

I Good news: No local maxima (i.e., a single global maxima). Concave Objective
function

I However, bad news: Requires Inference at each iteration of gradient ascent! Too
slow.

Derivative of Log-Likelihood: FOD + MLE case: Part 1

We are given a log-linear model: PΘ(x) = 1
Z(Θ) exp (

∑
i θi fi (xi)) and a dataset

D = (x (1), . . . , x (M))

I Log-likelihood of the log-linear model given data

LL(Θ : D) = ln

 M∏
j=1

PΘ(x (j))

 =
M∑
j=1

M∑
j=1

ln

(
1

Z (Θ)
exp

(∑
i

θi fi (x
(j)
i)

))

=
M∑
j=1

(∑
i

θi fi (x
(j)
i)− lnZ (Θ)

)

=

∑
i

θi

 M∑
j=1

fi (x
(j)
i)

−M lnZ (Θ)

Throughout i indexes the features (e.g., fi) or the parameters (e.g., θi)) and j indexes
the examples (e.g., x (j)).

Derivative of Log-likelihood: Part 2

I For convenience: Rewrite the Log-likelihood by dividing both sides by M

1

M
LL(Θ : D) =

1

M

∑
i

θi

 M∑
j=1

fi (x
(j)
i)

− lnZ (Θ)

I The first expression on the right hand side is expected value of the feature from
the data, multiplied by θi . Therefore, we can rewrite the Likelihood as:

1

M
LL(Θ : D) =

∑
i

θiED[fi (x
(j)
i)]− lnZ (Θ)

Derivative of Log-likelihood: Part 3

I Taking partial derivative with respect to θi

∂ 1
M LL(Θ : D)

∂θi
=
∂
∑

i θiED[fi (x
(j)
i)]

∂θi
− ∂ lnZ (Θ)

∂θi

I The first expression on the RHS equals ED[fi (x
(j)
i)]. The estimate of this value is

the number of times the feature fi is true in the data! Nice, easy to compute.

I The second expression, we have to derive separately

Derivative of Log-likelihood: Part 4

I Recall that Z (Θ) is given by:

Z (Θ) =
∑
x

exp

(∑
i

θi fi (xi)

)

I Partial derivative of lnZ (Θ):

∂ lnZ (Θ)

∂θi
=

1

Z (Θ)

∂

∂θi
Z (Θ) =

1

Z (Θ)

∑
x

∂

∂θi
exp

(∑
i

θi fi (xi)

)

=
1

Z (Θ)

∑
x

exp

(∑
i

θi fi (xi)

)
∂

∂θi

∑
i

θi fi (xi)

=
∑
x

[
1

Z (Θ)
exp

(∑
i

θi fi (xi)

)]
fi (xi) =

∑
x

PΘ(x)fi (xi)

= EPΘ
[fi (xi)]

Derivative of Log-Likelihood: Part 5

I In summary, We have the following expression:

1

M

∂

∂θi
LL(Θ : D) = ED[fi (xi)]− EPΘ

[fi (xi)]

I The first expression on the RHS is the number of times feature fi is true in the
data

I The second expression is the expected number of times feature fi is true given
current set of parameters Θ. This requires inference over the model (sum-product
inference)

I A simple gradient ascent procedure:
I Start with random parameters
I At each iteration t, update each θti using:

θt+1
i = θti + η

(
ED[fi (xi)]− EPΘt [fi (xi)]

)
I Stop when converged.

Gradient of Posteriors: MAP Estimation

I MAP estimation: to find the parameters that maximize P(Θ)P(D|Θ)

I Use an independent Gaussian or Laplacian Prior:

P2(Θ) =
∏
i

1

σ
√

2π
exp

(
−
θ2
i

2σ2

)
or P1(Θ) =

∏
i

1

2β
exp

(
−|θi |
β

)
I In log-space we have ln(P(Θ)) + ln(P(D|Θ)) and the first term for the two priors

becomes:
−λ2

∑
i

θ2
i or − λ1

∑
i

|θi |

I Gradients of the new terms: {−2λ2θi} and {−λ1
θi
|θi | s.t. θi 6= 0} respectively.

I Small change in gradient ascent for Gaussian Priors:

θt+1
i = θti + η

(
ED[fi (xi)]− EPΘt [fi (xi)]− 2λ2θ

t
i

)

Interpretation of Priors as `2 and `1 penalty

I −λ2
∑

i θ
2
i places a quadratic penalty on the magnitude of the weights (namely

penalizes large parameter values), generally called an `2-regularization term.

I −λ1
∑

i |θi | places a linear penalty, measured using the `1 − norm and therefore
called `1-regularization term.

I `1 penalty is linear and quite sharp at zero. Therefore, in practice it may yield
many parameters that have zero weights!

I The models learned with an `1 penalty tend to be much sparser than those learned
with an `2 penalty.

Issues and Possible Approximations: ML/Bayesian Parameter Estimation
in Log-Linear Models

I MLE with or without `1, `2 penalty is impractical because each iteration of
gradient ascent requires exact inference (exponential in the treewidth!)

I Two approaches to address this issue
I Use Alternative Objective Functions such that exact inference is not required or

is fast (Example: Pseudo Likelihood, Contrastive Divergence, etc.)
I Use Approximate Inference Algorithms (Belief Propagation, Sampling-Based

Inference, MAP inference, etc.)

I No free lunch: Possible loss of convergence/consistency guarantees and solution
may have low likelihood (far from optimal).

Alternative Objective Functions: Pseudo Likelihood

I Likelihood of each variable given its neighbors in the data

PL(x) =
n∏

i=1

PΘ(xi |x−i) =
n∏

i=1

PΘ(xi |xneighbors(Xi))

I Does not require inference at each step. Expression for Gradient given in the book.

I Consistent estimator

I Widely used in vision, spatial statistics, etc.

I But PL parameters may not work well for long inference chains

I Improvements: Block PL

Discriminative/Conditional Parameter Learning

I Maximize conditional likelihood of query (Y) given evidence (X)

I Gradient:
m∑
j=1

(
fi (x

(j), y (j))− EΘ

[
fi |x (j)

])
I For each example gradient equals the number of times (either 0 or 1) the feature

is true in the data minus the number of times the feature is true according to the
model conditioned on the evidence.

I In generative models, each gradient ascent iteration required only a single
execution of inference. In the discriminative or conditional case, we require
inference for each example!

I However, in the conditional case, inference is easier because all variables in the set
X are assigned a value (evidence).

Discriminative Learning: Voted Perceptron

I Approximate expected counts in the MPE state of the query variables Y given
evidence X = x

I Originally proposed for training HMMs discriminatively (Collins, 2002)

I Gradient:
m∑
j=1

(
fi

(
x (j), y (j)

)
− fi

(
x (j), yMPE |x(j)

))
I To reduce bias, typically return an average. Suppose the gradient ascent

algorithm is run for T iterations:

θi =
1

T

T∑
t=1

θti

Learning Parameters with Missing Data: POD

I Recall: Maximize Log-Likelihood but the likelihood function is multi-modal!

I W.L.o.G. Let Y be missing (or hidden) and X be observed in the data

I Gradient:

1

M

M∑
j=1

EΘ

[
fi |x (j)

]
− EΘ[fi (xi)]

I Gradient equals feature expectation over the data and the hidden variables minus
the feature expectation over all of the variables.

Learning Structure of Markov Networks

I Active Research area.

I Use Bayesian scores because similar to Bayes nets, complete graph is the optimal
solution according to the Max-Likelihood criteria.

I Popular Algorithms
I Greedy Structure search.

I Start with atomic features
I Greedily conjoin features to improve score
I Problem: Need to reestimate weights for each new candidate
I Approximation: Keep weights of previous features constant

I Logistic Regression with `1 regularization for learning pairwise networks
I Run logistic regression with `1 penalty for each variable X with X as the class variable

and all other variables as features
I Remove all edges that have zero weights. If there is a conflict on an edge, either take

unions or intersections.

Summary

I Learning parameters (or weights) given structure: FOD + MLE/Bayesian
I Generatively: Learn P(X,Y).
I Discriminatively: Learn P(Y|X)

I ML/Bayesian estimation is slow. Possible fixes: use approximate inference
algorithms or alternative objective functions.

I Learning with incomplete data given structure: POD+ MLE/Bayesian. (Just the
gradient changes)

I Learning structure (features): Two algorithms

