Learning Markov Networks: Parameters and Structure

Vibhav Gogate
(Some slides borrowed from Pedro Domingos)

u D THE UNIVERSITY OF TEXAS AT DALLAS
Erik Jonsson School of Engineering and Computer Science

What we will cover?

» Learning parameters (or weights) given structure: FOD + MLE/Bayesian

» Generatively: Learn P(X,Y)
» Discriminatively: Learn P(Y|X)

» Learning with incomplete data given structure: POD+ MLE/Bayesian

» Learning structure (features): Two algorithms

Alternative Parameterization for Convenience:

» Write the Markov network as a log-linear model

Z(].e) exp (Z 9,f;(X,)>

where f; is a feature, namely a 0/1 function, 6; is the weight associated with
feature f;, x; is the projection of x on f; and Z(©) is the partition function.

Po(x) =

Generative Weight/Parameter Learning: FOD case

» Learn P(X) by Maximizing likelihood or posterior probability

> Unlike Bayesian networks, no closed-form solution. Use iterative optimization
algorithms such as gradient ascent.

» Good news: No local maxima (i.e., a single global maxima). Concave Objective
function

» However, bad news: Requires Inference at each iteration of gradient ascent! Too
slow.

Derivative of Log-Likelihood: FOD + MLE case: Part 1

We are given a log-linear model: Pg(x) = ﬁexp (>_;0ifi(x;)) and a dataset
D= (X(l), . ,X(M))

» Log-likelihood of the log-linear model given data

LL(®:D) = In (f[lPe(X“> ;;m(exp(ZGf’))
= é(Zaf |nZ(e)>

— MInZ(©)

[l
1
(]
S
—
1M
)
=

<
~

Throughout 7 indexes the features (e.g., ;) or the parameters (e.g., 6;)) and j indexes
the examples (e.g., xU)).

Derivative of Log-likelihood: Part 2

> For convenience: Rewrite the Log-likelihood by dividing both sides by M

@ 2) = 7 |20 | L) | | ~nz(@)

> The first expression on the right hand side is expected value of the feature from
the data, multiplied by 6;. Therefore, we can rewrite the Likelihood as:

SLL(©: D) = > 6Eplfi(x)] - InZ(©)

Derivative of Log-likelihood: Part 3

» Taking partial derivative with respect to 6;

OHLLO:D) 9Y,0Ep[i(x")] aInz(e)
00, 96, 6;

» The first expression on the RHS equals Ep[f,-(xi(j))]. The estimate of this value is
the number of times the feature f; is true in the data! Nice, easy to compute.

» The second expression, we have to derive separately

Derivative of Log-likelihood: Part 4

> Recall that Z(©) is given by:

(s
> Partial derivative of In Z(©):
dInZ(O©) 1 1 6

-)Zexp(ZQfx,) 30 Zef(x,
=Y mexp (Ze,f,-(x,-)ﬂ fi(x) = Po(x)fi(x;)

= Epo[fi(i)]

Derivative of Log-Likelihood: Part 5
» In summary, We have the following expression:

Il\/li98(9,-LL(@ : D) = Ep[fi(x;)] — Epo [fi(xi)]

» The first expression on the RHS is the number of times feature f; is true in the
data

» The second expression is the expected number of times feature f; is true given
current set of parameters ©. This requires inference over the model (sum-product
inference)

» A simple gradient ascent procedure:

» Start with random parameters
» At each iteration t, update each ¢ using:

01+t = 0f + 0 (Ep[fi(x)] — Ep. [fi(x)])

» Stop when converged.

Gradient of Posteriors: MAP Estimation

» MAP estimation: to find the parameters that maximize P(©)P(D|©)

v

Use an independent Gaussian or Laplacian Prior:

o[l Jee() o« - Izen ()

i

v

In log-space we have In(P(©)) + In(P(D|©)) and the first term for the two priors

becomes:
—)\229,2 or —)\12‘9;|

Gradients of the new terms: {—2X20;} and {—/\1|z—::‘ s.t. 6; # 0} respectively.

Small change in gradient ascent for Gaussian Priors:

v

v

01 = 0f + 1 (Ep[fi(x)] — Epy, [fi(x)] — 226)

Interpretation of Priors as ¢, and /1 penalty

> —)Xo Z,-H,? places a quadratic penalty on the magnitude of the weights (namely
penalizes large parameter values), generally called an />-regularization term.

» —A1);10i| places a linear penalty, measured using the £; — norm and therefore
called ¢1-regularization term.
» /1 penalty is linear and quite sharp at zero. Therefore, in practice it may yield
many parameters that have zero weights!
» The models learned with an ¢; penalty tend to be much sparser than those learned
with an ¢, penalty.

Issues and Possible Approximations: ML/Bayesian Parameter Estimation
in Log-Linear Models

» MLE with or without ¢1, ¢> penalty is impractical because each iteration of
gradient ascent requires exact inference (exponential in the treewidth!)
» Two approaches to address this issue

» Use Alternative Objective Functions such that exact inference is not required or
is fast (Example: Pseudo Likelihood, Contrastive Divergence, etc.)

» Use Approximate Inference Algorithms (Belief Propagation, Sampling-Based
Inference, MAP inference, etc.)

» No free lunch: Possible loss of convergence/consistency guarantees and solution
may have low likelihood (far from optimal).

Alternative Objective Functions: Pseudo Likelihood

v

Likelihood of each variable given its neighbors in the data

PL(x) = H Pe(xi|x-i) = H 'D@(Xi’Xneighbors(X,-))
i=1 i=1

v

Does not require inference at each step. Expression for Gradient given in the book.

Consistent estimator

v

v

Widely used in vision, spatial statistics, etc.

v

But PL parameters may not work well for long inference chains

v

Improvements: Block PL

Discriminative/Conditional Parameter Learning

>

>

Maximize conditional likelihood of query (Y) given evidence (X)
Gradient: .
> (A, y0) — e [1x10])
j=1
For each example gradient equals the number of times (either 0 or 1) the feature

is true in the data minus the number of times the feature is true according to the
model conditioned on the evidence.

In generative models, each gradient ascent iteration required only a single
execution of inference. In the discriminative or conditional case, we require
inference for each example!

However, in the conditional case, inference is easier because all variables in the set
X are assigned a value (evidence).

Discriminative Learning: Voted Perceptron

» Approximate expected counts in the MPE state of the query variables Y given
evidence X = x

» Originally proposed for training HMMs discriminatively (Collins, 2002)

» Gradient: m
5094)

Jj=1

» To reduce bias, typically return an average. Suppose the gradient ascent
algorithm is run for T iterations:

1 T
;== 0

Learning Parameters with Missing Data: POD

v

Recall: Maximize Log-Likelihood but the likelihood function is multi-modal!

» W.L.0.G. Let Y be missing (or hidden) and X be observed in the data
» Gradient:
1M ,
7> Ee |filx)] — Eo[fi(x)]
j=1
» Gradient equals feature expectation over the data and the hidden variables minus

the feature expectation over all of the variables.

Learning Structure of Markov Networks

> Active Research area.
> Use Bayesian scores because similar to Bayes nets, complete graph is the optimal
solution according to the Max-Likelihood criteria.

» Popular Algorithms
» Greedy Structure search.

v

Start with atomic features
> Greedily conjoin features to improve score
> Problem: Need to reestimate weights for each new candidate
> Approximation: Keep weights of previous features constant
> Logistic Regression with ¢ regularization for learning pairwise networks
> Run logistic regression with ¢1 penalty for each variable X with X as the class variable
and all other variables as features
> Remove all edges that have zero weights. If there is a conflict on an edge, either take
unions or intersections.

Summary

v

Learning parameters (or weights) given structure: FOD + MLE/Bayesian

» Generatively: Learn P(X,Y).
» Discriminatively: Learn P(Y|X)

v

ML/Bayesian estimation is slow. Possible fixes: use approximate inference
algorithms or alternative objective functions.

Learning with incomplete data given structure: POD+ MLE/Bayesian. (Just the
gradient changes)

v

v

Learning structure (features): Two algorithms

