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What we studied in a nutshell?

• Representation
– Graphical
– Template-based
– Logical

• Inference
– Given a statistical model and a query, answer the 

query
• Learning
– Given data, learn a representation



Probability Theory

• 0 ≤ Pr 𝑥 ≤ 1
• Pr 𝑥 = ∑!"#$ Pr(𝑥 ∧ 𝑎!)

– a1, ….,an is a set of mutually exclusive and exhaustive events

• Pr 𝑥 ∨ 𝑦 = Pr 𝑥 + Pr 𝑦 − Pr(𝑥 ∧ 𝑦)
• Pr 𝑥 ∧ 𝑦 = Pr 𝑥 Pr 𝑦

– x and y are independent events
• 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑟 𝐶ℎ𝑎𝑖𝑛 𝑟𝑢𝑙𝑒:

– Pr 𝑥! ∧ ⋯∧ 𝑥" = ∏#$!
" Pr(𝑥#|𝑥! ∧ ⋯∧ 𝑥#%!)

• 𝐵𝑎𝑦𝑒𝑠 𝑟𝑢𝑙𝑒: Pr 𝑥 𝑦 = %& 𝑦 𝑥 %&(()
%&(*)



Conditional Independence (CI) Properties

• I(X,Z,Y):  Pr(X,Y|Z) = Pr(X|Z)Pr(Y|Z)
• Symmetry: I(X,Z,Y)=> I(Y,Z,X)
• Decomposition: I(X,Z,YÈW)=>I(X,Z,Y)
• Weak Union: I(X,Z,YÈW)=>I(X,ZÈW,Y)
• Contraction: 
– I(X,YÈZ,W) & I(X,Z,Y)=>I(X,Z,YÈW)

• If distribution is positive, Intersection:
– I(X,ZÈW,Y) & I(X,ZÈY,W)=>I(X,Z,YÈW)



Representation: 
Graphical Representations

• From a probability distribution to a graph
• Graph properties vs conditional independence 

properties
• A graph can be viewed as:
– View 1: A data structure for compactly representing a 

joint distribution
– View 2: Compact representation for a set of 

conditional independence assumption
– Both views are equivalent

• Bayesian networks (Directed Acyclic graph)
• Markov networks (Undirected graph)



Concept of I-map, D-map and P-map

• A graph represents conditional independence 
assumptions

• A graph G is an I-map of Pr if I(G)ÍI(Pr)
• A graph G is a D-map of Pr if I(Pr) ÍI(G)
• A graph G is a P-map of Pr if I(G)=I(Pr)
• Minimal I-maps
– Remove an edge from G and it ceases to be an I-

map.



Bayesian networks: Compact 
Representation of the Joint distribution

• Pr 𝑥!, … , 𝑥" = ∏#$!
" Θ%!|'((%#)



Bayesian networks: Compact representation of 
Conditional Independence assumptions

• Derive others using CI properties.



D-separation

• Graphical test of conditional independence
• I(G)=d-sepG



Constructing Minimal I-maps



Markov networks: compact 
representation of the joint distribution



Markov networks: Compact 
representation of CI assumptions

• Simpler: Graph separation I(X,Z,Y) if X and Y
become disconnected after removing Z

• Converting a Bayesian network to a Markov 
network

• Converting a Markov network to a Bayesian 
network
– Make the Markov network Chordal

• Chordal graphs lie at the intersection of the 
two.



Other Representations

• Factor Graphs
• Formula-based Representations
– Formulas with weights attached to them

• Log-Linear models

– Pr 𝒙 = !
"
exp(∑#𝑤𝑖𝑓𝑖(𝒙))

– fi is a formula or a feature
– wi is the weight of the formula = log(potential-

value)



Dynamic Bayesian networks

• A template for generating a Bayesian network
– Parameter: # of time-slices



Answering Queries: Inference

• Queries
– (PE) Probability of Evidence (Partition function)
– (MAR) Posterior Marginals: P(Xi|e)
– (MPE) Most Probable Explanation
– (MAP) Maximum a Posteriori



Exact Algorithms for PE and MAR: 
Elimination

• Bucket/Variable Elimination for PE
• Junction tree algorithm for MAR
– Sum-product message passing

• Complexity Analysis
– Time and Space exponential in the treewidth of the 

primal/interaction graph
• Make the graph chordal
• Construct a tree decomposition

– No difference at inference time between Bayesian and 
Markov networks!
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Bucket Elimination [Dechter96]
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Message passing Equations
• Multiply all received 

messages except from R
• Multiply all functions
• Sum-out all variables 

except the separatorS

R

𝑚 𝑆 → 𝑅 = 0
!"#$ % &%'((%,+)

1
-∈-/012340$(%)

𝑓 1
5∈6'37894#$ % &+

𝑚(G → R)



Exact Algorithms for PE and MAR: 
Search

• AND/OR Search spaces
– Time and Space tradeoffs
– Pseudo Tree and Context
– Tree vs Graph Search

• w-cutset conditioning
• Formula-based Probabilistic Inference
– Weighted model counting
– Determinism and Context Specific independence
– Unit propagation and logical inference



AND/OR Tree DFS Algorithm
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AND node: Combination operator (product)
OR node: Marginalization operator (summation)
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AND/OR Graph DFS Algorithm
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Efficiency: Example

Optimal VDC 
explores 12 leaf 
nodes.

Optimal FDC 
explores 7 leaf 
nodes.

Can’t draw it  
completely 
because it is 
too big



Exact Algorithms for MPE and MAP

• Exact Algorithms (MPE)
– Bucket elimination  (Replace sum by max)
– DFS search
– Branch and Bound Search
• Lower bounds computed using Mini-buckets

• Exact Algorithms (MAP)
– Constrained Bucket elimination (sum then max)
– Branch and Bound search



Approximate Inference

• Propagation-based Inference
– Belief Propagation
– Iterative Join Graph Propagation

• Constructing arc-minimal join graphs
• Convergence

• Sampling-based Algorithms
– Importance Sampling

• Likelihood weighting
– Metropolis Hastings
– Gibbs sampling
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Approximate Inference for MPE/MAP

• Branch and Bound algorithm
• Local search
• Max-product Belief Propagation (did not 

cover)



Inference in Dynamic Probabilistic 
models

• Forward-Backwards algorithm
– Slice by Slice Variable elimination (forward pass)

• Viterbi algorithm
– MPE-type inference

• Slice by Slice Likelihood weighting
• Particle Filtering



Learning Graphical models

• Maximum Likelihood vs Bayesian approach
• Fully observable vs Partially Observable data
• Structure vs Parameter Learning
• Bayesian vs Markov networks



Learning Concepts

• Maximizing likelihood will decrease the KL 
divergence between the learned model and data-
generating distribution

• Overfitting
• Generalization
• Bias-Variance tradeoff
• Regularization
• Training vs Test set
• K-fold Cross validation



Learning Bayesian networks
Maximum likelihood approach

• Parameter learning
– FOD: easy (ratio of counts)
– POD case is tricky. Requires inference

• EM and Gradient Ascent.
• Variations

• Structure learning
– FOD:  for trees is easy (Chow-Liu algorithm)
– FOD: for general Bayesian networks is hard

• Need to add a penalty term. Why?
• Local Search

– POD: Structural EM (not covered)



Learning Bayesian networks
Bayesian approach

• Bayesians: They integrate prior knowledge into the 
learning process and reduce learning to a problem of 
inference.

• Concept of the meta-network
• Discrete vs Dirichlet priors
• Parameter learning
– FOD case: Closed form equations in which we need not 

explicitly construct the meta-network
– POD case: EM algorithm (again we need not explicitly 

construct the meta-network. It requires inference 
however)

• Bayesian Structure learning (not covered in detail)



Learning Markov networks

• Hard and complicated because we have to
compute the partition function which requires 
inference.
– Even FOD case does not have a closed form.

• Structure learning is relatively easier because 
we do not have to worry about cycles



Software Resources
• BNT (Kevin Murphy)
• Alchemy  (See my webpage)
• Vibhav Gogate’s software page
• Adnan Darwiche’s group software (http://reasoning.cs.ucla.edu/)
• Rina Dechter’s software page (graphmod.ics.uci.edu)
• JavaBayes
• Hugin (commercial software)
• PNL (intel’s library)
• Joris Mooij’s libdai (http://cs.ru.nl/~jorism/)
• Blog (Brian Milch’s statistical relational learning library)
• Smile Genie (http://genie.sis.pitt.edu/)
• FastInf

– (http://compbio.cs.huji.ac.il/FastInf/fastInf/FastInf_Homepage.html)

http://reasoning.cs.ucla.edu/
http://cs.ru.nl/~jorism/
http://genie.sis.pitt.edu/
http://compbio.cs.huji.ac.il/FastInf/fastInf/FastInf_Homepage.html

