Statistical Methods in Al/ML
Recap

Vibhav Gogate
The University of Texas at Dallas

What we studied in a nutshell?

* Representation
— Graphical
— Template-based
— Logical

* Inference

— Given a statistical model and a query, answer the
query
* Learning
— Given data, learn a representation

Probability Theory

0<Prlx)<1

Pr(x) =Y, Pr(x A a;)

— a4,,A, is a set of mutually exclusive and exhaustive events
Pr(x vy) =Pr(x) + Pr(y) — Pr(x A y)

Pr(x Ay) = Pr(x) Pr(y)

— xandy are independent events
Product or Chain rule:

— Pr(oc; A Axp) =TI, Pr(xglxg As Axi_q)
Pr(y|x)Pr(x)

Pr(y)

Bayes rule: Pr(x|y) =

Conditional Independence (Cl) Properties

e |(X,Z2,Y): Pr(X,Y|Z) =Pr(X|Z)Pr(Y|2)
e Symmetry: I(X,Z,Y)=> I(Y,Z,X)
 Decomposition: I(X,Z,YUW)=>|(X,Z,Y)
 Weak Union: I(X,Z,YUW)=>|(X,ZUW.,Y)
* Contraction:
—1(X,YUZ,W) & I(X,Z,Y)=>I(X,Z,YUW)
* |f distribution is positive, Intersection:
— 1(X,ZUW,Y) & I(X,ZUY,W)=>I(X,Z,YUW)

Representation:
Graphical Representations

* From a probability distribution to a graph

* Graph properties vs conditional independence
properties

* A graph can be viewed as:

— View 1: A data structure for compactly representing a
joint distribution

— View 2: Compact representation for a set of
conditional independence assumption

— Both views are equivalent
* Bayesian networks (Directed Acyclic graph)

* Markov networks (Undirected graph)

Concept of I-map, D-map and P-map

A grap
assum

A gra
A gra
A gra

D
D

D

n represents conditional independence
otions

n G is an I-map of Prif I(G)cI(Pr)
n G is a D-map of Prif I(Pr) cl(G)

n G is a P-map of Prif I(G)=I(Pr)

Minimal I-maps

— Remove an edge from G and it ceases to be an I-

map.

Bayesian networks: Compact
Representation of the Joint distribution

o PI‘(Xl, e Xn) H?=1 ®xi|pa(xi)

Winter?
(A)

Ly true true 52 true true 8
Sprinkler? R(‘“C“ : true false .8 true false 2
(B)) fal
alse true .75 false true 1
false false 25 false false 9
=S
Wet Grass? -
(E)
true true true .95
true true false .05 C E | eE|C
A | ©4 true false true .9 true true 7
true .6 true false false Sl true false -5
false 4 false true true .8 false true 0
false true false 2 false false 1
false false true 0
false false false 1

Bayesian networks: Compact representation of
Conditional Independence assumptions

* Derive others using Cl properties.

Markovian assumptions,
Markov(G):

Variables B and E have no parents, hence, they are marginally
independent of their non-descendants. J

D-separation

* Graphical test of conditional independence
* 1(G)=d-sepg

Deciding dsep(X,Z,Y) is equivalent to testing whether X and Y are

in a new DAG G’ obtained by pruning DAG G

@ Delete any leaf node W from DAG G as long as W not in
X UY UZ. Repeat until no more nodes can be deleted.

@ Delete all edges outgoing from nodes in Z.

Decided in time and space that are linear in the size of DAG G |

Constructing Minimal I-maps

Given a distribution Pr, how can we construct a DAG G which is
guaranteed to be a minimal I-MAP of Pr?

Given an ordering Xi, ..., X, of the variables in Pr:
@ Start with an empty DAG G (no edges)
@ Consider the variables X; one by one, for i =1,...,n
@ For each variable X, identify a minimal subset P of the
variables in Xi,...,Xj_1 such that

o Ip,(Xi,P,{X1,..., Xi_1} \ P)

Markov networks: compact
representation of the joint distribution

m Normalized product of all factors (called the Gibbs
distribution).

m Pr(a,b,c,d) = »é(a,b) x ¢(b,c) x ¢(c,d) x ¢(a,d)

m Z is a normalizing constant, often called the partition
function

B Z=) apca®(@b)xo(b c)xg(cd)xq¢(ad)
Example: What is the distribution represented by:
o(a,b) = ¢(b,c) =(10,1,1,10)

o b;c) =-0(6,d) = (5,1,1,5)

Markov networks: Compact
representation of Cl assumptions

Simpler: Graph separation I(X,Z,Y) if Xand Y
become disconnected after removing Z

Converting a Bayesian network to a Markov
network

Converting a Markov network to a Bayesian
network

— Make the Markov network Chordal

Chordal graphs lie at the intersection of the
two.

Other Representations

* Factor Graphs
 Formula-based Representations

— Formulas with weights attached to them

* Log-Linear models

1
— Pr(x) = EeXP(Zi wifi(x))
— f. is a formula or a feature

— w; is the weight of the formula = log(potential-
value)

Dynamic Bayesian networks

* A template for generating a Bayesian network

— Parameter: # of time-slices
(Batery - CBatier

1/

OO

Answering Queries: Inference

* Queries
— (PE) Probability of Evidence (Partition function)
— (MAR) Posterior Marginals: P(Xi|e)
— (MPE) Most Probable Explanation
— (MAP) Maximum a Posteriori

Exact Algorithms for PE and MAR:
Elimination

* Bucket/Variable Elimination for PE

* Junction tree algorithm for MAR
— Sum-product message passing
 Complexity Analysis
— Time and Space exponential in the treewidth of the

primal/interaction graph
* Make the graph chordal
* Construct a tree decomposition

— No difference at inference time between Bayesian and
Markov networks!

Bucket Elimination [Dechter96]

Query: P(a|e=0)x P(a,e=0) Elimination Order: d,e,b,c

(A
@’ G P(a,e=0)= ZP(a)P(b|a)P(c|a)P(d|a,b)P(e|b,c)
' =P(a)) P(c|la)) P(bla)) P(e|b,c)) P(d|a,b)
© & 2Pl PEI0 L Pelbo2,

Bucket Tree

Original Functions Messages

\D:/ P(d|a.b) || | folab)F > P(d|a,b)
\ E:/ P(e|b,c) IfE(b,c)I:Ii(e:O|b,c)
\ B/ P(b]a) |fB<a,c>{:§P<b|a)fD<a,b>fE<b,c>
\C:/ Plela) fel@) F 2 P(cla)fy(ac)

\jP@ || P@ae=0=psi@ _Lc

Time/Space is O(exp(w*)) *[ﬁ
A

17

Message passing Equations

m(S - R)

R

 Multiply all received
messages except from R

 Multiply all functions

e Sum-out all variables
except the separator

foo]l me-w
Vars(S)—Sep(S,R) f€functions(S) GeNeighbors(S)—R

Exact Algorithms for PE and MAR:
Search

* AND/OR Search spaces
— Time and Space tradeoffs
— Pseudo Tree and Context
— Tree vs Graph Search

* w-cutset conditioning

* Formula-based Probabilistic Inference
— Weighted model counting
— Determinism and Context Specific independence
— Unit propagation and logical inference

AND/OR Tree DFS Algorithm

P(E|4,B) P(B|A) P(C[A) P(4) Context
A|B|E=0|E=1 A(B=0|B=1 A|C=0]|C=1 A |[P(A)
0/0} .4 .6 0| 4 .6 0| 2 .8 0| .6
0|lx¥] 5| .5 1| 1 [.9 1 7 [3 1| 4
Yo .7 3
11} 2 | 8 Result: P(D=1,E=0)
Evidence: E=0 ¥
24408 (A)
6 A4
.3028 [o] 1559 [1]
3028 (B) 1559 (B)
4 .6 1 9
.352 [o] .27 [1] .623 [o] 104 [1]
4 (E) 88 (¢) 5 (E) 54 (¢) 7 (E) 89 (¢) 2 () 52 (¢)
A4 2 .8 .5 2 .8 7 1 .9 2 1 9
o] [1] -8 [o] [1] 9 o] [1] .7 [o] 1] .5 o] [1] .8 [o] 1] 9 o] [1] .7 [o] 1] .5
.8 9 7 .5 .8 9 7 .5
ol [] [0 [ol /1] [o] [1] o] [l [o] [o] [[o] [1]
P(D|B,C)
B[C|[D=0]D=1
0(0]| .2 .8
0j1] 1 .9 OR node: Marginalization operator (summation)
: (1) g 'E/ AND node: Combination operator (product)

Evidence: D=1 Value of node = updated belief for sub-problem below

AND/OR Graph DFS Algorithm

Context

P(E|4,B) P(B|A) P(C| A) P(4)

A[BlE=0[E=1 A|B=0|B=1 Alc=0]C=1 A[P(A)
olol .4]| .6 o] 4 [.6 o] .2 [.8 0| .6
o([x¥] 5[.5 1] .1 .9 1| .7 [3 1| 4
yjo|l 7 | 3

1/1] 2 | 8 Result: P(D=1,E=0)
Evidence: E=0

[B|C| Value | P(D‘B: C)
010 i t/ B{c|D=0|D=1
o111 .9 < olo] 2 [8
110 7 ol1] .1 .9
1)1 1 1{o] 3 [.7
Cache table for D FRET m 5

Evidence: D=1

Efficiency: Example

(AVBVCVDVE, w,)

(AVBVCVFVG,w,)

(AVBVCVDVE, w,) (DVEVEw)

(AVBVCVFVG,w,) (FVGVI,w,)

(DVEVH,w;) Left arcs are True

(FVGVJ,w)) arcs and right arcs

are False arcs
Left arcs are True
arcs and right arcs
] (DVE, w,) (FVG,w,),7A,~B,—~ C
are False arcs ?I:X(Ex?‘:‘s) (DVEVI—i,w3) (FVGZVJ,m)
AVBVC
ecompose
exp(w,+w,).2?2 Decpmpos
; ’ .

(FVGVJ,w,)

completely (DVE,wy) EVG.y)
. (DVEVH,w ,

ecom%\ because it is AVBVC) (FVGVJ,w,)
too big

(DVEVH,w;) (FVGVJ,w,)

DVE SII{)’““ G A
Optimal VDC Optimal FDC E v
explores 12 leaf explores 7 leaf

nodes. nodes.

Exact Algorithms for MPE and MAP

e Exact Algorithms (MPE)
— Bucket elimination (Replace sum by max)
— DFS search
— Branch and Bound Search

* Lower bounds computed using Mini-buckets

e Exact Algorithms (MAP)

— Constrained Bucket elimination (sum then max)
— Branch and Bound search

Approximate Inference

* Propagation-based Inference

— Belief Propagation

— |terative Join Graph Propagation
* Constructing arc-minimal join graphs
* Convergence

 Sampling-based Algorithms

— Importance Sampling
* Likelihood weighting

— Metropolis Hastings

— Gibbs sampling

Join-graphs

omplexity

less ¢

Approximate Inference for MPE/MAP

* Branch and Bound algorithm
* Local search

 Max-product Belief Propagation (did not
cover)

Inference in Dynamic Probabilistic
models

Forward-Backwards algorithm
— Slice by Slice Variable elimination (forward pass)

Viterbi algorithm
— MPE-type inference

Slice by Slice Likelihood weighting
Particle Filtering

Learning Graphical models

Maximum Likelihood vs Bayesian approach
Fully observable vs Partially Observable data
Structure vs Parameter Learning

Bayesian vs Markov networks

Learning Concepts

Maximizing likelihood will decrease the KL
divergence between the learned model and data-
generating distribution

Overfitting
Generalization
Bias-Variance tradeoff
Regularization
Training vs Test set
K-fold Cross validation

Learning Bayesian networks
Maximum likelihood approach

* Parameter learning
— FOD: easy (ratio of counts)

— POD case is tricky. Requires inference
 EM and Gradient Ascent.
* Variations

e Structure learning

— FOD: for trees is easy (Chow-Liu algorithm)

— FOD: for general Bayesian networks is hard

* Need to add a penalty term. Why?
* Local Search

— POD: Structural EM (not covered)

Learning Bayesian networks
Bayesian approach

Bayesians: They integrate prior knowledge into the
learning process and reduce learning to a problem of
inference.

Concept of the meta-network
Discrete vs Dirichlet priors

Parameter learning

— FOD case: Closed form equations in which we need not
explicitly construct the meta-network

— POD case: EM algorithm (again we need not explicitly
construct the meta-network. It requires inference
however)

Bayesian Structure learning (not covered in detail)

Learning Markov networks

 Hard and complicated because we have to
compute the partition function which requires

inference.
— Even FOD case does not have a closed form.

e Structure learning is relatively easier because
we do not have to worry about cycles

Software Resources

BNT (Kevin Murphy)
Alchemy (See my webpage)
Vibhav Gogate’s software page
Adnan Darwiche’s group software (http://reasoning.cs.ucla.edu/)
Rina Dechter’s software page (graphmod.ics.uci.edu)
JavaBayes
Hugin (commercial software)
PNL (intel’s library)
Joris Mooij’s libdai (http://cs.ru.nl/~jorism/)
Blog (Brian Milch’s statistical relational learning library)
Smile Genie (http://genie.sis.pitt.edu/)
Fastinf
— (http://compbio.cs.huji.ac.il/Fastinf/fastinf/Fastinf Homepage.html)

http://reasoning.cs.ucla.edu/
http://cs.ru.nl/~jorism/
http://genie.sis.pitt.edu/
http://compbio.cs.huji.ac.il/FastInf/fastInf/FastInf_Homepage.html

