Statistical Methods in AI/ML Recap

Vibhav Gogate The University of Texas at Dallas

What we studied in a nutshell?

- Representation
 - Graphical
 - Template-based
 - Logical
- Inference
 - Given a statistical model and a query, answer the query
- Learning

- Given data, learn a representation

Probability Theory

- $0 \leq \Pr(x) \leq 1$
- Pr(x) = ∑_{i=1}ⁿ Pr(x ∧ a_i)
 a₁, ..., a_n is a set of mutually exclusive and exhaustive events
- $\Pr(x \lor y) = \Pr(x) + \Pr(y) \Pr(x \land y)$
- Pr(x ∧ y) = Pr(x) Pr(y)
 x and y are independent events
- Product or Chain rule:

$$-\Pr(x_1 \wedge \dots \wedge x_n) = \prod_{i=1}^n \Pr(x_i | x_1 \wedge \dots \wedge x_{i-1})$$

• Bayes rule:
$$Pr(x|y) = \frac{Pr(y|x)Pr(x)}{Pr(y)}$$

Conditional Independence (CI) Properties

- I(X,Z,Y): Pr(X,Y|Z) = Pr(X|Z)Pr(Y|Z)
- Symmetry: I(X,Z,Y)=> I(Y,Z,X)
- Decomposition: I(X,Z,Y \cup W)=>I(X,Z,Y)
- Weak Union: I(X,Z,Y∪W)=>I(X,Z∪W,Y)
- Contraction:

 $- |(X,Y \cup Z,W) \& |(X,Z,Y) => |(X,Z,Y \cup W)|$

• If distribution is positive, Intersection:

 $- |(X,Z \cup W,Y) \& |(X,Z \cup Y,W) => |(X,Z,Y \cup W)|$

Representation: Graphical Representations

- From a probability distribution to a graph
- Graph properties vs conditional independence properties
- A graph can be viewed as:
 - View 1: A data structure for compactly representing a joint distribution
 - View 2: Compact representation for a set of conditional independence assumption
 - Both views are equivalent
- Bayesian networks (Directed Acyclic graph)
- Markov networks (Undirected graph)

Concept of I-map, D-map and P-map

- A graph represents conditional independence assumptions
- A graph G is an I-map of Pr if I(G)⊆I(Pr)
- A graph G is a D-map of Pr if $I(Pr) \subseteq I(G)$
- A graph G is a P-map of Pr if I(G)=I(Pr)
- Minimal I-maps
 - Remove an edge from G and it ceases to be an Imap.

Bayesian networks: Compact Representation of the Joint distribution

• $\Pr(x_1, \dots, x_n) = \prod_{i=1}^n \Theta_{x_i | pa(x_i)}$

A tru fal

A E	3	$\Theta_{B A}$	A	С	$\Theta_{C A}$
true t	rue	.2	true	true	.8
true fa	alse	.8	true	false	.2
false t	rue	.75	false	true	.1
false fa	alse	.25	false	false	.9

		В	С	D	$\Theta_{D B,C}$			
		true	true	true	.95			
		true	true	false	.05	С	E	$\Theta_{E C}$
	Θ_A	true	false	true	.9	true	true	.7
e	.6	true	false	false	.1	true	false	.3
se	.4	false	true	true	.8	false	true	0
		false	true	false	.2	false	false	1
		false	false	true	0			
		false	false	false	1			

Bayesian networks: Compact representation of Conditional Independence assumptions

• Derive others using CI properties.

Variables B and E have no parents, hence, they are marginally independent of their non-descendants.

D-separation

- Graphical test of conditional independence
- I(G)=d-sep_G

Deciding $dsep_G(X, Z, Y)$ is equivalent to testing whether X and Y are disconnected in a new DAG G' obtained by pruning DAG G

- Delete any leaf node W from DAG G as long as W not in X ∪ Y ∪ Z. Repeat until no more nodes can be deleted.
- Delete all edges outgoing from nodes in **Z**.

Decided in time and space that are linear in the size of DAG G

Constructing Minimal I-maps

Given a distribution Pr, how can we construct a DAG G which is guaranteed to be a minimal I-MAP of Pr?

Given an ordering X_1, \ldots, X_n of the variables in Pr:

- Start with an empty DAG G (no edges)
- Consider the variables X_i one by one, for i = 1, ..., n
- For each variable X_i , identify a minimal subset **P** of the variables in X_1, \ldots, X_{i-1} such that
 - $I_{\Pr}(X_i, \mathbf{P}, \{X_1, \dots, X_{i-1}\} \setminus \mathbf{P})$

Markov networks: compact representation of the joint distribution

- Normalized product of all factors (called the Gibbs distribution).
- Pr(a, b, c, d) = $\frac{1}{Z}\phi(a, b) \times \phi(b, c) \times \phi(c, d) \times \phi(a, d)$
- Z is a normalizing constant, often called the partition function
- $Z = \sum_{a,b,c,d} \phi(a,b) \times \phi(b,c) \times \phi(c,d) \times \phi(a,d)$

Example: What is the distribution represented by:

 $\phi(a,b) = \phi(b,c) = (10,1,1,10)$ $\phi(b,c) = \phi(c,d) = (5,1,1,5)$ Markov networks: Compact representation of CI assumptions

- Simpler: Graph separation I(X,Z,Y) if X and Y become disconnected after removing Z
- Converting a Bayesian network to a Markov network
- Converting a Markov network to a Bayesian network
 - Make the Markov network Chordal
- Chordal graphs lie at the intersection of the two.

Other Representations

- Factor Graphs
- Formula-based Representations

 Formulas with weights attached to them
- Log-Linear models

$$-\Pr(\mathbf{x}) = \frac{1}{Z} \exp(\sum_{i} w_{i} f_{i}(\mathbf{x}))$$

- $-f_i$ is a formula or a feature
- w_i is the weight of the formula = log(potentialvalue)

Dynamic Bayesian networks

• A template for generating a Bayesian network

– Parameter: # of time-slices

Answering Queries: Inference

- Queries
 - (PE) Probability of Evidence (Partition function)
 - (MAR) Posterior Marginals: P(Xi|e)
 - (MPE) Most Probable Explanation
 - (MAP) Maximum a Posteriori

Exact Algorithms for PE and MAR: Elimination

- Bucket/Variable Elimination for PE
- Junction tree algorithm for MAR
 - Sum-product message passing
- Complexity Analysis
 - Time and Space exponential in the treewidth of the primal/interaction graph
 - Make the graph chordal
 - Construct a tree decomposition
 - No difference at inference time between Bayesian and Markov networks!

Message passing Equations

Exact Algorithms for PE and MAR: Search

- AND/OR Search spaces
 - Time and Space tradeoffs
 - Pseudo Tree and Context
 - Tree vs Graph Search
- w-cutset conditioning
- Formula-based Probabilistic Inference
 - Weighted model counting
 - Determinism and Context Specific independence
 - Unit propagation and logical inference

AND/OR Tree DFS Algorithm

Evidence: D=1

AND/OR Graph DFS Algorithm

Efficiency: Example

Exact Algorithms for MPE and MAP

- Exact Algorithms (MPE)
 - Bucket elimination (Replace sum by max)
 - DFS search
 - Branch and Bound Search
 - Lower bounds computed using Mini-buckets
- Exact Algorithms (MAP)
 - Constrained Bucket elimination (sum then max)
 - Branch and Bound search

Approximate Inference

- Propagation-based Inference
 - Belief Propagation
 - Iterative Join Graph Propagation
 - Constructing arc-minimal join graphs
 - Convergence
- Sampling-based Algorithms
 - Importance Sampling
 - Likelihood weighting
 - Metropolis Hastings
 - Gibbs sampling

Join-graphs

more accuracy

Approximate Inference for MPE/MAP

- Branch and Bound algorithm
- Local search
- Max-product Belief Propagation (did not cover)

Inference in Dynamic Probabilistic models

- Forward-Backwards algorithm
 - Slice by Slice Variable elimination (forward pass)
- Viterbi algorithm
 - MPE-type inference
- Slice by Slice Likelihood weighting
- Particle Filtering

Learning Graphical models

- Maximum Likelihood vs Bayesian approach
- Fully observable vs Partially Observable data
- Structure vs Parameter Learning
- Bayesian vs Markov networks

Learning Concepts

- Maximizing likelihood will decrease the KL divergence between the learned model and datagenerating distribution
- Overfitting
- Generalization
- Bias-Variance tradeoff
- Regularization
- Training vs Test set
- K-fold Cross validation

Learning Bayesian networks Maximum likelihood approach

- Parameter learning
 - FOD: easy (ratio of counts)
 - POD case is tricky. Requires inference
 - EM and Gradient Ascent.
 - Variations
- Structure learning
 - FOD: for trees is easy (Chow-Liu algorithm)
 - FOD: for general Bayesian networks is hard
 - Need to add a penalty term. Why?
 - Local Search
 - POD: Structural EM (not covered)

Learning Bayesian networks Bayesian approach

- Bayesians: They integrate prior knowledge into the learning process and reduce learning to a problem of inference.
- Concept of the meta-network
- Discrete vs Dirichlet priors
- Parameter learning
 - FOD case: Closed form equations in which we need not explicitly construct the meta-network
 - POD case: EM algorithm (again we need not explicitly construct the meta-network. It requires inference however)
- Bayesian Structure learning (not covered in detail)

Learning Markov networks

- Hard and complicated because we have to compute the partition function which requires inference.
 - Even FOD case does not have a closed form.
- Structure learning is relatively easier because we do not have to worry about cycles

Software Resources

- BNT (Kevin Murphy)
- Alchemy (See my webpage)
- Vibhav Gogate's software page
- Adnan Darwiche's group software (<u>http://reasoning.cs.ucla.edu/</u>)
- Rina Dechter's software page (graphmod.ics.uci.edu)
- JavaBayes
- Hugin (commercial software)
- PNL (intel's library)
- Joris Mooij's libdai (<u>http://cs.ru.nl/~jorism/</u>)
- Blog (Brian Milch's statistical relational learning library)
- Smile Genie (<u>http://genie.sis.pitt.edu/</u>)
- FastInf
 - (<u>http://compbio.cs.huji.ac.il/FastInf/fastInf/FastInf_Homepage.html</u>)