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Bayesian Networks

oo > CPTS: P(Xi|pa(X;))

oeom » Joint Distribution:

e P(X) = [TL, P(Xilpa(Xy))
e » P(D,1,G,S,L) =
JoosTooi P(D)P(1)P(G|D, 1)P(S|I)P(L|G)

» Common Inference Tasks
» Probability of Evidence: P(L = /°,S = s) =7
» Posterior Marginal Estimation: P(D = d*|L = /°,S = s) =7



Markov networks

» Edge Potentials: ¢; ;
» Node Potentials: ¢;

» Joint Distribution:

P = 5 TT 610 [T ()

ijeE iev

O—0—0

Graphical model

» Common Inference Tasks

» Compute the partition function: Z =7.
» Posterior Marginal Estimation: P(D = d*|/ = i!) =?.



Inference tasks: Definitions

» Probability of Evidence (or the partition function)

P(E=¢e)= ZHPX|pa )| E=e

X\E i=1
z=> 1lsi0
xeX i
» Posterior marginals (belief updating)
P(Xi = xi, E = e)
P(E =e)
ZX\EUX,- [T7-1 P(Xilpa(Xi))|E=e,xi=x:

P(X, = X,"E = e) =

>ox\e 11 P(Xilpa(Xi))|E=e



Why Approximate Inference?

» Both problems are #P-complete.
» Computationally intractable. No hope!
» A tractable class: When the treewidth of the graphical model is small (< 25).
» Most real world problems have high treewidth.
» In many applications, approximations are sufficient.
» P(X;i = x|E = e) =0.29292
> Appro><|mate inference yields P(X; = x;|[E = e) = 0.3
» Buy the stock X; if P(X; = x;|E = e) < 0.4.
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What is a sample and how to generate one?

» Given a set of variables X = {Xi,...,X,}, a sample is an instantiation or an
assignment to all variables.



What is a sample and how to generate one?

» Given a set of variables X = {Xi,...,X,}, a sample is an instantiation or an
assignment to all variables.
t_ t
X = (X17 aXn)

> Algorithm to draw a sample from a univariate distribution P(X;). Domain of
k-1
={x0 ...
17

4 I
1. Divide a real line [0,1] into k intervals such that the width of the j-th interval is
proportional to P(X; = x,’)
2. Draw a random number r € [0, 1]
3. Determine the region j in which r lies. Output X,J

» Example
1. Domain of X; = {x?,x},x?,x?}; P(X;) = (0.3,0.25,0.27,0.18)
2. Random numbers:
(a) r=0.2929. X; =7
(b) r=0.5209. X; =7.



Sampling from a Bayesian network (Logic Sampling)

» Sample variables one by one in a topological order (parents of a node before the
node)

S » Sample Difficulty from P(D).
r=0723. D=7

0.8

i%,d° |0.
i%,d* 0.
it,d° |0.

it,d |0.

» Sample Intelligence from P(/).
r=0.34. 1 =7

g |0.99[0.01




Sampling from a Bayesian network (Logic Sampling)

» Sample variables one by one in a topological order (parents of a node before the
node)

» Sample Difficulty from P(D).
r=0723. D=d
; » Sample Intelligence from P(/).
2 [oas r=0.349. | =/°.
» Sample Grade from P(G|i®, d*).
, r=0281, G =?.
s oe e » Sample SAT from P(S]i°).
r=20.992, S =7.




Sampling from a Bayesian network (Logic Sampling)

» Sample variables one by one in a topological order (parents of a node before the
node)

» Sample Difficulty from P(D).
r=0723. D=d'

; » Sample Intelligence from P(/).

o loas r=0.349. | = °.

» Sample Grade from P(G|i®, d?).

r=0281, G =g

» Sample SAT from P(S]i°).
r=0.992, S =s.

» Sample Letter from P(L|g!).
r=0.034, L=/°.




Main idea in Monte Carlo Estimation

» Express the given task as an expected value of a random variable.
Eplg(x)] =) _g(x)P(x)
X

» Generate samples from the distribution P with respect to which the expectation
was taken.

» Estimate the expected value from the samples using:

1 T
A t
== Elg(X)
=

T are independent samples from P.

where x1, ..., x



Properties of the Monte Carlo Estimate

» Convergence: By law of large numbers
1 T
A t
=+ ;g(x ) — Eplg(x)] for T — o0

» Unbiased:
Ep[g] = Ep[g(x)]

» Variance:
Velg(x)]

T

1 T
Velg] = Vp [T > &(x)
t=1

Thus, variance of the estimator can be reduced by increasing the number of
samples. We have no control over the numerator when P is given.
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Rejection Sampling

» Express P(E = €) as an expectation problem.

P(E=e) = > do(x)P(x)
= Ep[de(x)]

where d¢(x) is a dirac-delta function which is 1 if x contains E = e and 0
otherwise.

» Generate samples from the Bayesian network.

» Monte Carlo estimate:

Is(E — )= Number of samples that have E = e

Total number of samples

> lIssues: If P(E = e) is very small (e.g., 107°%), all samples will be rejected.



Rejection Sampling: Example

» Let the evidence be
o] : e=(%g!,s' 10

> Probability of evidence
= 0.00475

» On an average, you will need

S oatos approximately 1/0.00475 ~ 210
g |0 oot samples to get a non-zero
estimate for P(E = e).

i0,d°
io,d*
it,d°

it,d*

» Imagine how many samples will be needed if P(E = e) is small!



Importance Sampling

» Use a proposal distribution Q(Z = X \ E) satisfying
P(Z=2z,E=¢e)>0= Q(Z=2z)>0. Express P(E = e) as follows:

P(E=e) = > P(Z=zE=e)

» Generate samples from Q and estimate using P(E = e) using the following Monte
Carlo estimate:

where (z%,...,z") are sampled from Q.



Importance Sampling: Example

» Let /1,59 be the evidence

» Imagine a uniform Q defined over (D, /, G) and the following samples are
generated.

» P(E = e) = Average of {P(sample, evidence)/Q(sample)}

» sample = (d°,i°, g9),
P(sample, evidence) =
0.6 x 0.7 x 0.3 x 0.9 x 0.95,
e Q(sample) = 0.5 x 0.5 x 0.333

.. 0.8

» sample = (d*, i, g%),
P(sample, evidence) =
0.4 x 0.7 x 0.05 x 0.9 x 0.95,
Q(sample) = 0.5 x 0.5 x 0.333

» and so on




Likelihood weighting

> A special kind of Importance sampling in which Q equals the network obtained by
clamping evidence.

» Evidence = (g%, s°)

i°,d°
i°,d!
it,d°

it,d!

g* [0.99 [0.01




Likelihood weighting

» A special kind of Importance sampling in which Q equals the network obtained by
clamping evidence.

» Evidence = (g%, s°)

» P(sample,evidence)/Q(sample)
can be efficiently computed.
- Q> > The ratio equals the product of
the corresponding CPT values
at the evidence nodes. The
remaining values cancel out

] '
I > Let the sample = (d©, %, /%).

P(sample, evidence)
Q(sample)

i°,d°
iod!
it,d°
it,d*

= 0.3x0.95




Normalized Importance sampling

v

(Un-normalized) IS is not suitable for estimating P(X; = x;|E = e).

v

One option: Estimate the numerator and denominator by IS.

P(Xi = xi.E = e)
P(E = ¢)

P(Xi = x;|E = e) =

v

This ratio estimate is often very bad because the numerator and denominator
errors may be cumulative and may have a different source.
» For example, if the numerator is an under-estimate and the denominator is an
over-estimate.

v

How to fix this? Use: Normalized importance sampling.



Normalized Importance sampling: Theory

» Given a dirac delta function dy,(z) (which is 1 if z contains X; = x; and 0
otherwise), we can write P(X; = x;|E = e) as:

>,04(2)P(Z=2E =e)

P(X; = xi|E = e) S, P(Z=zE=e)

» Now we can use the same @ and samples from it to estimate both the numerator
and the denominator.

1 0 (25 w(2")
Sy w(z)

» This reduces variance because of common random numbers. (Read about it on
Wikipedia. Not covered in standard machine learning texts.)

P(Xi = x;|E =€) =




Normalized Importance sampling: Properties

» Asymptotically Unbiased:
lim Eq[P(X; = xi|E = e)] = P(X; = xi|E = e)
T—o0

» Variance: Harder to analyze
» Liu (2003) suggests a performance measure called effective sample size

» Definition: )

1+ Vo[w(2)]
» It means that T samples from Q are worth only T/(1+ Vg[w(z)]) samples from the
ideal proposal distribution.

ESS(ldeal, Q) =



Importance sampling: Issues

» For optimum performance, the proposal distribution @ should be as close as
possible to P(X|E = e).
» When Q = P(X|E = e), the weight of every sample is P(E = e)! However,
achieving this is NP-hard.

> Likelihood weighting performs poorly when evidence is at the leaves and is unlikely.

> In particular, designing a good proposal distribution is an art rather than a sciencel!
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Markov Chains
A Markov chain is composed of:
> A set of states Val(X) = {x1,x2,...,X/}
» A process that moves from a state x to another state x’ with probability

T(x — x).
» 7T is a square matrix in which each row and column sums to 1
025 025 0.25 0.25 0.25 0.25 0.25 0.25 0.25

» Chain Dynamics

(K ) = 5™ P — T )
x€ Val(X)

» Markov chain Monte Carlo sampling is a process that mirrors the dynamics of a
Markov chain.



Markov Chains: Stationary Distribution
We are interested in the long-term behavior of a Markov chain, which is defined by the
stationary distribution.

» A distribution 7(X) is a stationary distribution if it satisfies:

mX=x)= ) #(X=xT(x—x)

xe Val(X)

> A Markov chain may or may not converge to a stationary distribution.
Constraints:

» m(x1) = 0.257(x1) + 0.57(x3)

» m(x?) = 0.77(x?) + 0.57(x3)

» m(x3) = 0.757(x) + 0.37(x?)

» T(xY) +7(x?) +m(x3) =1
Unique Solution: 7(x!) = 0.2,
7(x?) = 0.5, 7(x*) = 0.3.

0.25 0.7




Sufficient Conditions for ensuring convergence

» Regular Markov chain: A Markov chain is said to be regular if there exists some
number k such that for every x,x’ € Val(X), the probability of getting from x to
x" in exactly k steps is greater than zero.

Theorem
If a finite Markov chain is regular and is defined over a finite space, then it has a
unique stationary distribution.

» Sufficient conditions for ensuring Regularity:
» Construct the state graph such that there is a positive probability to get from any
state to any state.
» For each state x, there is a positive probability self-loop.



MCMC for computing P(X; = x;|E = e)

» Main idea: Construct a Markov chain such that its stationary distribution equals
P(X|E = e).
» Generate samples using the Markov chain

» Estimate P(X; = x;|E = e) using the standard Monte Carlo estimate:

P(X; = xi|E = e)

IIM\i



Gibbs sampling

» Start at a random assignment to all non-evidence variables.

» Select a variable X; and compute the distribution P(X;|E = e, x_;) where x_; is
the current sampled assignment to X \ E U X;.

» Sample a value for X; from P(X;|E = e,x_;). Repeat.

Question: Can we compute P(X;|E = e, x_;) efficiently?



Gibbs sampling

» Start at a random assignment to all non-evidence variables.

> Select a variable X; and compute the distribution P(X;|E = e, x_;) where x_; is
the current sampled assignment to X \ E U X;.
» Sample a value for X; from P(X;|E = e, x_;). Repeat.
» Computing P(Xi|E = e, x_)
» Exact inference is possible because only one variable is not assigned a value!

» The stationary distribution of the Markov chain equals P(X|E = e) (easy to
prove).



Gibbs sampling: Properties

» When the Bayesian network has no zeros, Gibbs sampling is guaranteed to
converge to P(X|E = e)
» When the Bayesian network has zeros or the Evidence is complex (e.g., a SAT
formula), Gibbs sampling may not converge.
» Open problem!
» Mixing time: Let t. be the minimum t such that for any starting distribution P(©),
the distance between P(X|E = e) and P(t) is less than e.

» It is common to ignore some number of samples at the beginning, the so-called
burn-in period, and then consider only every nth sample.



Metropolis-Hastings: Theory

Detailed Balance: Given a transition function 7(x — x’) and an acceptance probability
A(x — x'), a Markov chain satisfies the detailed balance condition if there exists a

distribution 7 such that:
T(x)T(x = x)A(x = x') = 71(xX) T (x' = x)A(X" — x)

Theorem
If a Markov chain is regular and satisfies the detailed balance condition relative to m,

then it has a unique stationary distribution .



Metropolis-Hastings: Algorithm

Input: Current state x*
Output: Next state xi+1

» Draw x’ from T (x! — x)

» Draw a random number r € [0, 1] and update

(L x'if r < A(xt— X))
Xt otherwise

In Metropolis-Hastings A is defined as follows:

Alx — x') = min{l’m}

Theorem
The Metropolis Hastings algorithm satisfies the detailed balance condition.



Metropolis-Hastings: What “T" to use?

» Use an importance distribution @ to make transitions. This is called independent
sampling because the transition function 7 does not depend on what state you

are currently in.

> Use a random walk approach.
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Selecting a Proposal Distribution

v

For good performance Q should be as close as possible to P(X|E = e).
Use a method that yields a good approximation of P(X|E = e) to construct Q

» Variational Inference
» Generalized Belief Propagation

v

v

Update the proposal distribution from the samples (the machine learning
approach)

v

Combinations!



Junctiontree

Graphical model

Algorithm JT-sampling (Perfect sampling)

v

Let o = (Xi,...,X,) be an ordering of variables

g=1
Fori=11to ndo
» Propagate evidence in the junction tree
» Construct a distribution Q;(X;) by referring to any cluster mentioning X; and
marginalizing out all other variables.
» Sample X; = x; from Q;, ¢ = g X Qi(X; = x;)
» Set X; = x; as evidence in the junction tree.

v

v

v

Return (x, q)
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Join graph

Algorithm 1JGP-sampling (Gogate&Dechter, UAI, 2005)

Graphical model

v

Let o = (Xi,...,X,) be an ordering of variables

g=1
Fori=11to ndo
» Propagate evidence in the join graph.
» Construct a distribution Q;(X;) by referring to any cluster mentioning X; and
marginalizing out all other variables.
» Sample X; = x; from Q;, ¢ = g X Qi(X; = x;)
» Set X; = x; as evidence in the join graph.

v

v

v

Return (x, q)



Adaptive Importance sampling

» Machine learning view of sampling: Learn from experience!
» Learn a proposal distribution Q' from the samples.
» At regular intervals, update the proposal distribution Q! at the current interval t
using:
Q1 = Q' +a(Qt - Q)
where « is the learning rate.

> As the number of samples increases, the proposal will get closer and closer to
P(X|E = e).



Rao-Blackwellisation of sampling schemes

» Combine exact inference with sampling.
» Sample a few variables and analytically marginalize out other variables.
» Inference on trees (or low treewidth) graphical models is always tractable. Sample
variables until the graphical model is a tree.
» Rao-Blackwell theorem: Let the non-evidence variables Z be partitioned into two
sets Z1 and Z», where Z; are sampled and Z; are inferred exactly. Then,



Rao-Blackwellisation of sampling schemes: Example

L

Traditional importance sampling
. 1i F(at, ... 0"
T — Q(at,...,it)

Proposal distribution and samples
defined over all variables.

Rao-Blackwellised importance
sampling
Let Z = Vars\ {B, E}

szt
ZZ )

>, F(z, bt e?) is computed
efficiently using Belief Propagation
or Variable Elimination.



Summary

» Importance sampling
» Generate samples from a proposal distribution
» Performance depends on how close the proposal is to the posterior distribution
» Markov chain Monte Carlo (MCMC) sampling
» Attempts to generate samples from the posterior distribution by creating a Markov
chain whose stationary distribution equals the posterior distribution
» Metropolis-Hastings and Gibbs sampling
» Advanced schemes

» How to construct and learn a good proposal distribution.
» How to use graph decompositions to improve the quality of estimation.



