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Bayesian Networks

I CPTS: P(Xi |pa(Xi ))

I Joint Distribution:
P(X ) =

∏N
i=1 P(Xi |pa(Xi ))

I P(D, I ,G ,S , L) =
P(D)P(I )P(G |D, I )P(S |I )P(L|G )

I Common Inference Tasks
I Probability of Evidence: P(L = l0,S = s1) =?
I Posterior Marginal Estimation: P(D = d1|L = l0,S = s1) =?



Markov networks

I Edge Potentials: φi ,j
I Node Potentials: φi
I Joint Distribution:

P(x) =
1

Z

∏
i ,j∈E

φi ,j(x)
∏
i∈V

φi (x)

I Common Inference Tasks
I Compute the partition function: Z =?.
I Posterior Marginal Estimation: P(D = d1|I = i1) =?.



Inference tasks: Definitions

I Probability of Evidence (or the partition function)

P(E = e) =
∑
X\E

n∏
i=1

P(Xi |pa(Xi ))|E=e

Z =
∑
x∈X

∏
i

φi (x)

I Posterior marginals (belief updating)

P(Xi = xi |E = e) =
P(Xi = xi ,E = e)

P(E = e)

=

∑
X\E∪Xi

∏n
i=1 P(Xi |pa(Xi ))|E=e,Xi=xi∑

X\E
∏n

i=1 P(Xi |pa(Xi ))|E=e



Why Approximate Inference?

I Both problems are #P-complete.
I Computationally intractable. No hope!

I A tractable class: When the treewidth of the graphical model is small (< 25).
I Most real world problems have high treewidth.

I In many applications, approximations are sufficient.
I P(Xi = xi |E = e) = 0.29292
I Approximate inference yields P̂(Xi = xi |E = e) = 0.3
I Buy the stock Xi if P(Xi = xi |E = e) < 0.4.



What we will cover today

I Sampling fundamentals
I Monte Carlo techniques

I Rejection Sampling
I Likelihood Weighting
I Importance sampling

I Markov Chain Monte Carlo techniques
I Metropolis-Hastings
I Gibbs sampling

I Advanced Schemes
I Advanced Importance sampling schemes
I Rao-Blackwellisation



What is a sample and how to generate one?

I Given a set of variables X = {X1, . . . ,Xn}, a sample is an instantiation or an
assignment to all variables.

x t = (x t1, . . . , x
t
n)

I Algorithm to draw a sample from a univariate distribution P(Xi ). Domain of

Xi = {x0i , . . . , x
k−1
i }

1. Divide a real line [0, 1] into k intervals such that the width of the j-th interval is

proportional to P(Xi = x ji )
2. Draw a random number r ∈ [0, 1]

3. Determine the region j in which r lies. Output x ji
I Example

1. Domain of Xi = {x0i , x1i , x2i , x3i }; P(Xi ) = (0.3, 0.25, 0.27, 0.18)
2. Random numbers:

(a) r=0.2929. Xi =?,
(b) r=0.5209. Xi =?.
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Sampling from a Bayesian network (Logic Sampling)

I Sample variables one by one in a topological order (parents of a node before the
node)

I Sample Difficulty from P(D).
r = 0.723. D =?

I Sample Intelligence from P(I ).
r = 0.34. I =?.
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Sampling from a Bayesian network (Logic Sampling)

I Sample variables one by one in a topological order (parents of a node before the
node)

Sample =
(d1, i0, g1, s1, l0)

I Sample Difficulty from P(D).
r = 0.723. D = d1

I Sample Intelligence from P(I ).
r = 0.349. I = i0.

I Sample Grade from P(G |i0, d1).
r = 0.281, G = g1.

I Sample SAT from P(S |i0).
r = 0.992, S = s1.

I Sample Letter from P(L|g1).
r = 0.034, L = l0.



Main idea in Monte Carlo Estimation

I Express the given task as an expected value of a random variable.

EP [g(x)] =
∑
x

g(x)P(x)

I Generate samples from the distribution P with respect to which the expectation
was taken.

I Estimate the expected value from the samples using:

ĝ =
1

T

T∑
i=1

g(x t)

where x1, . . . , xT are independent samples from P.



Properties of the Monte Carlo Estimate

I Convergence: By law of large numbers

ĝ =
1

T

T∑
i=1

g(x t)→ EP [g(x)] for T →∞

I Unbiased:
EP [ĝ ] = EP [g(x)]

I Variance:

VP [ĝ ] = VP

[
1

T

T∑
t=1

g(x t)

]
=

VP [g(x)]

T

Thus, variance of the estimator can be reduced by increasing the number of
samples. We have no control over the numerator when P is given.
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Rejection Sampling

I Express P(E = e) as an expectation problem.

P(E = e) =
∑
x

δe(x)P(x)

= EP [δe(x)]

where δe(x) is a dirac-delta function which is 1 if x contains E = e and 0
otherwise.

I Generate samples from the Bayesian network.

I Monte Carlo estimate:

P̂(E = e) =
Number of samples that have E = e

Total number of samples

I Issues: If P(E = e) is very small (e.g., 10−55), all samples will be rejected.



Rejection Sampling: Example

I Let the evidence be
e = (i0, g1, s1, l0)

I Probability of evidence
= 0.00475

I On an average, you will need
approximately 1/0.00475 ≈ 210
samples to get a non-zero
estimate for P(E = e).

I Imagine how many samples will be needed if P(E = e) is small!



Importance Sampling
I Use a proposal distribution Q(Z = X \ E ) satisfying

P(Z = z ,E = e) > 0⇒ Q(Z = z) > 0. Express P(E = e) as follows:

P(E = e) =
∑
z

P(Z = z ,E = e)

=
∑
z

P(Z = z ,E = e)
Q(Z = z)

Q(Z = z)

= EQ

[
P(Z = z ,E = e)

Q(Z = z)

]
= EQ [w(z)]

I Generate samples from Q and estimate using P(E = e) using the following Monte
Carlo estimate:

P̂(E = e) =
1

T

T∑
t=1

P(Z = z t ,E = e)

Q(Z = z t)
=

1

T

T∑
t=1

w(z t)

where (z1, . . . , zT ) are sampled from Q.



Importance Sampling: Example

I Let l1, s0 be the evidence

I Imagine a uniform Q defined over (D, I ,G ) and the following samples are
generated.

I P̂(E = e) = Average of {P(sample, evidence)/Q(sample)}

I sample = (d0, i0, g0),
P(sample, evidence) =
0.6× 0.7× 0.3× 0.9× 0.95,
Q(sample) = 0.5× 0.5× 0.333

I sample = (d1, i0, g0),
P(sample, evidence) =
0.4× 0.7× 0.05× 0.9× 0.95,
Q(sample) = 0.5× 0.5× 0.333

I and so on



Likelihood weighting

I A special kind of Importance sampling in which Q equals the network obtained by
clamping evidence.

I Evidence = (g0, s0)



Likelihood weighting

I A special kind of Importance sampling in which Q equals the network obtained by
clamping evidence.

I Evidence = (g0, s0)

I P(sample,evidence)/Q(sample)
can be efficiently computed.

I The ratio equals the product of
the corresponding CPT values
at the evidence nodes. The
remaining values cancel out.

I Let the sample = (d0, i0, l1).

P(sample, evidence)

Q(sample)
= 0.3×0.95



Normalized Importance sampling

I (Un-normalized) IS is not suitable for estimating P(Xi = xi |E = e).

I One option: Estimate the numerator and denominator by IS.

P̂(Xi = xi |E = e) =
P̂(Xi = xi ,E = e)

P̂(E = e)

I This ratio estimate is often very bad because the numerator and denominator
errors may be cumulative and may have a different source.

I For example, if the numerator is an under-estimate and the denominator is an
over-estimate.

I How to fix this? Use: Normalized importance sampling.



Normalized Importance sampling: Theory

I Given a dirac delta function δxi (z) (which is 1 if z contains Xi = xi and 0
otherwise), we can write P(Xi = xi |E = e) as:

P(Xi = xi |E = e) =

∑
z δxi (z)P(Z = z ,E = e)∑

z P(Z = z ,E = e)

I Now we can use the same Q and samples from it to estimate both the numerator
and the denominator.

P̂(Xi = xi |E = e) =

∑T
t=1 δxi (z

t)w(z t)∑T
t=1 w(z t)

I This reduces variance because of common random numbers. (Read about it on
Wikipedia. Not covered in standard machine learning texts.)



Normalized Importance sampling: Properties

I Asymptotically Unbiased:

lim
T→∞

EQ [P̂(Xi = xi |E = e)] = P(Xi = xi |E = e)

I Variance: Harder to analyze
I Liu (2003) suggests a performance measure called effective sample size

I Definition:

ESS(Ideal ,Q) =
1

1 + VQ [w(z)]

I It means that T samples from Q are worth only T/(1 + VQ [w(z)]) samples from the
ideal proposal distribution.



Importance sampling: Issues

I For optimum performance, the proposal distribution Q should be as close as
possible to P(X |E = e).

I When Q = P(X |E = e), the weight of every sample is P(E = e)! However,
achieving this is NP-hard.

I Likelihood weighting performs poorly when evidence is at the leaves and is unlikely.

I In particular, designing a good proposal distribution is an art rather than a science!
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Markov Chains
A Markov chain is composed of:

I A set of states Val(X) = {x1, x2, . . . , xr}
I A process that moves from a state x to another state x′ with probability
T (x→ x′).

I T is a square matrix in which each row and column sums to 1

0.250.25

0.50.5

0.25

0.5

0.25

0.5

0.25

0.5

0.25 0.25

0.5

0.25

0.5

0.25

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

0.5

–3–4 –2 –1 +1 +2 +3 +4

I Chain Dynamics

P(t+1)(X(t+1) = x′) =
∑

x∈Val(X)

P(t)(X(t) = x)T (x→ x′)

I Markov chain Monte Carlo sampling is a process that mirrors the dynamics of a
Markov chain.



Markov Chains: Stationary Distribution

We are interested in the long-term behavior of a Markov chain, which is defined by the
stationary distribution.

I A distribution π(X) is a stationary distribution if it satisfies:

π(X = x′) =
∑

x∈Val(X)

π(X = x)T (x→ x′)

I A Markov chain may or may not converge to a stationary distribution.
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Constraints:

I π(x1) = 0.25π(x1) + 0.5π(x3)

I π(x2) = 0.7π(x2) + 0.5π(x3)

I π(x3) = 0.75π(x1) + 0.3π(x2)

I π(x1) + π(x2) + π(x3) = 1

Unique Solution: π(x1) = 0.2,
π(x2) = 0.5, π(x3) = 0.3.



Sufficient Conditions for ensuring convergence

I Regular Markov chain: A Markov chain is said to be regular if there exists some
number k such that for every x, x′ ∈ Val(X), the probability of getting from x to
x′ in exactly k steps is greater than zero.

Theorem
If a finite Markov chain is regular and is defined over a finite space, then it has a
unique stationary distribution.

I Sufficient conditions for ensuring Regularity:
I Construct the state graph such that there is a positive probability to get from any

state to any state.
I For each state x, there is a positive probability self-loop.



MCMC for computing P(Xi = xi |E = e)

I Main idea: Construct a Markov chain such that its stationary distribution equals
P(X |E = e).

I Generate samples using the Markov chain

I Estimate P(Xi = xi |E = e) using the standard Monte Carlo estimate:

P̂(Xi = xi |E = e) =
1

T

T∑
t=1

δxi (z
t)



Gibbs sampling

I Start at a random assignment to all non-evidence variables.

I Select a variable Xi and compute the distribution P(Xi |E = e, x−i ) where x−i is
the current sampled assignment to X \ E ∪ Xi .

I Sample a value for Xi from P(Xi |E = e, x−i ). Repeat.

Question: Can we compute P(Xi |E = e, x−i ) efficiently?



Gibbs sampling

I Start at a random assignment to all non-evidence variables.

I Select a variable Xi and compute the distribution P(Xi |E = e, x−i ) where x−i is
the current sampled assignment to X \ E ∪ Xi .

I Sample a value for Xi from P(Xi |E = e, x−i ). Repeat.
I Computing P(Xi |E = e, x−i )

I Exact inference is possible because only one variable is not assigned a value!

I The stationary distribution of the Markov chain equals P(X |E = e) (easy to
prove).



Gibbs sampling: Properties

I When the Bayesian network has no zeros, Gibbs sampling is guaranteed to
converge to P(X |E = e)

I When the Bayesian network has zeros or the Evidence is complex (e.g., a SAT
formula), Gibbs sampling may not converge.

I Open problem!

I Mixing time: Let tε be the minimum t such that for any starting distribution P(0),
the distance between P(X |E = e) and P(t) is less than ε.

I It is common to ignore some number of samples at the beginning, the so-called
burn-in period, and then consider only every nth sample.



Metropolis-Hastings: Theory

Detailed Balance: Given a transition function T (x→ x′) and an acceptance probability
A(x→ x′), a Markov chain satisfies the detailed balance condition if there exists a
distribution π such that:

π(x)T (x→ x′)A(x→ x′) = π(x′)T (x′ → x)A(x′ → x)

Theorem
If a Markov chain is regular and satisfies the detailed balance condition relative to π,
then it has a unique stationary distribution π.



Metropolis-Hastings: Algorithm

Input: Current state xt

Output: Next state xt+1

I Draw x′ from T (xt → x′)

I Draw a random number r ∈ [0, 1] and update

xt+1 =

{
x′ if r ≤ A(xt → x′)
xt otherwise

In Metropolis-Hastings A is defined as follows:

A(x→ x′) = min

{
1,
π(x′)T (x→ x′)

π(x)T (x′ → x)

}

Theorem
The Metropolis Hastings algorithm satisfies the detailed balance condition.



Metropolis-Hastings: What “T” to use?

I Use an importance distribution Q to make transitions. This is called independent
sampling because the transition function T does not depend on what state you
are currently in.

I Use a random walk approach.
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Selecting a Proposal Distribution

I For good performance Q should be as close as possible to P(X |E = e).
I Use a method that yields a good approximation of P(X |E = e) to construct Q

I Variational Inference
I Generalized Belief Propagation

I Update the proposal distribution from the samples (the machine learning
approach)

I Combinations!



Using Approximations of P(X |E = e) to construct Q

Algorithm JT-sampling (Perfect sampling)

I Let o = (X1, . . . ,Xn) be an ordering of variables

I q = 1
I For i = 1 to n do

I Propagate evidence in the junction tree
I Construct a distribution Qi (Xi ) by referring to any cluster mentioning Xi and

marginalizing out all other variables.
I Sample Xi = xi from Qi , q = q × Qi (Xi = xi )
I Set Xi = xi as evidence in the junction tree.

I Return (x , q)



Using Approximations of P(X |E = e) to construct Q

Algorithm IJGP-sampling (Gogate&Dechter, UAI, 2005)

I Let o = (X1, . . . ,Xn) be an ordering of variables

I q = 1
I For i = 1 to n do

I Propagate evidence in the join graph.
I Construct a distribution Qi (Xi ) by referring to any cluster mentioning Xi and

marginalizing out all other variables.
I Sample Xi = xi from Qi , q = q × Qi (Xi = xi )
I Set Xi = xi as evidence in the join graph.

I Return (x , q)



Adaptive Importance sampling

I Machine learning view of sampling: Learn from experience!

I Learn a proposal distribution Q ′ from the samples.

I At regular intervals, update the proposal distribution Qt at the current interval t
using:

Qt+1 = Qt + α(Qt − Q ′)

where α is the learning rate.

I As the number of samples increases, the proposal will get closer and closer to
P(X |E = e).



Rao-Blackwellisation of sampling schemes

I Combine exact inference with sampling.
I Sample a few variables and analytically marginalize out other variables.

I Inference on trees (or low treewidth) graphical models is always tractable. Sample
variables until the graphical model is a tree.

I Rao-Blackwell theorem: Let the non-evidence variables Z be partitioned into two
sets Z1 and Z2, where Z1 are sampled and Z2 are inferred exactly. Then,

VQ

[
P(z1, z2, e)

Q(z1, z2)

]
≥ VQ

[
P(z1, e)

Q(z1)

]



Rao-Blackwellisation of sampling schemes: Example

Traditional importance sampling

Γ̂ =
1

T

T∑
t=1

F (at , . . . , i t)

Q(at , . . . , i t)

Proposal distribution and samples
defined over all variables.

Rao-Blackwellised importance
sampling
Let Z = Vars \ {B,E}

Γ̂ =
1

T

T∑
t=1

∑
z F (z , bt , et)

Q(bt , et)∑
z F (z , bt , et) is computed

efficiently using Belief Propagation
or Variable Elimination.



Summary

I Importance sampling
I Generate samples from a proposal distribution
I Performance depends on how close the proposal is to the posterior distribution

I Markov chain Monte Carlo (MCMC) sampling
I Attempts to generate samples from the posterior distribution by creating a Markov

chain whose stationary distribution equals the posterior distribution
I Metropolis-Hastings and Gibbs sampling

I Advanced schemes
I How to construct and learn a good proposal distribution.
I How to use graph decompositions to improve the quality of estimation.


