Sampling Algorithms for Probabilistic Graphical models

Vibhav Gogate

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

Bayesian Networks

- \blacktriangleright CPTS: $P(X_i|pa(X_i))$
- \blacktriangleright Joint Distribution: $P(X) = \prod_{i=1}^{N} P(X_i | pa(X_i))$
- $P(D, I, G, S, L) =$ $P(D)P(I)P(G|D, I)P(S|I)P(L|G)$

KORK STRAIN A BAR SHOP

- \blacktriangleright Common Inference Tasks
	- ▶ Probability of Evidence: $P(L = l^0, S = s^1) = ?$
	- ▶ Posterior Marginal Estimation: $P(D = d^1 | L = l^0, S = s^1) = ?$

Markov networks

Graphical model

- \triangleright Common Inference Tasks
	- ► Compute the partition function: $Z = ?$.
	- ▶ Posterior Marginal Estimation: $P(D = d^1 | I = i^1) = ?$.
- \blacktriangleright Edge Potentials: $\phi_{i,i}$
- \triangleright Node Potentials: ϕ_i
- \blacktriangleright \blacksquare Joint Distribution:

$$
P(x) = \frac{1}{Z} \prod_{i,j \in E} \phi_{i,j}(x) \prod_{i \in V} \phi_i(x)
$$

KOD KAP KED KED E VOQO

Inference tasks: Definitions

 \blacktriangleright Probability of Evidence (or the partition function)

$$
P(E = e) = \sum_{X \setminus E} \prod_{i=1}^{n} P(X_i | pa(X_i))|_{E = e}
$$

$$
Z = \sum \prod_{i} \phi_i(x)
$$

$$
Z=\sum_{x\in X}\prod_i\phi_i(x)
$$

 \triangleright Posterior marginals (belief updating)

$$
P(X_i = x_i | E = e) = \frac{P(X_i = x_i, E = e)}{P(E = e)} \\
= \frac{\sum_{X \setminus E \cup X_i} \prod_{i=1}^n P(X_i | pa(X_i))|_{E = e, X_i = x_i}}{\sum_{X \setminus E} \prod_{i=1}^n P(X_i | pa(X_i))|_{E = e}}
$$

K ロ X イロ X X を X X を X と ミ X の Q Q へ

Why Approximate Inference?

- \triangleright Both problems are $\#P$ -complete.
	- \triangleright Computationally intractable. No hope!
- A tractable class: When the treewidth of the graphical model is small (< 25) .

KORKA SERKER ORA

- \triangleright Most real world problems have high treewidth.
- In many applications, approximations are sufficient.
	- $P(X_i = x_i | E = e) = 0.29292$
	- Approximate inference yields $\hat{P}(X_i = x_i | E = e) = 0.3$
	- \blacktriangleright Buy the stock X_i if $P(X_i = x_i | E = e) < 0.4$.

What we will cover today

- \blacktriangleright Sampling fundamentals
- \blacktriangleright Monte Carlo techniques
	- \triangleright Rejection Sampling
	- \blacktriangleright Likelihood Weighting
	- \blacktriangleright Importance sampling
- \blacktriangleright Markov Chain Monte Carlo techniques
	- \blacktriangleright Metropolis-Hastings
	- \blacktriangleright Gibbs sampling
- ▶ Advanced Schemes
	- \blacktriangleright Advanced Importance sampling schemes

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \blacktriangleright Rao-Blackwellisation

What is a sample and how to generate one?

Given a set of variables $X = \{X_1, \ldots, X_n\}$, a sample is an instantiation or an assignment to all variables.

$$
x^t = (x_1^t, \ldots, x_n^t)
$$

- Algorithm to draw a sample from a univariate distribution $P(X_i)$. Domain of $X_i = \{x_i^0, \ldots, x_i^{k-1}\}$ $\left\{\begin{matrix} k-1 \\ i \end{matrix}\right\}$
	- 1. Divide a real line [0, 1] into k intervals such that the width of the j-th interval is proportional to $P(X_i = x_i^j)$

KED KAP KED KED E LOQO

- 2. Draw a random number $r \in [0, 1]$
- 3. Determine the region j in which r lies. Output x_i^j

\blacktriangleright Example

- 1. Domain of $X_i = \{x_i^0, x_i^1, x_i^2, x_i^3\}; P(X_i) = (0.3, 0.25, 0.27, 0.18)$
- 2. Random numbers:
	- (a) $r=0.2929$. $X_i = ?$ (b) $r=0.5209$. $X_i = ?$.

What is a sample and how to generate one?

Given a set of variables $X = \{X_1, \ldots, X_n\}$, a sample is an instantiation or an assignment to all variables.

$$
x^t = (x_1^t, \ldots, x_n^t)
$$

- Algorithm to draw a sample from a univariate distribution $P(X_i)$. Domain of $X_i = \{x_i^0, \ldots, x_i^{k-1}\}$ $\binom{k-1}{i}$
	- 1. Divide a real line [0, 1] into k intervals such that the width of the j-th interval is proportional to $P(X_i = x_i^j)$

KORK STRATER STRAKES

- 2. Draw a random number $r \in [0,1]$
- 3. Determine the region j in which r lies. Output x_i^j

\blacktriangleright Example

- 1. Domain of $X_i = \{x_i^0, x_i^1, x_i^2, x_i^3\}$; $P(X_i) = (0.3, 0.25, 0.27, 0.18)$
- 2. Random numbers:
	- (a) $r=0.2929$. $X_i = ?$ (b) $r=0.5209$. $X_i = ?$.

Sampling from a Bayesian network (Logic Sampling)

 \triangleright Sample variables one by one in a topological order (parents of a node before the node)

- \triangleright Sample Difficulty from $P(D)$. $r = 0.723$ $D = ?$
- \triangleright Sample Intelligence from $P(I)$. $r = 0.34$, $l = ?$.

KED KAP KED KED E LOQO

Sampling from a Bayesian network (Logic Sampling)

 \triangleright Sample variables one by one in a topological order (parents of a node before the node)

- \blacktriangleright Sample Difficulty from $P(D)$. $r = 0.723$. $D = d^1$
- Sample Intelligence from $P(I)$. $r = 0.349$. $l = i^0$.
- Sample Grade from $P(G|i^0, d^1)$. $r = 0.281, G = ?$.

KORK STRAIN A BAR SHOP

Sample SAT from $P(S|i^0)$. $r = 0.992, S = ?$.

Sampling from a Bayesian network (Logic Sampling)

 \triangleright Sample variables one by one in a topological order (parents of a node before the node)

 $Sample =$ $(d^1, i^0, g^1, s^1, l^0)$

- \blacktriangleright Sample Difficulty from $P(D)$. $r = 0.723$. $D = d^1$
- Sample Intelligence from $P(I)$. $r = 0.349$. $l = i^0$.
- Sample Grade from $P(G|i^0, d^1)$. $r = 0.281, G = g^1$.
- Sample SAT from $P(S|i^0)$. $r = 0.992, S = s^1.$
- Sample Letter from $P(L|g¹)$. $r = 0.034, L = l^0.$

Main idea in Monte Carlo Estimation

Express the given task as an expected value of a random variable.

$$
E_P[g(x)] = \sum_{x} g(x)P(x)
$$

- Generate samples from the distribution P with respect to which the expectation was taken.
- \triangleright Estimate the expected value from the samples using:

$$
\hat{g} = \frac{1}{T}\sum_{i=1}^T g(x^t)
$$

where $x^1,\ldots,x^{\mathcal{T}}$ are independent samples from $P.$

Properties of the Monte Carlo Estimate

 \triangleright **Convergence:** By law of large numbers

$$
\hat{g} = \frac{1}{T} \sum_{i=1}^{T} g(x^t) \rightarrow E_P[g(x)] \text{ for } T \rightarrow \infty
$$

 \blacktriangleright Unbiased:

$$
E_P[\hat{g}] = E_P[g(x)]
$$

 \blacktriangleright Variance:

$$
V_P[\hat{g}] = V_P\left[\frac{1}{T}\sum_{t=1}^T g(x^t)\right] = \frac{V_P[g(x)]}{T}
$$

Thus, variance of the estimator can be reduced by increasing the number of samples. We have no control over the numerator when P is given.

What we will cover today

- \blacktriangleright Sampling fundamentals
- \blacktriangleright Monte Carlo techniques
	- \triangleright Rejection Sampling
	- \blacktriangleright Likelihood Weighting
	- \blacktriangleright Importance sampling
- \blacktriangleright Markov Chain Monte Carlo techniques
	- \blacktriangleright Metropolis-Hastings
	- \blacktriangleright Gibbs sampling
- ▶ Advanced Schemes
	- \blacktriangleright Advanced Importance sampling schemes

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \blacktriangleright Rao-Blackwellisation

Rejection Sampling

Express $P(E = e)$ as an expectation problem.

$$
P(E = e) = \sum_{x} \delta_e(x) P(x)
$$

$$
= E_P[\delta_e(x)]
$$

where $\delta_e(x)$ is a dirac-delta function which is 1 if x contains $E = e$ and 0 otherwise.

- \triangleright Generate samples from the Bayesian network.
- \blacktriangleright Monte Carlo estimate:

$$
\hat{P}(E = e) = \frac{\text{Number of samples that have } E = e}{\text{Total number of samples}}
$$

If P(E = e) is very small (e.g., 10^{-55}), all samples will be rejected.

Rejection Sampling: Example

- \blacktriangleright Let the evidence be
	- $e = (i^0, g^1, s^1, l^0)$
- \blacktriangleright Probability of evidence $= 0.00475$
- \triangleright On an average, you will need approximately $1/0.00475 \approx 210$ samples to get a non-zero estimate for $P(E = e)$.

KED KAP KED KED E LOQO

In Imagine how many samples will be needed if $P(E = e)$ is small!

Importance Sampling

 \triangleright Use a proposal distribution $Q(Z = X \setminus E)$ satisfying

 $P(Z = z, E = e) > 0 \Rightarrow Q(Z = z) > 0$. Express $P(E = e)$ as follows:

$$
P(E = e) = \sum_{z} P(Z = z, E = e)
$$

=
$$
\sum_{z} P(Z = z, E = e) \frac{Q(Z = z)}{Q(Z = z)}
$$

=
$$
E_Q \left[\frac{P(Z = z, E = e)}{Q(Z = z)} \right] = E_Q[w(z)]
$$

Generate samples from Q and estimate using $P(E = e)$ using the following Monte Carlo estimate:

$$
\hat{P}(E = e) = \frac{1}{T} \sum_{t=1}^{T} \frac{P(Z = z^t, E = e)}{Q(Z = z^t)} = \frac{1}{T} \sum_{t=1}^{T} w(z^t)
$$

where $(z^1, \dots, z^{\mathcal{T}})$ are sampled from $\mathcal{Q}.$

KORKAR KERKER E VOOR

Importance Sampling: Example

- In Let l^1, s^0 be the evidence
- Imagine a uniform Q defined over (D, I, G) and the following samples are generated.
- $\hat{P}(E = e) =$ Average of $\{P(\text{sample}, \text{evidence})/Q(\text{sample})\}$

- sample $=(d^0, i^0, g^0)$, P (sample, evidence) = $0.6 \times 0.7 \times 0.3 \times 0.9 \times 0.95$ $Q(sample) = 0.5 \times 0.5 \times 0.333$
- sample = (d^1, i^0, g^0) , P (sample, evidence) = $0.4 \times 0.7 \times 0.05 \times 0.9 \times 0.95$ $Q(sample) = 0.5 \times 0.5 \times 0.333$
- \blacktriangleright and so on

Likelihood weighting

- \triangleright A special kind of Importance sampling in which Q equals the network obtained by clamping evidence.
- \blacktriangleright Evidence $=(g^0,s^0)$

Likelihood weighting

- \triangleright A special kind of Importance sampling in which Q equals the network obtained by clamping evidence.
- \blacktriangleright Evidence $=(g^0,s^0)$

- \blacktriangleright P(sample,evidence)/Q(sample) can be efficiently computed.
- \blacktriangleright The ratio equals the product of the corresponding CPT values at the evidence nodes. The remaining values cancel out.

Let the sample =
$$
(d^0, i^0, l^1)
$$
.

$$
\frac{P(sample, evidence)}{Q(sample)} = 0.3 \times 0.95
$$

Normalized Importance sampling

- \blacktriangleright (Un-normalized) IS is not suitable for estimating $P(X_i = x_i | E = e)$.
- \triangleright One option: Estimate the numerator and denominator by IS.

$$
\hat{P}(X_i = x_i | E = e) = \frac{\hat{P}(X_i = x_i, E = e)}{\hat{P}(E = e)}
$$

- \triangleright This ratio estimate is often very bad because the numerator and denominator errors may be cumulative and may have a different source.
	- \triangleright For example, if the numerator is an under-estimate and the denominator is an over-estimate.
- \blacktriangleright How to fix this? Use: Normalized importance sampling.

Normalized Importance sampling: Theory

 \blacktriangleright Given a dirac delta function $\delta_{\mathsf{x}_i}(z)$ (which is 1 if z contains $\mathsf{X}_i=\mathsf{x}_i$ and 0 otherwise), we can write $P(X_i = x_i | E = e)$ as:

$$
P(X_i = x_i | E = e) = \frac{\sum_z \delta_{x_i}(z) P(Z = z, E = e)}{\sum_z P(Z = z, E = e)}
$$

 \triangleright Now we can use the same Q and samples from it to estimate both the numerator and the denominator.

$$
\hat{P}(X_i = x_i | E = e) = \frac{\sum_{t=1}^T \delta_{x_i}(z^t) w(z^t)}{\sum_{t=1}^T w(z^t)}
$$

 \triangleright This reduces variance because of common random numbers. (Read about it on Wikipedia. Not covered in standard machine learning texts.)

Normalized Importance sampling: Properties

 \blacktriangleright Asymptotically Unbiased:

$$
\lim_{T\to\infty}E_Q[\hat{P}(X_i=x_i|E=e)]=P(X_i=x_i|E=e)
$$

- \blacktriangleright Variance: Harder to analyze
- \blacktriangleright Liu (2003) suggests a performance measure called effective sample size
	- \blacktriangleright Definition:

$$
ESS(Ideal, Q) = \frac{1}{1 + V_Q[w(z)]}
$$

It means that T samples from Q are worth only $T/(1 + V_O[w(z)])$ samples from the ideal proposal distribution.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Importance sampling: Issues

- \triangleright For optimum performance, the proposal distribution Q should be as close as possible to $P(X|E = e)$.
	- \triangleright When $Q = P(X|E = e)$, the weight of every sample is $P(E = e)!$ However, achieving this is NP-hard.
- \triangleright Likelihood weighting performs poorly when evidence is at the leaves and is unlikely.
- In particular, designing a good proposal distribution is an art rather than a science!

What we will cover today

- \blacktriangleright Sampling fundamentals
- \blacktriangleright Monte Carlo techniques
	- \blacktriangleright Rejection Sampling
	- \blacktriangleright Likelihood Weighting
	- \blacktriangleright Importance sampling
- ▶ Markov Chain Monte Carlo techniques
	- \blacktriangleright Metropolis-Hastings
	- \triangleright Gibbs sampling
- ▶ Advanced Schemes
	- \blacktriangleright Advanced Importance sampling schemes

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \blacktriangleright Rao-Blackwellisation

Markov Chains

A Markov chain is composed of:

- A set of states $Val(\mathbf{X}) = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_r\}$
- A process that moves from a state x to another state x' with probability $\mathcal{T}(\mathsf{x} \to \mathsf{x}')$.

 \triangleright T is a square matrix in which each row and column sums to 1

 \triangleright Chain Dynamics

$$
P^{(t+1)}(\mathbf{X}^{(t+1)}=\mathbf{x}')=\sum_{\mathbf{x}\in\text{Val}(\mathbf{X})}P^{(t)}(\mathbf{X}^{(t)}=\mathbf{x})\mathcal{T}(\mathbf{x}\rightarrow\mathbf{x}')
$$

 \triangleright Markov chain Monte Carlo sampling is a process that mirrors the dynamics of a Markov chain.**KORKARRA ERKER EL POLO**

Markov Chains: Stationary Distribution

We are interested in the long-term behavior of a Markov chain, which is defined by the stationary distribution.

A distribution $\pi(\mathbf{X})$ is a stationary distribution if it satisfies:

$$
\pi(\mathbf{X}=\mathbf{x}')=\sum_{\mathbf{x}\in\text{Val}(\mathbf{X})}\pi(\mathbf{X}=\mathbf{x})\mathcal{T}(\mathbf{x}\rightarrow\mathbf{x}')
$$

 \triangleright A Markov chain may or may not converge to a stationary distribution.

Constraints:

$$
π(x1) = 0.25π(x1) + 0.5π(x3)
$$

\n
$$
π(x2) = 0.7π(x2) + 0.5π(x3)
$$

\n
$$
π(x3) = 0.75π(x1) + 0.3π(x2)
$$

 $\blacktriangleright \pi(x^1) + \pi(x^2) + \pi(x^3) = 1$ Unique Solution: $\pi(x^1) = 0.2$, $\pi(x^2) = 0.5$, $\pi(x^3) = 0.3$.

Sufficient Conditions for ensuring convergence

 \triangleright Regular Markov chain: A Markov chain is said to be regular if there exists some number k such that for every $x, x' \in Val(X)$, the probability of getting from x to x' in exactly k steps is greater than zero.

Theorem

If a finite Markov chain is regular and is defined over a finite space, then it has a unique stationary distribution.

- \triangleright Sufficient conditions for ensuring Regularity:
	- \triangleright Construct the state graph such that there is a positive probability to get from any state to any state.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \triangleright For each state **x**, there is a positive probability self-loop.

MCMC for computing $P(X_i = x_i | E = e)$

- \triangleright Main idea: Construct a Markov chain such that its stationary distribution equals $P(X|E = e)$.
- \triangleright Generate samples using the Markov chain
- \blacktriangleright Estimate $P(X_i = x_i | E = e)$ using the standard Monte Carlo estimate:

$$
\hat{P}(X_i = x_i | E = e) = \frac{1}{T} \sum_{t=1}^T \delta_{x_i}(z^t)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Gibbs sampling

- \triangleright Start at a random assignment to all non-evidence variables.
- ► Select a variable X_i and compute the distribution $P(X_i | E = e, \mathbf{x}_{-i})$ where \mathbf{x}_{-i} is the current sampled assignment to $X\setminus E\cup X_i.$

KORK STRATER STRAKES

► Sample a value for X_i from $P(X_i | E = e, \mathbf{x}_{-i})$. Repeat.

Question: Can we compute $P(X_i | E = e, \mathbf{x}_{-i})$ efficiently?

Gibbs sampling

- \triangleright Start at a random assignment to all non-evidence variables.
- ► Select a variable X_i and compute the distribution $P(X_i|E = e, \mathbf{x}_{-i})$ where \mathbf{x}_{-i} is the current sampled assignment to $X\setminus E\cup X_i.$
- ► Sample a value for X_i from $P(X_i | E = e, \mathbf{x}_{-i})$. Repeat.
- ► Computing $P(X_i|E = e, \mathbf{x}_{-i})$
	- \triangleright Exact inference is possible because only one variable is not assigned a value!

KORK STRATER STRAKES

In The stationary distribution of the Markov chain equals $P(X|E = e)$ (easy to prove).

Gibbs sampling: Properties

- \triangleright When the Bayesian network has no zeros, Gibbs sampling is guaranteed to converge to $P(X|E = e)$
- \triangleright When the Bayesian network has zeros or the Evidence is complex (e.g., a SAT formula), Gibbs sampling may not converge.
	- \triangleright Open problem!
- \blacktriangleright Mixing time: Let t_ϵ be the minimum t such that for any starting distribution $P^{(0)},$ the distance between $P(X|E=e)$ and $P^{(t)}$ is less than $\epsilon.$
	- It is common to ignore some number of samples at the beginning, the so-called burn-in period, and then consider only every nth sample.

KORK STRATER STRAKES

Metropolis-Hastings: Theory

Detailed Balance: Given a transition function $\mathcal{T}(\mathbf{x} \to \mathbf{x}')$ and an acceptance probability $A({\bf x}\rightarrow{\bf x}')$, a Markov chain satisfies the detailed balance condition if there exists a distribution π such that:

$$
\pi(\mathbf{x})\mathcal{T}(\mathbf{x} \to \mathbf{x}')A(\mathbf{x} \to \mathbf{x}') = \pi(\mathbf{x}')\mathcal{T}(\mathbf{x}' \to \mathbf{x})A(\mathbf{x}' \to \mathbf{x})
$$

Theorem

If a Markov chain is regular and satisfies the detailed balance condition relative to π , then it has a unique stationary distribution π .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Metropolis-Hastings: Algorithm

Input: Current state x^t **Output:** Next state x^{t+1}

- ▶ Draw **x'** from $\mathcal{T}(\mathbf{x}^t \to \mathbf{x}')$
- ▶ Draw a random number $r \in [0, 1]$ and update

$$
\mathbf{x}^{t+1} = \left\{ \begin{array}{ll} \mathbf{x}' & \text{if } r \le A(\mathbf{x}^t \to \mathbf{x}')\\ \mathbf{x}^t & \text{otherwise} \end{array} \right.
$$

In Metropolis-Hastings A is defined as follows:

$$
A(\mathbf{x} \rightarrow \mathbf{x}') = min\left\{1, \frac{\pi(\mathbf{x}')\mathcal{T}(\mathbf{x} \rightarrow \mathbf{x}')}{\pi(\mathbf{x})\mathcal{T}(\mathbf{x}' \rightarrow \mathbf{x})}\right\}
$$

Theorem

The Metropolis Hastings algorithm satisfies the detailed balance condition.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Metropolis-Hastings: What "T" to use?

I Use an importance distribution Q to make transitions. This is called independent sampling because the transition function T does not depend on what state you are currently in.

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

 \triangleright Use a random walk approach.

What we will cover today

- \blacktriangleright Sampling fundamentals
- \blacktriangleright Monte Carlo techniques
	- \blacktriangleright Rejection Sampling
	- \blacktriangleright Likelihood Weighting
	- \blacktriangleright Importance sampling
- ▶ Markov Chain Monte Carlo techniques
	- \blacktriangleright Metropolis-Hastings
	- \triangleright Gibbs sampling
- \blacktriangleright Advanced Schemes
	- \blacktriangleright Advanced Importance sampling schemes

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \triangleright Rao-Blackwellisation

Selecting a Proposal Distribution

- For good performance Q should be as close as possible to $P(X|E = e)$.
- I Use a method that yields a good approximation of $P(X|E = e)$ to construct Q

KORKARRA ERKER EL POLO

- \blacktriangleright Variational Inference
- \triangleright Generalized Belief Propagation
- \triangleright Update the proposal distribution from the samples (the machine learning approach)
- \triangleright Combinations¹

Using Approximations of $P(X|E = e)$ to construct Q

Graphical model

Algorithm JT-sampling (Perfect sampling)

In Let $o = (X_1, \ldots, X_n)$ be an ordering of variables

$$
\blacktriangleright \ q=1
$$

For
$$
i = 1
$$
 to n do

- \blacktriangleright Propagate evidence in the junction tree
- **Construct a distribution** $Q_i(X_i)$ **by referring to any cluster mentioning** X_i **and** marginalizing out all other variables.
- \blacktriangleright Sample $X_i = x_i$ from Q_i , $q = q \times Q_i(X_i = x_i)$
- \triangleright Set $X_i = x_i$ as evidence in the junction tree.
- Return (x, q)

Using Approximations of $P(X|E = e)$ to construct Q

Graphical model

Join graph

Algorithm IJGP-sampling (Gogate&Dechter, UAI, 2005)

In Let $o = (X_1, \ldots, X_n)$ be an ordering of variables

$$
\blacktriangleright \; q=1
$$

- \blacktriangleright For $i = 1$ to n do
	- \triangleright Propagate evidence in the join graph.
	- **Construct a distribution** $Q_i(X_i)$ **by referring to any cluster mentioning** X_i **and** marginalizing out all other variables.
	- \blacktriangleright Sample $X_i = x_i$ from Q_i , $q = q \times Q_i(X_i = x_i)$
	- \triangleright Set $X_i = x_i$ as evidence in the join graph.
- Return (x, q)

Adaptive Importance sampling

- \triangleright Machine learning view of sampling: Learn from experience!
- E Learn a proposal distribution Q' from the samples.
- At regular intervals, update the proposal distribution Q^t at the current interval t using:

$$
Q^{t+1} = Q^t + \alpha(Q^t - Q')
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

where α is the learning rate.

 \triangleright As the number of samples increases, the proposal will get closer and closer to $P(X|E = e)$.

Rao-Blackwellisation of sampling schemes

- \triangleright Combine exact inference with sampling.
	- \triangleright Sample a few variables and analytically marginalize out other variables.
- Inference on trees (or low treewidth) graphical models is always tractable. Sample variables until the graphical model is a tree.
- \triangleright Rao-Blackwell theorem: Let the non-evidence variables Z be partitioned into two sets Z_1 and Z_2 , where Z_1 are sampled and Z_2 are inferred exactly. Then,

$$
V_Q\left[\frac{P(z_1,z_2,e)}{Q(z_1,z_2)}\right] \geq V_Q\left[\frac{P(z_1,e)}{Q(z_1)}\right]
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Rao-Blackwellisation of sampling schemes: Example

 $\sum_{z} F(z, b^{t}, e^{t})$ is computed efficiently using Belief Propagation or Variable Elim[ina](#page-40-0)[tion.](#page-0-0)

Summary

- \blacktriangleright Importance sampling
	- \triangleright Generate samples from a proposal distribution
	- \triangleright Performance depends on how close the proposal is to the posterior distribution
- \triangleright Markov chain Monte Carlo (MCMC) sampling
	- \triangleright Attempts to generate samples from the posterior distribution by creating a Markov chain whose stationary distribution equals the posterior distribution

KORK STRATER STRAKES

- \triangleright Metropolis-Hastings and Gibbs sampling
- \blacktriangleright Advanced schemes
	- \blacktriangleright How to construct and learn a good proposal distribution.
	- \blacktriangleright How to use graph decompositions to improve the quality of estimation.