Exact Inference: Variable Elimination

Vibhav Gogate

UD
THE UNIVERSITY OF TEXAS AT DALLAS
Erik Jonsson School of Engineering and Computer Science

Sum-product Inference Problems

- Given a PGM containing factors $\phi_{1}, \ldots, \phi_{m}$ and an assignment $\mathbf{E}=\mathbf{e}$ to a subset of its variables (evidence), find

1. $\operatorname{Pr}(\mathbf{E}=\mathbf{e})$: Probability of evidence
2. $\operatorname{Pr}(X \mid \mathbf{E}=\mathbf{e})$: Conditional distribution at a variable X given evidence (marginals)

By definition, these are sum-product tasks and can be reduced to computing partition function of a Markov network. Why?

$$
Z=\sum_{\mathbf{x}} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{x}_{i}\right)
$$

where \mathbf{x}_{i} is the projection of \mathbf{x} on the variables involved in ϕ_{i}.

Naive sum-product algorithm

$$
Z=\sum_{\mathbf{x}} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{x}_{\boldsymbol{i}}\right)
$$

- Initialize $Z=0$
- Iterate over all possible assignments \mathbf{x}
- Compute the value of each assignment value $(\mathbf{x})=\prod_{i=1}^{m} \phi_{i}\left(\mathbf{x}_{i}\right)$ (Product)
- $Z=Z+$ value(x) (Sum)
- Return Z

Product Operation

$$
\phi(A, B, C)=\phi(A, B) \times \phi(B, C)
$$

Sum-out Operation

$$
\begin{gathered}
\sum_{a \in A} \phi(A, B)=\psi(B) \\
\sum_{a \in A} \begin{array}{|c|c|c|}
\hline a^{0} & b^{0} & 30 \\
a^{0} & b^{1} & 5 \\
a^{1} & b^{0} & 1 \\
a^{1} & b^{1} & 10 \\
\hline
\end{array}
\end{gathered}
$$

Idea: Distribute Sums over Products

Example:

$$
\begin{align*}
Z & =\sum_{b \in B} \sum_{a \in A} \sum_{c \in C} \phi(a, b) \phi(b, c) \tag{1}\\
& =\sum_{b \in B} \sum_{a \in A} \phi(a, b)\left\{\sum_{c \in C} \phi(b, c)\right\} \tag{2}\\
& =\sum_{b \in B} \psi(b)\left\{\sum_{a \in A} \phi(a, b)\right\} \tag{3}\\
& =\sum_{b \in B} \psi(b) \chi(b) \tag{4}
\end{align*}
$$

Idea: Distribute Sums over Products

Example:

$\phi(A, B)$			
a^{0}	b^{0}	$30\left(w_{0}\right)$	
a^{0}	b^{1}	$5\left(w_{1}\right)$	
a^{1}	b^{0}	$1\left(w_{2}\right)$	
a^{1}	b^{1}	$10\left(w_{3}\right)$	
$\phi(B, C)$			
b^{0}	c^{0}	$100\left(w_{4}\right)$	
b^{0}	c^{1}	$1\left(w_{5}\right)$	
b^{1}	c^{0}	$1\left(w_{6}\right)$	
b^{1}	c^{1}	$100\left(w_{7}\right)$	

$$
\begin{aligned}
Z= & w_{0} w_{4}+w_{0} w_{5}+w_{1} w_{6}+w_{1} w_{7} \\
& +w_{2} w_{4}+w_{2} w_{5}+w_{3} w_{6}+w_{3} w_{7} \\
= & w_{0}\left(w_{4}+w_{5}\right)+w_{1}\left(w_{6}+w_{7}\right) \\
& +w_{2}\left(w_{4}+w_{5}\right)+w_{3}\left(w_{6}+w_{7}\right) \\
= & \left(w_{0}+w_{2}\right)\left(w_{4}+w_{5}\right) \\
& +\left(w_{1}+w_{3}\right)\left(w_{6}+w_{7}\right)
\end{aligned}
$$

Bucket Elimination

Intuitive data-structure for performing variable elimination!

- Let X_{1}, \ldots, X_{n} be an ordering of the variables and let Φ denote the current set (database) of functions
- Associate each variable with a bucket
- Process the buckets from top to bottom X_{1}, \ldots, X_{n}
- Put all functions in Φ that mention X_{i} in the bucket of X_{i} and remove them from Φ
- Compute the product of all functions in the bucket of X_{i}. Let us call the resulting function ψ
- Sum-out X_{i} from ψ. Call the new function χ
- Add χ to Φ

Important: At the end, Φ will contain one or more functions with one entry. The partition function equals the product of these entries.

Bucket Elimination: Example and Animation

