Exact Inference: Variable Elimination

Vibhav Gogate

Sum-product Inference Problems

- ▶ Given a PGM containing factors ϕ_1, \ldots, ϕ_m and an assignment $\mathbf{E} = \mathbf{e}$ to a subset of its variables (evidence), find
 - 1. $Pr(\mathbf{E} = \mathbf{e})$: Probability of evidence
 - 2. Pr(X|E=e): Conditional distribution at a variable X given evidence (marginals)

By definition, these are sum-product tasks and can be reduced to computing partition function of a Markov network. Why?

$$Z = \sum_{\mathbf{x}} \prod_{i=1}^{m} \phi_i(\mathbf{x}_i)$$

where \mathbf{x}_i is the projection of \mathbf{x} on the variables involved in ϕ_i .

Naive sum-product algorithm

$$Z = \sum_{\mathbf{x}} \prod_{i=1}^{m} \phi_i(\mathbf{x}_i)$$

- ▶ Initialize Z = 0
- ▶ Iterate over all possible assignments x
 - lacktriangle Compute the value of each assignment $value(\mathbf{x}) = \prod_{i=1}^m \phi_i(\mathbf{x}_i)$ (Product)
 - ightharpoonup Z = Z + value(x) (Sum)
- ightharpoonup Return Z

Product Operation

$$\phi(A, B, C) = \phi(A, B) \times \phi(B, C)$$

	Ì		
a^1	b^1	c^1	$0.5 \cdot 0.5 = 0.25$
a^1	b^1	c^2	$0.5 \cdot 0.7 = 0.35$
a^1	b^2	c^1	$0.8 \cdot 0.1 = 0.08$
a^1	b^2	c^2	$0.8 \cdot 0.2 = 0.16$
a^2	b^1	c^1	$0.1 \cdot 0.5 = 0.05$
a^2	b^1	c^2	$0.1 \cdot 0.7 = 0.07$
a^2	b^2	c^1	0.0.1 = 0
a^2	b^2	c^2	0.0.2 = 0
a^3	b^1	c^1	$0.3 \cdot 0.5 = 0.15$
a^3	b^1	c^2	$0.3 \cdot 0.7 = 0.21$
a^3	b^2	c^1	$0.9 \cdot 0.1 = 0.09$
a^3	b^2	c^2	$0.9 \cdot 0.2 = 0.18$

Sum-out Operation

$$\sum_{a \in A} \phi(A, B) = \psi(B)$$

$$\phi(A, B)$$

$$\sum_{a \in A} \begin{vmatrix} a^{0} & b^{0} & 30 \\ a^{0} & b^{1} & 5 \\ a^{1} & b^{0} & 1 \\ a^{1} & b^{1} & 10 \end{vmatrix} = \begin{vmatrix} \psi(B) \\ b^{0} \\ b^{1} \end{vmatrix}$$

Idea: Distribute Sums over Products

Example:

$$\begin{array}{cccc} & \phi(A,B) \\ \hline a^0 & b^0 & 30 \ (w_0) \\ a^0 & b^1 & 5 \ (w_1) \\ a^1 & b^0 & 1 \ (w_2) \\ a^1 & b^1 & 10 \ (w_3) \\ \hline & \phi(B,C) \\ \hline b^0 & c^0 & 100 \ (w_4) \\ b^0 & c^1 & 1 \ (w_5) \\ b^1 & c^0 & 100 \ (w_7) \\ \hline \end{array}$$

$$Z = \sum_{b \in B} \sum_{a \in A} \sum_{c \in C} \phi(a, b) \phi(b, c)$$
 (1)

$$= \sum_{b \in B} \sum_{a \in A} \phi(a, b) \left\{ \sum_{c \in C} \phi(b, c) \right\}$$
 (2)

$$= \sum_{b \in B} \psi(b) \left\{ \sum_{a \in A} \phi(a, b) \right\}$$
 (3)

$$= \sum_{b \in B} \psi(b)\chi(b) \tag{4}$$

Idea: Distribute Sums over Products

Example:

$$\begin{array}{cccc} & \phi(A,B) \\ \hline a^0 & b^0 & 30 \ (w_0) \\ a^0 & b^1 & 5 \ (w_1) \\ a^1 & b^0 & 1 \ (w_2) \\ a^1 & b^1 & 10 \ (w_3) \\ \hline & \phi(B,C) \\ \hline b^0 & c^0 & 100 \ (w_4) \\ b^0 & c^1 & 1 \ (w_5) \\ b^1 & c^0 & 100 \ (w_7) \\ \hline \end{array}$$

$$Z = w_0w_4 + w_0w_5 + w_1w_6 + w_1w_7 + w_2w_4 + w_2w_5 + w_3w_6 + w_3w_7 = w_0(w_4 + w_5) + w_1(w_6 + w_7) + w_2(w_4 + w_5) + w_3(w_6 + w_7) = (w_0 + w_2)(w_4 + w_5) + (w_1 + w_3)(w_6 + w_7)$$

Bucket Elimination

Intuitive data-structure for performing variable elimination!

- Let X_1, \ldots, X_n be an ordering of the variables and let Φ denote the current set (database) of functions
- Associate each variable with a bucket
- ▶ Process the buckets from top to bottom $X_1, ..., X_n$
 - ▶ Put all functions in Φ that mention X_i in the bucket of X_i and remove them from Φ
 - ▶ Compute the product of all functions in the bucket of X_i . Let us call the resulting function ψ
 - ▶ Sum-out X_i from ψ . Call the new function χ
 - Add χ to Φ

Important: At the end, Φ will contain one or more functions with one entry. The partition function equals the product of these entries.

Bucket Elimination: Example and Animation