Exact Inference: Variable Elimination

Vibhav Gogate

u D THE UNIVERSITY OF TEXAS AT DALLAS
Erik Jonsson School of Engineering and Computer Science

Sum-product Inference Problems

» Given a PGM containing factors ¢1,...,¢m and an assignment E = e to a subset
of its variables (evidence), find

1. Pr(E = e): Probability of evidence
2. Pr(X|E = e): Conditional distribution at a variable X given evidence (marginals)

By definition, these are sum-product tasks and can be reduced to computing partition
function of a Markov network. Why?

m

z =Y T #ix)

X j=1

where x; is the projection of x on the variables involved in ¢;.

Naive sum-product algorithm

m

z=> 1] six)

x j=1

> Initialize Z =0
> lterate over all possible assignments x

» Compute the value of each assignment value(x) = [/, ¢i(x;) (Product)
» Z =7+ value(x) (Sum)

» Return Z

Product Operation

¢(A7 B, C) = ¢(A7 B) X ¢(Bv C)

at | bt ¢! [0.505=025
a'| b'| ¢?]0507=035
a'| b2 ¢! [0.8:0.1=0.08
a'| b o0s a' | b2 | ¢]08:02=0.16
a' | b2| 08 b | c]os a*| bt ¢! [0.1:05=0.05
@ | b 01 b | 2|07 — a® | b'| ¢?]0.1:07=0.07
a2 | br] o0 b2 ol a?| b2t] 001=0
@ | bpo3 b2 | 2|02 a* | b2| 2| 0:02=0
a | b2| 09 @ | b e [0305=015
@ | b'| 2]03-:07=021
@ | b2 ¢! 0.9:0.1=0.09
@ | b2 | 2]09:02=0.18

Sum-out Operation

¢(A, B)

ZaeA

= o= O O
o
—
(6]

L L LY

Idea: Distribute Sums over Products

Example:
¢(A, B)
% b 30 (wo) Z = ZZZ¢(3’ b)¢(b, c)
a® b 5 (w) beB acA ceC
at % 1 (we)
L pl 10 (‘/53) = L;;(ﬁ(aa b) {§¢(b7 C)}
0 %(87 C) ()
b” c¢” 100 (wq _ b b
0o T >){aEZAas(a)}
nS e IO

beB

Idea: Distribute Sums over Products

Example:
¢(A, B)
% B 30 (Wo)
% b 5 (W1) Z = wowz + Wows + Wy We + wiwy
1 40
al 21 110 ((W2)) +wowy + wows + w3we + wawy
a w
(b(B C) 3 = Wo(W4+W5)+W1(W6+W7)
B0 100 (wa) Fwa(wa + ws) + ws(we + wr)
b0 ! 1 (W5) = (Wo + W2)(W4 + W5)
bt O 1 (Wﬁ) +(W1 + W3)(W6 + W7)
bt ¢t 100 (wy)

Bucket Elimination

Intuitive data-structure for performing variable elimination!
> Let Xi,..., X, be an ordering of the variables and let ® denote the current set
(database) of functions

» Associate each variable with a bucket

» Process the buckets from top to bottom Xi,..., X,
» Put all functions in ® that mention X; in the bucket of X; and remove them from ®
» Compute the product of all functions in the bucket of X;. Let us call the resulting
function ¥
» Sum-out X; from . Call the new function x
» Add x to @

Important: At the end, ® will contain one or more functions with one entry. The
partition function equals the product of these entries.

Bucket Elimination: Example and Animation

