Exact Inference: Variable Elimination Vibhav Gogate ## Sum-product Inference Problems - ▶ Given a PGM containing factors ϕ_1, \ldots, ϕ_m and an assignment $\mathbf{E} = \mathbf{e}$ to a subset of its variables (evidence), find - 1. $Pr(\mathbf{E} = \mathbf{e})$: Probability of evidence - 2. Pr(X|E=e): Conditional distribution at a variable X given evidence (marginals) By definition, these are sum-product tasks and can be reduced to computing partition function of a Markov network. Why? $$Z = \sum_{\mathbf{x}} \prod_{i=1}^{m} \phi_i(\mathbf{x}_i)$$ where \mathbf{x}_i is the projection of \mathbf{x} on the variables involved in ϕ_i . ## Naive sum-product algorithm $$Z = \sum_{\mathbf{x}} \prod_{i=1}^{m} \phi_i(\mathbf{x}_i)$$ - ▶ Initialize Z = 0 - ▶ Iterate over all possible assignments x - lacktriangle Compute the value of each assignment $value(\mathbf{x}) = \prod_{i=1}^m \phi_i(\mathbf{x}_i)$ (Product) - ightharpoonup Z = Z + value(x) (Sum) - ightharpoonup Return Z ## **Product Operation** $$\phi(A, B, C) = \phi(A, B) \times \phi(B, C)$$ | | Ì | | | |-------|-------|-------|------------------------| | a^1 | b^1 | c^1 | $0.5 \cdot 0.5 = 0.25$ | | a^1 | b^1 | c^2 | $0.5 \cdot 0.7 = 0.35$ | | a^1 | b^2 | c^1 | $0.8 \cdot 0.1 = 0.08$ | | a^1 | b^2 | c^2 | $0.8 \cdot 0.2 = 0.16$ | | a^2 | b^1 | c^1 | $0.1 \cdot 0.5 = 0.05$ | | a^2 | b^1 | c^2 | $0.1 \cdot 0.7 = 0.07$ | | a^2 | b^2 | c^1 | 0.0.1 = 0 | | a^2 | b^2 | c^2 | 0.0.2 = 0 | | a^3 | b^1 | c^1 | $0.3 \cdot 0.5 = 0.15$ | | a^3 | b^1 | c^2 | $0.3 \cdot 0.7 = 0.21$ | | a^3 | b^2 | c^1 | $0.9 \cdot 0.1 = 0.09$ | | a^3 | b^2 | c^2 | $0.9 \cdot 0.2 = 0.18$ | ## Sum-out Operation $$\sum_{a \in A} \phi(A, B) = \psi(B)$$ $$\phi(A, B)$$ $$\sum_{a \in A} \begin{vmatrix} a^{0} & b^{0} & 30 \\ a^{0} & b^{1} & 5 \\ a^{1} & b^{0} & 1 \\ a^{1} & b^{1} & 10 \end{vmatrix} = \begin{vmatrix} \psi(B) \\ b^{0} \\ b^{1} \end{vmatrix}$$ ### Idea: Distribute Sums over Products #### Example: $$\begin{array}{cccc} & \phi(A,B) \\ \hline a^0 & b^0 & 30 \ (w_0) \\ a^0 & b^1 & 5 \ (w_1) \\ a^1 & b^0 & 1 \ (w_2) \\ a^1 & b^1 & 10 \ (w_3) \\ \hline & \phi(B,C) \\ \hline b^0 & c^0 & 100 \ (w_4) \\ b^0 & c^1 & 1 \ (w_5) \\ b^1 & c^0 & 100 \ (w_7) \\ \hline \end{array}$$ $$Z = \sum_{b \in B} \sum_{a \in A} \sum_{c \in C} \phi(a, b) \phi(b, c)$$ (1) $$= \sum_{b \in B} \sum_{a \in A} \phi(a, b) \left\{ \sum_{c \in C} \phi(b, c) \right\}$$ (2) $$= \sum_{b \in B} \psi(b) \left\{ \sum_{a \in A} \phi(a, b) \right\}$$ (3) $$= \sum_{b \in B} \psi(b)\chi(b) \tag{4}$$ ### Idea: Distribute Sums over Products ### Example: $$\begin{array}{cccc} & \phi(A,B) \\ \hline a^0 & b^0 & 30 \ (w_0) \\ a^0 & b^1 & 5 \ (w_1) \\ a^1 & b^0 & 1 \ (w_2) \\ a^1 & b^1 & 10 \ (w_3) \\ \hline & \phi(B,C) \\ \hline b^0 & c^0 & 100 \ (w_4) \\ b^0 & c^1 & 1 \ (w_5) \\ b^1 & c^0 & 100 \ (w_7) \\ \hline \end{array}$$ $$Z = w_0w_4 + w_0w_5 + w_1w_6 + w_1w_7 + w_2w_4 + w_2w_5 + w_3w_6 + w_3w_7 = w_0(w_4 + w_5) + w_1(w_6 + w_7) + w_2(w_4 + w_5) + w_3(w_6 + w_7) = (w_0 + w_2)(w_4 + w_5) + (w_1 + w_3)(w_6 + w_7)$$ #### **Bucket Elimination** Intuitive data-structure for performing variable elimination! - Let X_1, \ldots, X_n be an ordering of the variables and let Φ denote the current set (database) of functions - Associate each variable with a bucket - ▶ Process the buckets from top to bottom $X_1, ..., X_n$ - ▶ Put all functions in Φ that mention X_i in the bucket of X_i and remove them from Φ - ▶ Compute the product of all functions in the bucket of X_i . Let us call the resulting function ψ - ▶ Sum-out X_i from ψ . Call the new function χ - Add χ to Φ Important: At the end, Φ will contain one or more functions with one entry. The partition function equals the product of these entries. # Bucket Elimination: Example and Animation