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Sum-product Inference Problems

» Given a PGM containing factors ¢1,...,¢m and an assignment E = e to a subset
of its variables (evidence), find

1. Pr(E = e): Probability of evidence
2. Pr(X|E = e): Conditional distribution at a variable X given evidence (marginals)

By definition, these are sum-product tasks and can be reduced to computing partition
function of a Markov network. Why?
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where x; is the projection of x on the variables involved in ¢;.



Naive sum-product algorithm
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> Initialize Z =0
> lterate over all possible assignments x

» Compute the value of each assignment value(x) = [/, ¢i(x;) (Product)
» Z =7+ value(x) (Sum)

» Return Z



Product Operation

¢(A7 B, C) = ¢(A7 B) X ¢(Bv C)
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Sum-out Operation
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Idea: Distribute Sums over Products

Example:
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Idea: Distribute Sums over Products

Example:
¢(A, B)
% B 30 (Wo)
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Bucket Elimination

Intuitive data-structure for performing variable elimination!
> Let Xi,..., X, be an ordering of the variables and let ® denote the current set
(database) of functions

» Associate each variable with a bucket

» Process the buckets from top to bottom Xi,..., X,
» Put all functions in ® that mention X; in the bucket of X; and remove them from ®
» Compute the product of all functions in the bucket of X;. Let us call the resulting
function ¥
» Sum-out X; from . Call the new function x
» Add x to @

Important: At the end, ® will contain one or more functions with one entry. The
partition function equals the product of these entries.



Bucket Elimination: Example and Animation



