
Supervised Learning

(Big Data Analytics)

Vibhav Gogate

Department of Computer Science

The University of Texas at Dallas

Practical advice

Goal of Big Data Analytics

 Uncover patterns in Data. Can be used to:

 Gaining competitive advantage if you are a

marketer

 Making a lot of money if you are working in the

stock market

 Winning presidential Elections and so on.

 Analytics = Machine learning

 Practical advice on “how to use machine

learning the right way.”

Traditional Programming

Machine Learning (Analytics)

Computer
Data

Program
Output

Computer
Data

Output
Program

Not scalable

Not Magic: More like Gardening. Farmers combine seeds with nutrients to

grow crops. Learners combine knowledge with data to grow programs

Scalable

Supervised Learning

 Given: Training examples 𝒙, 𝑓 𝒙 for some

unknown function 𝑓.

 Find: A good approximation to 𝑓.

 Classification problem: 𝑓(𝒙) is an (small) integer

 Regression problem: 𝑓(𝒙) is a real number

 Example Applications: Credit Card approval;

Spam Filtering; Disease Diagnosis;

Automatically tagging images with location; etc.

Example: Credit Card approval

 A credit card company receives thousands of
applications for new cards. Each application
contains information about an applicant:
 age

 Marital status

 annual salary

 outstanding debts

 credit rating

 etc.

 Problem: to classify applications into two categories,
approved and not approved.

Classification Example: Spam

Filtering

Classify as “Spam” or “Not

Spam”

Classification Example:

Weather Prediction

Classify as “Rainy”, “Cloudy”, “Sunny”

Regression example:

Predicting Gold/Stock prices

Given historical data on Gold

prices, predict tomorrow’s price!

Good ML can

make you rich

(but there is

still some risk

involved).

Supervised Learning: Some

Terminology

 Training Data

 Training Example: Example of the form

𝒙, 𝑓 𝒙

 Classifier: A discrete-valued function or an

algorithm that outputs a discrete-valued

function

 Classes: The number of distinct values that

𝑓 𝒙 can take.

Training Data

Two

Classes:

{Yes,No}

Training Example

Steps in Supervised Learning

1. Determine the representation for “x,f(x)” and

determine what “x” to use
 Feature Engineering

2. Gather a training set (not all data is kosher)

 Data Cleaning

3. Select a suitable evaluation method

4. Find a suitable learning algorithm among a

plethora of available choices

Feature Engineering is the Key

 Most effort in ML projects is constructing

features

 Black art: Intuition, creativity required

 Understand properties of the task at hand

 How the features interact with or limit the

algorithm you are using.

 ML is an iterative process

 Try different types of features, experiment with

each and then decide which feature set/algorithm

combination to use

What features will you use?

 Examples

 Spam Filtering

 Mapping images to names

 Feature Combination

 Linear models cannot handle some dependencies

between features (e.g. XOR)

 Feature combinations might work better.

 Quick growth of the number of features.

 Accuracy
 Fraction of the examples that are correctly classified

by the learner

 Precision, Recall and F-score (Next slide)

 Squared error (Regression problems)

 Likelihood

 Posterior probability

 Cost / Utility

 Etc.

Evaluation

Precision, Recall and F-1 score

 Precision (P) =
𝑡𝑝

𝑡𝑝+𝑓𝑝
; Recall (R)=

𝑡𝑝

𝑡𝑝+𝑓𝑛

 F1-score = 2
𝑃×𝑅

𝑃+𝑅

 Harmonic mean of precision and recall

Actual=True Actual=False

Predicted=True tp (correct result) fp (unexpected

result)

Predicted=False fn (missing result) tn (correct absence

of result)

What algorithms

(Classifiers/learners) to use

 Naïve Bayes

 Logistic Regression

 Linear SVMs

 Decision Trees

 Neural Networks

 Support Vector Machines

 K-nearest neighbors (Non-parametric)

 Bagging (Meta); Boosting (Meta)

Weka Software

Non-linear

Linear classifiers

Classifiers: Bias versus

Variance

Non-Linear Classifier

• Support vector machine (Kernels)

• Neural networks

• Decision Trees

Linear Classifier

• Naïve Bayes

• Logistic Regression

• Perceptron

High Bias, low variance Low Bias, High variance

Simpler Complex

Learning = Representation +

 Evaluation + Optimization

 Thousands of learning algorithms

 Combinations of just three elements

Representation Evaluation Optimization

Instances Accuracy Greedy search

Hyperplanes Precision/Recall Branch & bound

Decision trees Squared error Gradient descent

Sets of rules Likelihood Quasi-Newton

Neural networks Posterior prob. Linear progr.

Graphical models Margin Quadratic progr.

Etc. Etc. Etc.

It’s Generalization that Counts

 Divide data into training, test and

hold-out or validation set

 Algorithm must work on test

examples never seen before

 Training examples can just be

memorized

 Don’t tune parameters on test data

 Use cross-validation

Training

Data

Hold-Out

Data

Test

Data

K-Fold Cross Validation

 Choose a suitable K (usually 10)

k-fold

Train on (k - 1) splits Test

Data Alone Is Not Enough

 Classes of unseen examples are arbitrary

 So learner must make assumptions

 “No free lunch” theorems

 Luckily, real world is not random

 Induction is knowledge lever

Overfitting Has Many Faces

 Classifier A is better than B on the

training set but the reverse is true on the

test set!!

 The biggest problem in machine learning

 Bias and variance (Simple vs. Complex)

 Can learn a simpler linear function vs. can learn

any function

 Less powerful learners can be better

 Solutions: Cross-validation; Regularization

Intuition Fails In High

Dimensions

 Curse of dimensionality

 Sparseness worsens exponentially with

number of features

 Irrelevant features ruin similarity

 In high dimensions all examples look alike

 3D intuitions do not apply in high dimensions

 Blessing of non-uniformity

More Data Beats a Cleverer

Algorithm

 Easiest way to improve: More data

 Then

 Data is bottleneck

 Now:

 Scalability is bottleneck

 ML algorithms more similar than they appear

 Clever algorithms require more effort

but can pay off in the end

 Biggest bottleneck is human time

Learn Many Models,

 Not Just One

 Three stages of machine learning

1. Try variations of one algorithm, chose one

2. Try variations of many algorithms, choose one

3. Combine many algorithms, variations

 Ensemble techniques

 Bagging

 Boosting

 Stacking

 Etc.

Representable Does Not Imply

Learnable

 Standard claim: “My language can

represent/approximate any function”

 No excuse for ignoring others

 Causes of non-learnability

 Not enough data

 Not enough components

 Not enough search

 Some representations exponentially

more compact than others

ADVANCED TOPICS

Supervised Learning and its

Generalizations

 Supervised Learning

 Desired output is simple. (e.g., purchase an item

or not; the person has the disease or not; etc.)

 Structured Prediction: is a Generalization

 Desired output is complex.

Structured Prediction:

Examples

 Parsing: given an input sequence, build a tree

whose leaves are the elements in the sequence

and whose structure obeys some grammar.

 Collective classification: given a graph

defined by a set of vertices and edges,

produce a labeling of the vertices.

 Labeling web pages given link information

Models and Algorithms for

Structured Prediction

 Probabilistic Graphical Models

 Compact representation of joint distribution

 Principled way of dealing with uncertainty

 Take advantage of conditional independence

 Markov logic and statistical relational models

 Model both relational structure and uncertainty

 One example related with another example

 Considerable machine learning expertise

required here! (not yet a blackbox)

