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Practical advice 



Goal of Big Data Analytics 

 Uncover patterns in Data. Can be used to: 

 Gaining competitive advantage if you are a 

marketer 

 Making a lot of money if you are working in the 

stock market  

 Winning presidential Elections and so on. 

 Analytics = Machine learning 

 Practical advice on “how to use machine 

learning the right way.” 

 



Traditional Programming 

 

 

 

 

Machine Learning (Analytics) 
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Not scalable 

Not Magic: More like Gardening. Farmers combine seeds with nutrients to 

grow crops. Learners combine knowledge with data to grow programs 

Scalable 



Supervised Learning 

 Given: Training examples 𝒙, 𝑓 𝒙  for some 

unknown function 𝑓. 

 Find: A good approximation to 𝑓. 

 Classification problem: 𝑓(𝒙) is an (small) integer 

 Regression problem: 𝑓(𝒙) is a real number 

 Example Applications: Credit Card approval; 

Spam Filtering; Disease Diagnosis; 

Automatically tagging images with location; etc. 

 



Example: Credit Card approval 

 A credit card company receives thousands of 
applications for new cards. Each application 
contains information about an applicant: 
 age  

 Marital status 

 annual salary 

 outstanding debts 

 credit rating 

 etc.  

 Problem: to classify applications into two categories, 
approved and not approved.  



Classification Example: Spam 

Filtering 

Classify as “Spam” or “Not 

Spam” 



Classification Example: 

Weather Prediction 

Classify as “Rainy”, “Cloudy”, “Sunny” 



Regression example: 

Predicting Gold/Stock prices 

Given historical data on Gold 

prices, predict tomorrow’s price! 

Good ML can 

make you rich 

(but there is 

still some risk 

involved). 



Supervised Learning: Some 

Terminology 

 Training Data 

 Training Example: Example of the form 

𝒙, 𝑓 𝒙  

 Classifier: A discrete-valued function or an 

algorithm that outputs a discrete-valued 

function 

 Classes: The number of distinct values that 

𝑓 𝒙  can take. 



Training Data 

Two  

Classes: 

{Yes,No} 

Training Example 



Steps in Supervised Learning 

1. Determine the representation for “x,f(x)” and 

determine what “x” to use 
 Feature Engineering 

2. Gather a training set (not all data is kosher) 

 Data Cleaning 

3. Select a suitable evaluation method 

4. Find a suitable learning algorithm among a 

plethora of available choices 

 



Feature Engineering is the Key 

 Most effort in ML projects is constructing 

features 

 Black art: Intuition, creativity required 

 Understand properties of the task at hand 

 How the features interact with or limit the 

algorithm you are using. 

 ML is an iterative process 

 Try different types of features, experiment with 

each and then decide which feature set/algorithm 

combination to use 



What features will you use? 

 Examples 

 Spam Filtering 

 Mapping images to names 

 Feature Combination 

 Linear models cannot handle some dependencies 

between features (e.g. XOR) 

 Feature combinations might work better. 

 Quick growth of the number of features. 



 Accuracy  
 Fraction of the examples that are correctly classified 

by the learner 

 Precision, Recall and F-score (Next slide) 

 Squared error (Regression problems) 

 Likelihood 

 Posterior probability 

 Cost / Utility 

 Etc. 

Evaluation 



Precision, Recall and F-1 score 

 Precision (P) = 
𝑡𝑝

𝑡𝑝+𝑓𝑝
; Recall (R)= 

𝑡𝑝

𝑡𝑝+𝑓𝑛
 

 F1-score = 2
𝑃×𝑅

𝑃+𝑅
 

 Harmonic mean of precision and recall 

Actual=True Actual=False 

Predicted=True tp (correct result) fp (unexpected 

result) 

Predicted=False fn (missing result) tn (correct absence 

of result) 



What algorithms 

(Classifiers/learners) to use 

 Naïve Bayes 

 Logistic Regression 

 Linear SVMs 

 Decision Trees 

 Neural Networks 

 Support Vector Machines 

 K-nearest neighbors (Non-parametric) 

 Bagging (Meta); Boosting (Meta) 

Weka Software 

Non-linear 

Linear classifiers 



Classifiers: Bias versus 

Variance 

Non-Linear Classifier 

• Support vector machine (Kernels) 

• Neural networks 

• Decision Trees 

 

 

Linear Classifier 

• Naïve Bayes 

• Logistic Regression 

• Perceptron 

 

High Bias, low variance Low Bias, High variance 

Simpler Complex 



Learning = Representation + 

    Evaluation + Optimization 

 Thousands of learning algorithms 

 Combinations of just three elements 

Representation Evaluation Optimization 

Instances Accuracy Greedy search 

Hyperplanes Precision/Recall Branch & bound 

Decision trees Squared error Gradient descent 

Sets of rules Likelihood Quasi-Newton 

Neural networks Posterior prob. Linear progr. 

Graphical models Margin Quadratic progr. 

Etc. Etc. Etc. 



It’s Generalization that Counts 

 Divide data into training, test and 

hold-out or validation set 

 Algorithm must work on test 

examples never seen before 

 Training examples can just be 

memorized 

 Don’t tune parameters on test data 

 Use cross-validation 

Training 

Data 

Hold-Out 

Data 

Test 

Data 



K-Fold Cross Validation 

 Choose a suitable K (usually 10) 

k-fold 

Train on (k - 1) splits Test 



Data Alone Is Not Enough 

 Classes of unseen examples are arbitrary 

 So learner must make assumptions 

 “No free lunch” theorems 

 Luckily, real world is not random 

 Induction is knowledge lever 

 



Overfitting Has Many Faces 

 Classifier A is better than B on the 

training set but the reverse is true on the 

test set!! 

 The biggest problem in machine learning 

 Bias and variance (Simple vs. Complex) 

 Can learn a simpler linear function vs. can learn 

any function 

 Less powerful learners can be better 

 Solutions: Cross-validation; Regularization 



Intuition Fails In High 

Dimensions 

 Curse of dimensionality 

 Sparseness worsens exponentially with 

number of features 

 Irrelevant features ruin similarity 

 In high dimensions all examples look alike 

 3D intuitions do not apply in high dimensions 

 Blessing of non-uniformity 

 



More Data Beats a Cleverer 

Algorithm 

 Easiest way to improve: More data 

 Then 

 Data is bottleneck 

 Now:  

 Scalability is bottleneck 

 ML algorithms more similar than they appear 

 Clever algorithms require more effort 

but can pay off in the end 

 Biggest bottleneck is human time 



Learn Many Models, 

    Not Just One 

 Three stages of machine learning 

1. Try variations of one algorithm, chose one 

2. Try variations of many algorithms, choose one 

3. Combine many algorithms, variations 

 Ensemble techniques 

 Bagging 

 Boosting 

 Stacking 

 Etc. 

 



Representable Does Not Imply 

Learnable 

 Standard claim: “My language can 

represent/approximate any function” 

 No excuse for ignoring others 

 Causes of non-learnability 

 Not enough data 

 Not enough components 

 Not enough search 

 Some representations exponentially 

more compact than others 



ADVANCED TOPICS 



Supervised Learning and its 

Generalizations 

 Supervised Learning 

 Desired output is simple. (e.g., purchase an item 

or not; the person has the disease or not; etc.) 

 Structured Prediction: is a Generalization 

 Desired output is complex.  



Structured Prediction: 

Examples 

 Parsing: given an input sequence, build a tree 

whose leaves are the elements in the sequence 

and whose structure obeys some grammar.  

 Collective classification: given a graph 

defined by a set of vertices and edges, 

produce a labeling of the vertices.  

 Labeling web pages given link information 



Models and Algorithms for 

Structured Prediction 

 Probabilistic Graphical Models 

 Compact representation of joint distribution 

 Principled way of dealing with uncertainty 

 Take advantage of conditional independence 

 Markov logic and statistical relational models 

 Model both relational structure and uncertainty 

 One example related with another example 

 Considerable machine learning expertise 

required here! (not yet a blackbox) 

 


