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Practical advice 



Goal of Big Data Analytics 

 Uncover patterns in Data. Can be used to: 

 Gaining competitive advantage if you are a 

marketer 

 Making a lot of money if you are working in the 

stock market  

 Winning presidential Elections and so on. 

 Analytics = Machine learning 

 Practical advice on “how to use machine 

learning the right way.” 
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Machine Learning (Analytics) 
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Not scalable 

Not Magic: More like Gardening. Farmers combine seeds with nutrients to 

grow crops. Learners combine knowledge with data to grow programs 

Scalable 



Supervised Learning 

 Given: Training examples 𝒙, 𝑓 𝒙  for some 

unknown function 𝑓. 

 Find: A good approximation to 𝑓. 

 Classification problem: 𝑓(𝒙) is an (small) integer 

 Regression problem: 𝑓(𝒙) is a real number 

 Example Applications: Credit Card approval; 

Spam Filtering; Disease Diagnosis; 

Automatically tagging images with location; etc. 

 



Example: Credit Card approval 

 A credit card company receives thousands of 
applications for new cards. Each application 
contains information about an applicant: 
 age  

 Marital status 

 annual salary 

 outstanding debts 

 credit rating 

 etc.  

 Problem: to classify applications into two categories, 
approved and not approved.  



Classification Example: Spam 

Filtering 

Classify as “Spam” or “Not 

Spam” 



Classification Example: 

Weather Prediction 

Classify as “Rainy”, “Cloudy”, “Sunny” 



Regression example: 

Predicting Gold/Stock prices 

Given historical data on Gold 

prices, predict tomorrow’s price! 

Good ML can 

make you rich 

(but there is 

still some risk 

involved). 



Supervised Learning: Some 

Terminology 

 Training Data 

 Training Example: Example of the form 

𝒙, 𝑓 𝒙  

 Classifier: A discrete-valued function or an 

algorithm that outputs a discrete-valued 

function 

 Classes: The number of distinct values that 

𝑓 𝒙  can take. 



Training Data 

Two  

Classes: 

{Yes,No} 

Training Example 



Steps in Supervised Learning 

1. Determine the representation for “x,f(x)” and 

determine what “x” to use 
 Feature Engineering 

2. Gather a training set (not all data is kosher) 

 Data Cleaning 

3. Select a suitable evaluation method 

4. Find a suitable learning algorithm among a 

plethora of available choices 

 



Feature Engineering is the Key 

 Most effort in ML projects is constructing 

features 

 Black art: Intuition, creativity required 

 Understand properties of the task at hand 

 How the features interact with or limit the 

algorithm you are using. 

 ML is an iterative process 

 Try different types of features, experiment with 

each and then decide which feature set/algorithm 

combination to use 



What features will you use? 

 Examples 

 Spam Filtering 

 Mapping images to names 

 Feature Combination 

 Linear models cannot handle some dependencies 

between features (e.g. XOR) 

 Feature combinations might work better. 

 Quick growth of the number of features. 



 Accuracy  
 Fraction of the examples that are correctly classified 

by the learner 

 Precision, Recall and F-score (Next slide) 

 Squared error (Regression problems) 

 Likelihood 

 Posterior probability 

 Cost / Utility 

 Etc. 

Evaluation 



Precision, Recall and F-1 score 

 Precision (P) = 
𝑡𝑝

𝑡𝑝+𝑓𝑝
; Recall (R)= 

𝑡𝑝

𝑡𝑝+𝑓𝑛
 

 F1-score = 2
𝑃×𝑅

𝑃+𝑅
 

 Harmonic mean of precision and recall 

Actual=True Actual=False 

Predicted=True tp (correct result) fp (unexpected 

result) 

Predicted=False fn (missing result) tn (correct absence 

of result) 



What algorithms 

(Classifiers/learners) to use 

 Naïve Bayes 

 Logistic Regression 

 Linear SVMs 

 Decision Trees 

 Neural Networks 

 Support Vector Machines 

 K-nearest neighbors (Non-parametric) 

 Bagging (Meta); Boosting (Meta) 

Weka Software 

Non-linear 

Linear classifiers 



Classifiers: Bias versus 

Variance 

Non-Linear Classifier 

• Support vector machine (Kernels) 

• Neural networks 

• Decision Trees 

 

 

Linear Classifier 

• Naïve Bayes 

• Logistic Regression 

• Perceptron 

 

High Bias, low variance Low Bias, High variance 

Simpler Complex 



Learning = Representation + 

    Evaluation + Optimization 

 Thousands of learning algorithms 

 Combinations of just three elements 

Representation Evaluation Optimization 

Instances Accuracy Greedy search 

Hyperplanes Precision/Recall Branch & bound 

Decision trees Squared error Gradient descent 

Sets of rules Likelihood Quasi-Newton 

Neural networks Posterior prob. Linear progr. 

Graphical models Margin Quadratic progr. 

Etc. Etc. Etc. 



It’s Generalization that Counts 

 Divide data into training, test and 

hold-out or validation set 

 Algorithm must work on test 

examples never seen before 

 Training examples can just be 

memorized 

 Don’t tune parameters on test data 

 Use cross-validation 

Training 

Data 

Hold-Out 

Data 

Test 

Data 



K-Fold Cross Validation 

 Choose a suitable K (usually 10) 

k-fold 

Train on (k - 1) splits Test 



Data Alone Is Not Enough 

 Classes of unseen examples are arbitrary 

 So learner must make assumptions 

 “No free lunch” theorems 

 Luckily, real world is not random 

 Induction is knowledge lever 

 



Overfitting Has Many Faces 

 Classifier A is better than B on the 

training set but the reverse is true on the 

test set!! 

 The biggest problem in machine learning 

 Bias and variance (Simple vs. Complex) 

 Can learn a simpler linear function vs. can learn 

any function 

 Less powerful learners can be better 

 Solutions: Cross-validation; Regularization 



Intuition Fails In High 

Dimensions 

 Curse of dimensionality 

 Sparseness worsens exponentially with 

number of features 

 Irrelevant features ruin similarity 

 In high dimensions all examples look alike 

 3D intuitions do not apply in high dimensions 

 Blessing of non-uniformity 

 



More Data Beats a Cleverer 

Algorithm 

 Easiest way to improve: More data 

 Then 

 Data is bottleneck 

 Now:  

 Scalability is bottleneck 

 ML algorithms more similar than they appear 

 Clever algorithms require more effort 

but can pay off in the end 

 Biggest bottleneck is human time 



Learn Many Models, 

    Not Just One 

 Three stages of machine learning 

1. Try variations of one algorithm, chose one 

2. Try variations of many algorithms, choose one 

3. Combine many algorithms, variations 

 Ensemble techniques 

 Bagging 

 Boosting 

 Stacking 

 Etc. 

 



Representable Does Not Imply 

Learnable 

 Standard claim: “My language can 

represent/approximate any function” 

 No excuse for ignoring others 

 Causes of non-learnability 

 Not enough data 

 Not enough components 

 Not enough search 

 Some representations exponentially 

more compact than others 



ADVANCED TOPICS 



Supervised Learning and its 

Generalizations 

 Supervised Learning 

 Desired output is simple. (e.g., purchase an item 

or not; the person has the disease or not; etc.) 

 Structured Prediction: is a Generalization 

 Desired output is complex.  



Structured Prediction: 

Examples 

 Parsing: given an input sequence, build a tree 

whose leaves are the elements in the sequence 

and whose structure obeys some grammar.  

 Collective classification: given a graph 

defined by a set of vertices and edges, 

produce a labeling of the vertices.  

 Labeling web pages given link information 



Models and Algorithms for 

Structured Prediction 

 Probabilistic Graphical Models 

 Compact representation of joint distribution 

 Principled way of dealing with uncertainty 

 Take advantage of conditional independence 

 Markov logic and statistical relational models 

 Model both relational structure and uncertainty 

 One example related with another example 

 Considerable machine learning expertise 

required here! (not yet a blackbox) 

 


