
Supervised Learning

(Big Data Analytics)

Vibhav Gogate

Department of Computer Science

The University of Texas at Dallas

Practical advice

Goal of Big Data Analytics

 Uncover patterns in Data. Can be used to:

 Gaining competitive advantage if you are a

marketer

 Making a lot of money if you are working in the

stock market

 Winning presidential Elections and so on.

 Analytics = Machine learning

 Practical advice on “how to use machine

learning the right way.”

Traditional Programming

Machine Learning (Analytics)

Computer
Data

Program
Output

Computer
Data

Output
Program

Not scalable

Not Magic: More like Gardening. Farmers combine seeds with nutrients to

grow crops. Learners combine knowledge with data to grow programs

Scalable

Supervised Learning

 Given: Training examples 𝒙, 𝑓 𝒙 for some

unknown function 𝑓.

 Find: A good approximation to 𝑓.

 Classification problem: 𝑓(𝒙) is an (small) integer

 Regression problem: 𝑓(𝒙) is a real number

 Example Applications: Credit Card approval;

Spam Filtering; Disease Diagnosis;

Automatically tagging images with location; etc.

Example: Credit Card approval

 A credit card company receives thousands of
applications for new cards. Each application
contains information about an applicant:
 age

 Marital status

 annual salary

 outstanding debts

 credit rating

 etc.

 Problem: to classify applications into two categories,
approved and not approved.

Classification Example: Spam

Filtering

Classify as “Spam” or “Not

Spam”

Classification Example:

Weather Prediction

Classify as “Rainy”, “Cloudy”, “Sunny”

Regression example:

Predicting Gold/Stock prices

Given historical data on Gold

prices, predict tomorrow’s price!

Good ML can

make you rich

(but there is

still some risk

involved).

Supervised Learning: Some

Terminology

 Training Data

 Training Example: Example of the form

𝒙, 𝑓 𝒙

 Classifier: A discrete-valued function or an

algorithm that outputs a discrete-valued

function

 Classes: The number of distinct values that

𝑓 𝒙 can take.

Training Data

Two

Classes:

{Yes,No}

Training Example

Steps in Supervised Learning

1. Determine the representation for “x,f(x)” and

determine what “x” to use
 Feature Engineering

2. Gather a training set (not all data is kosher)

 Data Cleaning

3. Select a suitable evaluation method

4. Find a suitable learning algorithm among a

plethora of available choices

Feature Engineering is the Key

 Most effort in ML projects is constructing

features

 Black art: Intuition, creativity required

 Understand properties of the task at hand

 How the features interact with or limit the

algorithm you are using.

 ML is an iterative process

 Try different types of features, experiment with

each and then decide which feature set/algorithm

combination to use

What features will you use?

 Examples

 Spam Filtering

 Mapping images to names

 Feature Combination

 Linear models cannot handle some dependencies

between features (e.g. XOR)

 Feature combinations might work better.

 Quick growth of the number of features.

 Accuracy
 Fraction of the examples that are correctly classified

by the learner

 Precision, Recall and F-score (Next slide)

 Squared error (Regression problems)

 Likelihood

 Posterior probability

 Cost / Utility

 Etc.

Evaluation

Precision, Recall and F-1 score

 Precision (P) =
𝑡𝑝

𝑡𝑝+𝑓𝑝
; Recall (R)=

𝑡𝑝

𝑡𝑝+𝑓𝑛

 F1-score = 2
𝑃×𝑅

𝑃+𝑅

 Harmonic mean of precision and recall

Actual=True Actual=False

Predicted=True tp (correct result) fp (unexpected

result)

Predicted=False fn (missing result) tn (correct absence

of result)

What algorithms

(Classifiers/learners) to use

 Naïve Bayes

 Logistic Regression

 Linear SVMs

 Decision Trees

 Neural Networks

 Support Vector Machines

 K-nearest neighbors (Non-parametric)

 Bagging (Meta); Boosting (Meta)

Weka Software

Non-linear

Linear classifiers

Classifiers: Bias versus

Variance

Non-Linear Classifier

• Support vector machine (Kernels)

• Neural networks

• Decision Trees

Linear Classifier

• Naïve Bayes

• Logistic Regression

• Perceptron

High Bias, low variance Low Bias, High variance

Simpler Complex

Learning = Representation +

 Evaluation + Optimization

 Thousands of learning algorithms

 Combinations of just three elements

Representation Evaluation Optimization

Instances Accuracy Greedy search

Hyperplanes Precision/Recall Branch & bound

Decision trees Squared error Gradient descent

Sets of rules Likelihood Quasi-Newton

Neural networks Posterior prob. Linear progr.

Graphical models Margin Quadratic progr.

Etc. Etc. Etc.

It’s Generalization that Counts

 Divide data into training, test and

hold-out or validation set

 Algorithm must work on test

examples never seen before

 Training examples can just be

memorized

 Don’t tune parameters on test data

 Use cross-validation

Training

Data

Hold-Out

Data

Test

Data

K-Fold Cross Validation

 Choose a suitable K (usually 10)

k-fold

Train on (k - 1) splits Test

Data Alone Is Not Enough

 Classes of unseen examples are arbitrary

 So learner must make assumptions

 “No free lunch” theorems

 Luckily, real world is not random

 Induction is knowledge lever

Overfitting Has Many Faces

 Classifier A is better than B on the

training set but the reverse is true on the

test set!!

 The biggest problem in machine learning

 Bias and variance (Simple vs. Complex)

 Can learn a simpler linear function vs. can learn

any function

 Less powerful learners can be better

 Solutions: Cross-validation; Regularization

Intuition Fails In High

Dimensions

 Curse of dimensionality

 Sparseness worsens exponentially with

number of features

 Irrelevant features ruin similarity

 In high dimensions all examples look alike

 3D intuitions do not apply in high dimensions

 Blessing of non-uniformity

More Data Beats a Cleverer

Algorithm

 Easiest way to improve: More data

 Then

 Data is bottleneck

 Now:

 Scalability is bottleneck

 ML algorithms more similar than they appear

 Clever algorithms require more effort

but can pay off in the end

 Biggest bottleneck is human time

Learn Many Models,

 Not Just One

 Three stages of machine learning

1. Try variations of one algorithm, chose one

2. Try variations of many algorithms, choose one

3. Combine many algorithms, variations

 Ensemble techniques

 Bagging

 Boosting

 Stacking

 Etc.

Representable Does Not Imply

Learnable

 Standard claim: “My language can

represent/approximate any function”

 No excuse for ignoring others

 Causes of non-learnability

 Not enough data

 Not enough components

 Not enough search

 Some representations exponentially

more compact than others

ADVANCED TOPICS

Supervised Learning and its

Generalizations

 Supervised Learning

 Desired output is simple. (e.g., purchase an item

or not; the person has the disease or not; etc.)

 Structured Prediction: is a Generalization

 Desired output is complex.

Structured Prediction:

Examples

 Parsing: given an input sequence, build a tree

whose leaves are the elements in the sequence

and whose structure obeys some grammar.

 Collective classification: given a graph

defined by a set of vertices and edges,

produce a labeling of the vertices.

 Labeling web pages given link information

Models and Algorithms for

Structured Prediction

 Probabilistic Graphical Models

 Compact representation of joint distribution

 Principled way of dealing with uncertainty

 Take advantage of conditional independence

 Markov logic and statistical relational models

 Model both relational structure and uncertainty

 One example related with another example

 Considerable machine learning expertise

required here! (not yet a blackbox)

