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Multimedia Data

Text
o Ascii documents
o HTML documents

o Databases (Structured documents)

o Annotations
Images

o JPG, PNG, BMP, TIFF, etc.

e Audio

o MP3, WAV files

* Video

o Sequence of frames
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Size and
Complexity of
processing the
data increases as
we go from top to
bottom
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Temporal Data

 Time Series data generated by a dynamic
system
o A user’s GPS locations recorded by his Cell-phone
o Loop Sensors counting cars on a freeway

o Load monitoring devices capturing power
consumed in a household

o Video as a sequence of frames
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Relati

onal Data

* Data resides in multiple tables

Name Job Company Party Name Course
adams researcher scuf no adams erm

_ _ d 5 Company Type
bl.ake president jvt yes adams SO i commercial
k?ng manager phar.madm no a}jaﬁls STW scuf university
miller manager Jvt yes ase €80 pharmadm university
scott researcher scuf yes blake erm

turner researcher pharmadm no

king  cso

Course Length Type

CSO 2  introductory
erm 3  introductory
S02 4  introductory
STW 3 advanced
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king erm

Example Borrowed from Luc De Raedt’s
textbook, “Logical and Relational
Learning”
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Machine Learning

e Study of systems that improve their
performance over time with experience

* Experience= Data (or examples or observations
or evidence)

e Learning = Search for patterns, regularities or
rules that provide insights into the data
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What we will cover?

Probabilistic Machine Learning

o Build a model that describes the distribution that
generated the data

o Representation, Inference and Learning

* Dynamic Probabilistic Networks
o Temporal Data

 Markov Logic Networks
o Relational Data

® Vibhav Gogate @DALLAS
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Probabilistic Graphical Models

“PGMs have revolutionized Al and machine
learning over the last two decades” — Eric
Horvitz, Director, Microsoft Research

e Basic ldea: Compactly represent a joint
probability distribution over a large number of
variables by taking advantage of conditional
independence.

o Graph describes the conditional independence
assumptions
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 Directed or Causal Networks

Bayesian networks

n n
P(Xi,...,Xn) = H P(Xi|X1,...,Xi_1) = H P(X:|pa( X))
=1 i=1

A B | Op
true  true 2
true false | .8
false true 75
false false | .25
Sprinkler?
B C D ®D|BC
true  true  true .95
true true false | .05
true false true 9
true false false | .1
false true  true .8
false true false | .2
false false true | 0
false false false | 1
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Wet Grass?
(D)

C

Slippery Road?
(E)

Product of
several poly-
sized conditional
probability
tables

rc_ Each table is

Ocia
true .8
false | .2
true 1
false | .9
C E O]
true  true v
true false | .3
false true 0
false false | 1

variable given
its parents in
the graph
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Bayesian networks

31 vs 17 entries
Exponential vs Poly entries

A B Opa

| true  true | .2 |

true false | .8

false true 75

false false | .25

Sprinkler?

B C D
true  true  true .95
ltrue  true false | .05 |
true false true 9
true false false | .1
false true true | .8
false true false | .2
false false true | 0
false false false | 1
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A ®
true .6

false | .4

Wet Grass?
(D)

Slippery Road?

(E)

A C ®C|A
true  true .8
true false | .2
false true 1
false false | .9

C E ®E|C
true  true 7
| true false | .3 |
false true 0
false false | 1

0.2 x0.05x.6x.8x.3=.00144
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Joint distribution

A B C D E Pr(.)

true  true  true true  true 06384
true  true  true true false | .02736
true true true false  true .00336

true  true  true false false | .00144

true true false true true | 0

true true false true false | .02160
true true false false true 0

true true false false false | .00240
true false true true true 21504
true false true true false | .09216
true false true false true .05376
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Markov networks

B
2
\b
®
@

_I m
PX= (X, Xn)) = 5 [ ] #i(Kvars(oi)
i=1

AN (4

A4 Ay Ay 3 Ay
C - KD A A, Weight
@@ [ o I3

0 1 4.3
(s}t —(ta—(a. R R
Ay Ay Ay 3 Aga

1 1 33.1

* Functions defined over cliques
o Don’t have a probabilistic meaning

* Distribution = normalized product of functions
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Log-Linear models

PGM = A set of weighted formulas (features) in
propositional logic

Alternative Representation of a PGM

Distribution

P(X) = 5 exp (Z 5(f,-,X>w,->

where §(f;, X) is a dirac-delta function which is 1 if X satisfies f;
and 0 otherwise.
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Inference Problems

* Probability of Evidence (PR)

o Find the probability of an assignment to a subset of
variables

e Conditional Marginal Estimation (MAR)

o Find the marginal probability distribution at a variable
given evidence

 Maximum a Posteriori (MAP)

o Find an assignment with the maximum probability given
evidence

e All of them are at least NP-hard
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Learning problems

* Structure Learning

o Learn the structure of the graph from data
* Weight Learning
o Learn the parameters (CPTs, weights of features)

e Structure Learning is often much harder than
weight learning

* |n practice, we often assume a structure
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Inference algorithms

e Exact algorithms

o Exponential in treewidth (a graph parameter)
 Message-passing algorithms

o Belief propagation, Expectation propagation, etc.
 Sampling algorithms

o Importance sampling

o Markov chain Monte Carlo sampling
* Gibbs sampling

® Vibhav Gogate @DALLAS
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Dynamic Bayesian networks

PGMs are static; don’t have a concept of time
Dynamic Bayesian networks are temporal PGMs

Three assumptions
o Stationary
o Time is discrete
o K-Markov assumption

® Vibhav Gogate @DALLAS ®15



Dynamic Bayesian networks

» X; = Set of variables at time ¢
» X, = Set of variables fromtime t = ato t = b.

Markov Assumption

> P(X¢Xo.t—1) = P(X¢|X¢—1)
Stationary Process

» P(X¢X;_1) is the same for all ¢
Specification

» By = P(Xo) and B_, =P(X;|X;_1)

® Vibhav Gogate @DALLAS
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Example

e N

\ N >
Location Location’ Location Location”® w

Craitire> @

Time slice ¢ Time slice r + 1 Time slice 0 Time slice 0 Time slice 1 Time slice 2

Weather

Velocity

)é

Failure

8090

(a) B, (b) By (c) DBN unrolled over 3 steps

* A Dynamic Bayesian network for monitoring a person’s car
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A DBN asa HMM

 Hidden Markov models (HMMs)

o Each time slice has one cluster each for observed
and unobserved variables

(a) (b)
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DBNs vs HMMs

e An HMM represents the state of the world using a single
discrete random variable, X; € {1,...,K}.

e A DBN represents the state of the world using a set of ran-
dom variables, Xt(l),...,Xt(D) (factored/ distributed
representation).

e A DBN represents P(X:/X; 1) in a compact way using a
parameterized graph.

= A DBN may have exponentially fewer parameters than its
corresponding HMM.

= Inference in a DBN may be exponentially faster than in the
corresponding HMM.
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Factorial HMMs as DBNs

e Num. parameters to specify P(X:|X;_1):

— HMM: O(K?2P).

@ '@ — DBN: O(DK?).
( e Computational complexity of exact inference:
— HMM: O(TK?D).
\ — DBN: O(TDKP+1).

 Example: Several sources of sound from a single
microphone
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Coupl

ed HMMs as DBNs

@

e

e
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 Example: Temperature in different rooms
o Adjacent rooms are connected to each other
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Inference problems in DBNs

* Tracking or Filtering

o Find the probability distribution over all variables or the
marginal distribution at a variable at time slice “t” given
evidence up to slice “t”

 Prediction

o Find the probability distribution at time slice “k” given
evidence up to slice “t” where k>t.

* Smoothing

o Find the probability distribution at time slice “k” given
evidence up to slice “t” where k<t.

 MAP inference
o Find the most likely trajectory of the system.

® Vibhav Gogate @DALLAS 22



Inference problems in DBNs

Tracking: P(X¢|eq.t)

Prediction: P(Xk|eq.;) where k >t

nterval Smoothing: P(Xkle1.t), k € [0, T]; T < t.
-ixed-lag Smoothing P(Xk|e1.;) for a specific k < t
MAP: arg maxx,, P(Xo.:|€1:¢)

e Vibhav Gogate @DALLAS 023



Application Designer

Select the variables at each time-slice

Select the edges by following sound

probabilistic principles

o The networks should be a directed acyclic graph
(DAG)

o Each variable should be independent of its non-
descendants given its parents

o Sparesity: Limit the number of parents at each
variable
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Application Designer

e Remember as you increase the number of
variables:
o The model looks realistic

o However, the complexity of inference and learning
increases and the accuracy goes down because we have
to use approximate inference methods

o Tradeoff between the two is rarely explored in practice

Don’t think of the technology as a black-box
o We are not there yet!

® Vibhav Gogate @DALLAS ®25



Tracking/Filtering Algorithms

Exact Inference
* Approximate Message passing algorithms

Sampling Algorithms
o Particle Filtering
o Rao-Blackwellised Particle Filtering

® Vibhav Gogate 026



Exact Inference on HMMs

Calculate the belief state o(X;,.1) = P(X¢.1|€1.411) recursively:

oti1(Xep1) = P(Xep1l€t11,€1:4)
P(eti1|Xtt1,€1.1) P(Xer1]€4:1)
P(et+1]e1.t)
< P(et1[Xir1)P(Xer1]€1:)

where P(X;.1|e1.;) can be computed using o¢(X;):

P(Xes1lers) = D P(Xew1|Xt,e1.0)P(Xtle.)

27
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Exact Inference in HMMs

@@

—> —>

@ @ o0(Xo) o1(X1) o2(X2)

Message-passing algorithm

Unrolled HMM

* Procedural view
o Cluster (X,) stores P(X,)
o Each cluster (X,,X,,,) stores P(X.,,|X,) and P(E,,, | X;,,)

* Multiply incoming message with the functions

* Sum-out X, and send the resulting function to the
next cluster

® Vibhav Gogate @DALLAS ®28



Exact Inference in DBNs

 Clusters are Factored!




Exact Inference in DBNs
* Clusters are Factored!

Ay 1, By, Gy Dets
A, B, C, D,

At’ Bt' Ct’ Dt

A, B, C,D,

Naive Clustering

At+1' Bt+1' Ct+1' Dt+1

A

® Vibhav Gogate

At+1
At' At+1 At+1' Bt+1' Ct+1

Ct+1

Ct+1' Dt+1

Advanced Clustering
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Smaller Clusters

 Complexity: exponential in the number of variables
in the cluster

o Smaller clusters are desirable

e How to construct the clusters?

o At each time slice, find which nodes are connected to
the next time slice and create a clique over them

* |Interface nodes

o At each time slice, create a junction tree out of
* Moralized graph over nodes in the time slice
* Interface cliques over the time slice and previous one

o Paste the junction trees together.
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Building the Clusters

Moral graph: Graph over which a
Connect parents of a junction tree will be
node to each other constructed
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Building the Clusters

* Make Graph Chordal

e Process nodes in order

o Create a clique out of all nodes
ordered below the node (its children)
and having an edge with the node

-




Chordal Graph =2 Junction Tree

Q At each node:
Construct a cluster out of the

variable and its children

BC
FC
FBC
BC




Message-passing

e At each slice

o Put each function in a cluster that contains all
variables mentioned in the function

o Order messages such that the outgoing interface
message is the last one computed

o Perform message passing
* Multiply all incoming messages with the functions in the

cluster
 Sum-out all variables that are mentioned in the cluster
but not mentioned in the receiving cluster.
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Message-passing

(3)
—

A

(1) T

G

Cy Dy

AL A

Advanced Clustering

(4)
—

At+ 1

At+ 1’ Bt+ 1’ Ct+1

(5) T

Ct+1

Ct+1' Dt+1

A possible message ordering (other orderings are also possible)

® Vibhav Gogate

(6)
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Why it works?

* Laws of probability theory

* It turns out that
O P(X;|X1.1.€1.00,8)=P(Xc 1y €)

o Namely, X, is conditionally independent of the past
given the interface nodes I, ;at time slice t-1.

* The message passing algorithm is an instance of
the variable elimination algorithm

o Eliminate all variables except the ones required by
the next time slice

® Vibhav Gogate @DALLAS ®37



Approximate Inference

 Sometimes the cluster size is just too large to
allow exact inference
* Resort to approximate inference

o Message Passing
o Sampling-based

® Vibhav Gogate @38



Approximate Message Passing

0]

® Vibhav Gogate

Interface

Junction Tree

Gogate et.al, 2005, 2009
Kevin Murphy, 2002

Split the clusters by relaxing
the tree requirement

Perform loopy propagation
in each slice
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[terative Join Graph Propagation

G: (GFE)
E: (EEﬁA (EF)

F: (FCD)“(BF)
e

D: (DB) ™ (C
C: (CAB)™ (CB)
apm‘m& ®)

A: Y(A)

a) schematic mini-bucket(i), i=3 b) arc-labeled join-graph decomposition
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Message passing Equations

* Multiply all received
messages except from R

 Multiply all functions

* Sum-out all variables
S
except the separator

m(S —>R) | = Z 1_[ f n m(G - R)
Vars(S)—Sep(S,R) fefunctions(S) GENeighbors(S)—R

TR

-



Particle Filtering

* At each time slice
o Generate N particles from a distribution Q
* |tis difficult to sample from P

o Compute the weight of each particle

* Correct for the fact that you are sampling from Q and not
the target distribution P

o Represent the belief state using the weighted
particles

® Vibhav Gogate @DALLAS ®42



Particle Filtering

» Given: Samples: (x;”’,, w;”,)¥ ) and Evidence e;
» Fori=1toNdo
> Sample x!” from @

» Compute W}f) using the following equation

P(ed|x ) P(x;” X ) P(XY)_y er:i-1)
Q(x; X% ) QXY _y)
P(exi” ) P(x" X))

ax'ix )

Wi

» Normalize the weights, namely set w\" = w'" /SN w!”

———7 IS below some pre-defined threshold

> i (W)

» Resample N particles from the distribution defined by the
weights

» Set all weights to 1/N

» Send the particles and their weights to the next time slice

> if

® Vibhav Gogate @DALLAS ®43



Particle Filtering: Picture

weighted prior ® o P(x(t-1)|y(l:t-1))
proposal >< / P(x(t)|x(t-1))

unweighted . e P(x(t)|y(l:t-1))
prediction
weighting P(y(t) | x(t))
weighted
posterior ¢ ¢ ® Px®|y(l:1)
resample
unweighted ot P(x(t) | y(1:t))
posterior
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Impact of the Resampling Step

Avg absolute error

0 10 20 30 40 50

Time step
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Rao-Blackwellised Particle
Filtering

» Combine particle filtering with exact inference. Sample
enough variables so that the resulting DBN is tractable

» Suppose we partition X; = (U;, V¢)

» |If the conditional distribution P(V;|u;) can be computed
exactly using junction tree inference or some other
method, we only need to sample U;

» Reduces the variance and thus improves the accuracy
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Rao-Blackwellised Particle
Filtering

(1) T

G

C, D,

(3)
—>

A

AL A

(4)
—

At+ 1

At+ v 4+ v Ct+1

ol

Ct+1

Ct+1' Dt+1

* Suppose we have enough computational resources to do inference
with two variables in each cluster!
« Sample B, at each time slice, Exactly infer others!
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Interval Smoothing

Interval Smoothing is a much harder problem
because we have to traverse back in time

* Naive Algorithm
o Store all the clusters+messages at each time slice
and traverse backwards
e Large space complexity

o Clever idea (Murphy, 2002)

 Stores only O(logT) time slices
* Factor of O(logT) more expensive time-wise
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MAP estimation

* |nstead of using sum-out operation we use a
max-out operation.

® Vibhav Gogate ® 49



Parameter Learning: FOD
* FOD: fully observable data

e If every node is observed in every case, the likelihood decom-
poses into a sum of terms, one per node:

log P(D|9, M) = > logP(Xy4|0,M)
d

= ) log H P(Xgilmq,i: 0 M)

d )
= ) > log P(Xg;|mq;, 0; M)
i d

where 7, ; are the values of the parents of node i in case d,
and 6#; are the parameters associated with CPD «.
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Parameter Learning: POD

 POD: Partially observable data

e If some nodes are sometimes hidden, the likelihood does not
decompose.

log P(D|0, M) =) log) P(H =h,V =vy4|0, M)
d h

e In this case, can use gradient descent or EM to find local
maximum.

e EM iteratively maximizes the expected complete-data log-
likelihnood, which does decompose into a sum of local terms.

® Vibhav Gogate @DALLAS ®5]



Handling Continuous variables

* Dependencies are often modeled as linear
Gaussian

 Example: Current position (X) and Velocity (V)
o P(X,| X1, V)=X,_+V,A+N(0;52%,); A: length of slice
o P(V,|V,)=V,+N(0;G?)

* Conditional linear Gaussian

o Continuous variables have discrete parents

* Hybrid Particle Filtering and GBP algorithms

® Vibhav Gogate @DALLAS ®52



Applications

* Recognizing activities and transportation
routines

* Robotics

* Object tracking

* Bio-informatics

e Speech recognition

* Event detection in Videos

® Vibhav Gogate @DALLAS ®53



Recognizing travel routines

D: Time-of-day (discrete)
@ Q @ W: Day of week (discrete)
Goal: collection of locations where the

person spends significant amount of
time. (discrete)

Route: A hidden variable that just
predicts what path the person takes
(discrete)

Location: A pair (e,d) e is the edge on
which the person is and d is the
distance of the person from one of the

end-points of the edge (continuous)
Velocity: Continuous

GPS reading: (lat,lon,spd,utc).




Example Queries

 Where the person will be 10 minutes from
now?
o P(l1]dy.,W1., Y1) Where T=t+10 minutes

 What is the person’s next goal?
O P(gr|dy.,W1.t,Y124)




Example of Goals

Channel Pacific Ocean

Islands

e = H
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Yorba E
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San Juan
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Example of Route

Alizo “iejo

Wl ,J_'_l'LL'I_ Galf Club |
) =]

Canyonz e
Regional Park =




Experimental Results:
Data Collection

* GPS data was collected by one of the authors for a
period of 6 months.

o Latitude and longitude pairs

* 3 months data was used for training and 3 months for
testing.

e Data divided into segments

o A segment is a series of GPS readings such that two
consecutive readings are less than 15 minutes apart.

- -



Experimental Results:
Models and algorithms

e Testif adding new variables improves prediction
accuracy.

o Model-1: Model as described before

o Model-2: Remove variables d, and w;

o Model-3: Remove variables d,, w,f,r,g. from each time slice.
* Algorithms:

o 1JGP-RBPF(1,2), IGP-RBPF(2,1), JGP-S(1) and IJGP-5(2)

- -



Learning the models from data

 EM algorithm used for learning the models
* Takes about 3 to 5 days to learn data that is distributed
over 3 months.

e Since EM uses inference as a sub-step, we have 4 EM
algorithms corresponding to the 4 algorithms used for
inference

o 1JGP-RBPF(1,2), JGP-RBPF(2,1), JGP-S(1) and IJGP-5(2)

- -



Predicting Goals (MODEL-1)

Model-1 (20% of the trip seen)

Inference\Learning |IJGP-RBPF(1,1) |JGP-RBPF(1,2) IJGP(1) IJGP(2)
Time Accuracy Accuracy Accuracy Accuracy
100|1JGP-RBPF(1,1) 12.3 78 80 79 80
100|1JGP-RBPF(1,2) 15.8 81 84 78 81
200[IJGP-RBPF(1,1) 33.2 80 84 77 82
200[IJGP-RBPF(1,2) 60.3 80 84 76 82
500{IJGP-RBPF(1,1) 123.4 81 84 80 82
500{IJGP-RBPF(1,2) 200.12 84 84 81 82
1JGP(1) 9 79 79 77 79
IJGP(2) 34.3 74 84 78 82

Compute P(g,|e,.) and compare it with the actual goal.
Accuracy = percentage of goals predicted correctly.

N = number of particles

Column: learning algorithm
Row: inference algorithm

@DALLAS




Predicting Goals (Model-2)

IJGP-RBPF(1,1)  [IJGP-RBPF(1,2)  [IJGP(1) 1JGP(2)

Inference\Learning |Time Accuracy Accuracy Accuracy Accuracy
100[1JGP-RBPF(1,1) 8.3 73 73 71 73
100[1JGP-RBPF(1,2) 14.5 76 76 71 75
200[1IGP-RBPF(1,1) 23.4 76 77 71 75
200[1IGP-RBPF(1,2) 314 76 77 71 76
500[IJGP-RBPF(1,1) 40.08 76 77 71 76
500[1JGP-RBPF(1,2) 51.87 76 77 71 76

IIGP (1) 6.34 71 73 71 74

1JGP(2) 10.78 76 76 72 76

eCompute P(gt|el:t) and compare it with the actual goal.

eAccuracy = percentage of goals predicted correctly.

*N = number of particles

eColumn: learning algorithm

eRow: inference algorithm

@DALLAS o




Predicting Goals (Model-3)

N Inference/Learning IJGP-RBPF(1,1) 1IIGP(1)
Time Accuracy
100]|1JGP-RBPF(1,1) 2.2 68 61
200({1JGP-RBPF(1,1) 4.7 67 64
500|1JGP-RBPF(1,1) 12.45 68 63
1IIGP(1) 1.23 66 62

eCompute P(gt|el:t) and compare it with the actual goal.
eAccuracy = percentage of goals predicted correctly.

*N = number of particles
eColumn: learning algorithm
eRow: inference algorithm




Predicting Routes

e Compare the path of the person predicted by the
model with the actual path.

* False positives (FP)

o count the number of roads that were not taken by the
person but were in the predicted path.

* False Negatives (FN)

o count the number of roads that were taken by the person
but were not in the predicted path.

- -



False Positives and False Negatives
for Route prediction

Model-1 Model-2 Model-3

N [INFERENCE FP/FN FP/FN FP/FN
JGP(1) 3323 39/34 60/55
JGP(2) 3117 39/33

100|lJGP-RBPF(L,1)  |33/21 39/33 60/54

200/1JGP-RBPF(L,1) 33121 39/33 58/43

100|lJGP-RBPF(1,2)  [32/22 42133

200/1JGP-RBPF(1,2)  |31/22 38/33

Model-1 shows the highest route prediction accuracy,
given by low false positives and false negatives.



Software

* BNT toolkit by Kevin Murphy
e GMTK toolkit by Jeff Bilmes
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