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Multimedia Data 
• Text 

o Ascii documents 
o HTML documents 
o Databases (Structured documents) 
o Annotations 

• Images 
o JPG, PNG, BMP, TIFF, etc. 

• Audio 
o MP3, WAV files 

• Video 
o Sequence of frames 

Size and 
Complexity of 
processing the 
data increases as 
we go from top to 
bottom 
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Temporal Data 

• Time Series data generated by a dynamic 
system 

o A user’s GPS locations recorded by his Cell-phone 

o Loop Sensors counting cars on a freeway 

o Load monitoring devices capturing power 
consumed in a household 

o Video as a sequence of frames 
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Relational Data 

• Data resides in multiple tables 
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Example Borrowed from Luc De Raedt’s 
textbook, “Logical and Relational 
Learning” 



Machine Learning 

• Study of systems that improve their 
performance over time with experience 

• Experience= Data (or examples or observations 
or evidence) 

• Learning = Search for patterns, regularities or 
rules that provide insights into the data 
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What we will cover? 

• Probabilistic Machine Learning 

o Build a model that describes the distribution that 
generated the data  

o Representation, Inference and Learning 

• Dynamic Probabilistic Networks 

o Temporal Data 

• Markov Logic Networks 

o Relational Data 
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Probabilistic Graphical Models 
• “PGMs have revolutionized AI and machine 

learning over the last two decades” – Eric 
Horvitz, Director, Microsoft Research 

• Basic Idea: Compactly represent a joint 
probability distribution over a large number of 
variables by taking advantage of conditional 
independence. 
o Graph describes the conditional independence 

assumptions 
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Bayesian networks 

• Directed or Causal Networks 
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Product of 
several poly-
sized conditional 
probability 
tables  

Each table is 
variable given 
its parents in 
the graph 



Bayesian networks 
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Joint distribution 

…………………………………….. 
…………………………………….. 

0.2 × 0.05 × .6 × .8 × .3 = .00144 

31 vs 17 entries 
Exponential vs Poly entries 



Markov networks 

• Functions defined over cliques 
o Don’t have a probabilistic meaning 

• Distribution = normalized product of functions 
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A1,1 A1,2 Weight 

0 0 3 

0 1 4.3 

1 0 2.2 

1 1 33.1 



Log-Linear models 

• PGM = A set of weighted formulas (features) in 
propositional logic 

• Alternative Representation of a PGM 

• Distribution 
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Inference Problems 
• Probability of Evidence (PR) 

o Find the probability of an assignment to a subset of 
variables 

• Conditional Marginal Estimation (MAR) 
o Find the marginal probability distribution at a variable 

given evidence 

• Maximum a Posteriori (MAP) 
o Find an assignment with the maximum probability given 

evidence 

• All of them are at least NP-hard 
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Learning problems 

• Structure Learning 

o Learn the structure of the graph from data 

• Weight Learning 

o Learn the parameters (CPTs, weights of features) 

• Structure Learning is often much harder than 
weight learning 

• In practice, we often assume a structure 
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Inference algorithms 

• Exact algorithms 

o Exponential in treewidth (a graph parameter) 

• Message-passing algorithms 

o Belief propagation, Expectation propagation, etc. 

• Sampling algorithms 

o Importance sampling 

oMarkov chain Monte Carlo sampling 

• Gibbs sampling 
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Dynamic Bayesian networks 

• PGMs are static; don’t have a concept of time 

• Dynamic Bayesian networks are temporal PGMs 

• Three assumptions 

o Stationary 

o Time is discrete 

o K-Markov assumption 

Vibhav Gogate 15 



Dynamic Bayesian networks 
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Example 

• A Dynamic Bayesian network for monitoring a person’s car 
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A DBN as a HMM 

• Hidden Markov models (HMMs) 

o Each time slice has one cluster each for observed 
and unobserved variables 
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Factorial HMMs as DBNs 

• Example: Several sources of sound from a single 
microphone 
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Factorial 
HMM 



Coupled HMMs as DBNs 

• Example: Temperature in different rooms 
o Adjacent rooms are connected to each other 
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Inference problems in DBNs 
• Tracking or Filtering 

o Find the probability distribution over all variables or the 
marginal distribution at a variable at time slice “t” given 
evidence up to slice “t” 

• Prediction 
o Find the probability distribution at time slice “k” given 

evidence up to slice “t” where k>t. 

• Smoothing 
o Find the probability distribution at time slice “k” given 

evidence up to slice “t” where k<t. 

• MAP inference 
o Find the most likely trajectory of the system. 
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Inference problems in DBNs 
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Application Designer 

• Select the variables at each time-slice 

• Select the edges by following sound 
probabilistic principles 

o The networks should be a directed acyclic graph 
(DAG) 

o Each variable should be independent of its non-
descendants given its parents 

o Sparesity: Limit the number of parents at each 
variable 
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Application Designer 

• Remember as you increase the number of 
variables:  

o The model looks realistic 

o However, the complexity of inference and learning 
increases and the accuracy goes down because we have 
to use approximate inference methods 

o Tradeoff between the two is rarely explored in practice 

• Don’t think of the technology as a black-box 

o We are not there yet! 
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Tracking/Filtering Algorithms 

• Exact Inference 

• Approximate Message passing algorithms 

• Sampling Algorithms 

o Particle Filtering 

o Rao-Blackwellised Particle Filtering 
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Exact Inference on HMMs 
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Exact Inference in HMMs 

• Procedural view 
o Cluster (X0) stores P(X0) 
o Each cluster (Xt,Xt+1) stores P(Xt+1|Xt) and P(Et+1|Xt+1) 

• Multiply incoming message with the functions 
• Sum-out Xt and send the resulting function to the 

next cluster 
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X0 X1 X2 

E1 E2 

X0X1 X1X2 X0 

Unrolled HMM 

Message-passing algorithm 



Exact Inference in DBNs 

• Clusters are Factored! 
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Exact Inference in DBNs 
• Clusters are Factored! 
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At, Bt, Ct, Dt,  
At+1, Bt+1, Ct+1, Dt+1 

 

At-1, Bt-1, Ct-1, Dt-1,  
At, Bt, Ct, Dt 

At, Bt, Ct, Dt 

Naïve Clustering 
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Advanced Clustering 
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Smaller Clusters 
• Complexity: exponential in the number of variables 

in the cluster 
o Smaller clusters are desirable 

• How to construct the clusters? 
o At each time slice, find which nodes are connected to 

the next time slice and create a clique over them 
• Interface nodes 

o At each time slice, create a junction tree out of  
• Moralized graph over nodes in the time slice 
• Interface cliques over the time slice and previous one 

o Paste the junction trees together. 
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Building the Clusters 
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Moral graph: 
Connect parents of a 
node to each other 
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Graph over which a 
junction tree will be 
constructed 



Building the Clusters 

• Make Graph Chordal 

 

 

 

 

• Process nodes in order 
o Create a clique out of all nodes 

ordered below the node (its children) 
and having an edge with the node 
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Chordal Graph  Junction Tree 
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At each node:  
Construct a cluster out of the 
variable and its children 



Message-passing 
• At each slice 

o Put each function in a cluster that contains all 
variables mentioned in the function 

o Order messages such that the outgoing interface 
message is the last one computed 

o Perform message passing 
• Multiply all incoming messages with the functions in the 

cluster  

• Sum-out all variables that are mentioned in the cluster 
but not mentioned in the receiving cluster. 
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Message-passing 
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A possible message ordering (other orderings are also possible) 



Why it works? 
• Laws of probability theory 

• It turns out that 
o P(Xt|X1:t-1,e1:t-1,et)=P(Xt|It-1,et) 

o Namely, Xt is conditionally independent of the past 
given the interface nodes It-1at time slice t-1. 

• The message passing algorithm is an instance of 
the variable elimination algorithm 
o Eliminate all variables except the ones required by 

the next time slice 
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Approximate Inference 

• Sometimes the cluster size is just too large to 
allow exact inference 

• Resort to approximate inference 

oMessage Passing 

o Sampling-based 
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Approximate Message Passing 
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Junction Tree 

Split the clusters by relaxing 
the tree requirement 
 
Perform loopy propagation 
in each slice 

Gogate et.al, 2005, 2009 
Kevin Murphy, 2002 



Iterative Join Graph Propagation 

G 

E 

F 

C D 

B 

A 

a) schematic mini-bucket(i), i=3   b) arc-labeled join-graph decomposition 
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Message passing Equations 

• Multiply all received 
messages except from R 

• Multiply all functions 

• Sum-out all variables 
except the separator 

S 

R 

𝑚 𝑆 → 𝑅     =   𝑓  𝑚(

𝐺∈𝑁𝑒𝑖𝑔𝑕𝑏𝑜𝑟𝑠 𝑆 −𝑅𝑓∈𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠(𝑆)𝑉𝑎𝑟𝑠 𝑆 −𝑆𝑒𝑝(𝑆,𝑅)

G → R) 



Particle Filtering 

• At each time slice 

o Generate N particles from a distribution Q 

• It is difficult to sample from P 

o Compute the weight of each particle 

• Correct for the fact that you are sampling from Q and not 
the target distribution P 

o Represent the belief state using the weighted 
particles 
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Particle Filtering 
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Particle Filtering: Picture 
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Impact of the Resampling Step 
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Rao-Blackwellised Particle 
Filtering 
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Rao-Blackwellised Particle 
Filtering 
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• Suppose we have enough computational resources to do inference 
with two variables in each cluster! 

• Sample Bt at each time slice, Exactly infer others! 



Interval Smoothing 

• Interval Smoothing is a much harder problem 
because we have to traverse back in time 

• Naïve Algorithm 

o Store all the clusters+messages at each time slice 
and traverse backwards 

• Large space complexity 

o Clever idea (Murphy, 2002) 

• Stores only O(logT) time slices 

• Factor of O(logT) more expensive time-wise 
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MAP estimation 

• Instead of using sum-out operation we use a 
max-out operation. 
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Parameter Learning: FOD 

• FOD: fully observable data 
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Parameter Learning: POD 

• POD: Partially observable data 
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Handling Continuous variables 

• Dependencies are often modeled as linear 
Gaussian 

• Example: Current position (X) and Velocity (V) 

o P(Xt|Xt-1,Vt)=Xt-1+Vt+N(0;2
X); : length of slice 

o P(Vt|Vt-1)=Vt-1+N(0;2
V) 

• Conditional linear Gaussian 

o Continuous variables have discrete parents 

• Hybrid Particle Filtering and GBP algorithms 
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Applications 

• Recognizing activities and transportation 
routines 

• Robotics 

• Object tracking 

• Bio-informatics 

• Speech recognition 

• Event detection in Videos 
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Recognizing travel routines 
D: Time-of-day (discrete) 

W: Day of  week (discrete) 

Goal: collection of  locations where the 

person spends significant amount of  

time. (discrete) 

Route: A hidden variable that just 

predicts what path the person takes 

(discrete) 

Location: A pair (e,d) e is the edge on 

which the person is and d is the 

distance of  the person from one of  the 

end-points of  the edge (continuous) 

Velocity: Continuous 

GPS reading: (lat,lon,spd,utc). 

 

yt 

gt-1 

rt-1 

lt-1 

yt-1 

vt-1 

gt 

rt 

lt 

vt 

dt-1 wt-1 

dt wt 



Example Queries 

• Where the person will be 10 minutes from 
now? 

o P(lT|d1:t,w1:t,y1:t) where T=t+10 minutes 

• What is the person’s next goal? 

o P(gT|d1:t,w1:t,y1:t) 

 



Example of Goals 



Example of Route 

Route Seen 

Route Predicted 

Grocery 

store 



Experimental Results: 
Data Collection 

• GPS data was collected by one of the authors for a 
period of 6 months. 
o Latitude and longitude pairs 

• 3 months data was used for training and 3 months for 
testing. 

• Data divided into segments 
o A segment is a series of GPS readings such that two 

consecutive readings are less than 15 minutes apart. 



Experimental Results: 
Models and algorithms 

• Test if adding new variables improves prediction 
accuracy. 
o Model-1: Model as described before 

o Model-2: Remove variables dt and wt 

o Model-3: Remove variables dt, wt,ft,rt,gt from each time slice. 

• Algorithms: 
o IJGP-RBPF(1,2), IJGP-RBPF(2,1), IJGP-S(1) and IJGP-S(2) 

 



Learning the models from data 
• EM algorithm used for learning the models 

• Takes about 3 to 5 days to learn data that is distributed 
over 3 months. 

• Since EM uses inference as a sub-step, we have 4 EM 
algorithms corresponding to the 4 algorithms used for 
inference 

o IJGP-RBPF(1,2), IJGP-RBPF(2,1), IJGP-S(1) and IJGP-S(2) 

 



Predicting Goals (MODEL-1) 

• Compute P(gt|e1:t) and compare it with the actual goal. 

• Accuracy = percentage of goals predicted correctly. 

• N = number of particles 

• Column: learning algorithm 

• Row: inference algorithm 

Model-1 (20% of the trip seen)

N Inference\Learning IJGP-RBPF(1,1) IJGP-RBPF(1,2) IJGP(1) IJGP(2)

Time Accuracy Accuracy Accuracy Accuracy

100 IJGP-RBPF(1,1) 12.3 78 80 79 80

100 IJGP-RBPF(1,2) 15.8 81 84 78 81

200 IJGP-RBPF(1,1) 33.2 80 84 77 82

200 IJGP-RBPF(1,2) 60.3 80 84 76 82

500 IJGP-RBPF(1,1) 123.4 81 84 80 82

500 IJGP-RBPF(1,2) 200.12 84 84 81 82

IJGP(1) 9 79 79 77 79

IJGP(2) 34.3 74 84 78 82



Predicting Goals (Model-2) 

IJGP-RBPF(1,1) IJGP-RBPF(1,2) IJGP(1) IJGP(2)

N Inference\Learning Time Accuracy Accuracy Accuracy Accuracy

100 IJGP-RBPF(1,1) 8.3 73 73 71 73

100 IJGP-RBPF(1,2) 14.5 76 76 71 75

200 IJGP-RBPF(1,1) 23.4 76 77 71 75

200 IJGP-RBPF(1,2) 31.4 76 77 71 76

500 IJGP-RBPF(1,1) 40.08 76 77 71 76

500 IJGP-RBPF(1,2) 51.87 76 77 71 76

IJGP(1) 6.34 71 73 71 74

IJGP(2) 10.78 76 76 72 76

•Compute P(gt|e1:t) and compare it with the actual goal. 
•Accuracy = percentage of goals predicted correctly. 
•N = number of particles 
•Column: learning algorithm 
•Row: inference algorithm 



Predicting Goals (Model-3) 

N Inference/Learning IJGP-RBPF(1,1) IJGP(1)

Time Accuracy

100 IJGP-RBPF(1,1) 2.2 68 61

200 IJGP-RBPF(1,1) 4.7 67 64

500 IJGP-RBPF(1,1) 12.45 68 63

IJGP(1) 1.23 66 62

•Compute P(gt|e1:t) and compare it with the actual goal. 
•Accuracy = percentage of goals predicted correctly. 
•N = number of particles 
•Column: learning algorithm 
•Row: inference algorithm 



Predicting Routes 
• Compare the path of the person predicted by the 

model with the actual path. 

• False positives (FP) 

o count the number of roads that were not taken by the 
person but were in the predicted path. 

• False Negatives (FN) 

o count the number of roads that were taken by the person 
but were not in the predicted path. 

 

 



False Positives and False Negatives 

for Route prediction 

Model-1 Model-2 Model-3

N INFERENCE FP/FN FP/FN FP/FN

IJGP(1) 33/23 39/34 60/55

IJGP(2) 31/17 39/33

100 IJGP-RBPF(1,1) 33/21 39/33 60/54

200 IJGP-RBPF(1,1) 33/21 39/33 58/43

100 IJGP-RBPF(1,2) 32/22 42/33

200 IJGP-RBPF(1,2) 31/22 38/33

Model-1 shows the highest route prediction accuracy, 
given by low false positives and false negatives. 



Software 

• BNT toolkit by Kevin Murphy 

• GMTK toolkit by Jeff Bilmes 
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