Advanced Machine Learning Techniques for Temporal, Multimedia, and Relational Data

Vibhav Gogate The University of Texas at Dallas

Many slides courtesy of Pedro Domingos

Statistical Relational Learning: Motivation

- Most learners assume i.i.d. data (independent and identically distributed)
 - One type of object
 - Objects have no relation to each other
- Real applications: dependent, variously distributed data
 - Multiple types of objects
 - Relations between objects

Examples

- Web search
- Information extraction
- Natural language processing
- Perception
- Medical diagnosis
- Computational biology
- Social networks
- Ubiquitous computing
- Etc.

Costs and Benefits of SRL

Benefits

- Better predictive accuracy
- Better understanding of domains
- Growth path for machine learning

Costs

- Learning is much harder
- Inference becomes a crucial issue
- Greater complexity for user

Goal and Progress

• Goal:

Learn from non-i.i.d. data as easily as from i.i.d. data

- Progress to date
 - Burgeoning research area
 - We're "close enough" to goal
 - Easy-to-use open-source software available
- Lots of research questions (old and new)

Plan

- We have the elements:
 - Probability for handling uncertainty
 - Logic for representing types, relations, and complex dependencies between them
 - Learning and inference algorithms for each
- Figure out how to put them together
- Tremendous leverage on a wide range of applications

Disclaimers

- Not a complete survey of statistical relational learning
- Or of foundational areas
- Focus is practical, not theoretical
- Assumes basic background in logic, probability and statistics, etc.
- Please ask questions
- Tutorial and examples available at alchemy.cs.washington.edu
- New version of alchemy available on my website – http://www.hlt.utdallas.edu/~vgogate/software.html

Markov Logic

- An approach for statistical relational learning
- Most developed approach to date
- Many other approaches can be viewed as special cases
- Main focus of rest of this tutorial

Markov Logic: Intuition

- A logical KB is a set of hard constraints on the set of possible worlds
- Let's make them soft constraints: When a world violates a formula, It becomes less probable, not impossible
- Give each formula a weight (Higher weight ⇒ Stronger constraint)
 P(world) ∝ exp(∑ weights of formulas it satisfies)

Markov Logic: Definition

- A Markov Logic Network (MLN) is a set of pairs (F, w) where
 - F is a formula in first-order logic
 - w is a real number
- Together with a set of constants, it defines a Markov network with
 - One node for each grounding of each predicate in the MLN
 - One feature for each grounding of each formula F in the MLN, with the corresponding weight w

Smoking causes cancer.

Friends have similar smoking habits.

 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$ $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

1.5
$$\forall x \, Smokes(x) \Rightarrow Cancer(x)$$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$

1.5
$$\forall x \, Smokes(x) \Rightarrow Cancer(x)$$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$

Two constants: Anna (A) and Bob (B)

1.5
$$\forall x \, Smokes(x) \Rightarrow Cancer(x)$$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$

Two constants: Anna (A) and Bob (B)

1.5
$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$

Two constants: Anna (A) and Bob (B)

Markov Logic Networks

- MLN is template for ground Markov nets
- Probability of a world *x*:

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} n_{i}(x)\right)$$

Weight of formula *i* No. of true groundings of formula *i* in *x*

- Typed variables and constants greatly reduce size of ground Markov net
- Functions, existential quantifiers, etc.
- Infinite and continuous domains

Markov logic

$\forall x Smokes(x) \Rightarrow Cancer(x)$	1.5
$\forall x, y Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y)$	1.1
Two constants: Anna (A) and Bob (B)	World ω: S(A),¬C(A), F(A,A), ¬ F(A,B),
$Smokes(A) \Rightarrow Cancer(A), exp(1.5)$	F(B,A), F(B,B), ¬ S(B), ¬ C(B)]
$Smokes(B) \Rightarrow Cancer(B), exp(1.5)$	
$Smokes(A) \land Friends(A, A) \Longrightarrow Smokes(A), exp(1.1)$	
$Smokes(A) \land Friends(A, B) \Longrightarrow Smokes(B), exp(1.1)$	n ₁ = 1 n ₂ =4
$Smokes(B) \land Friends(B, A) \Longrightarrow Smokes(A), exp(1.1)$	2 -
$Smokes(B) \land Friends(B, B) \Longrightarrow Smokes(B), exp(1.1)$	_

Probability of $\boldsymbol{\omega}$ is proportional to the product of exponentiated weights of satisfied ground formulas

Relation to Statistical Models

- Special cases:
 - Markov networks
 - Markov random fields
 - Bayesian networks
 - Log-linear models
 - Exponential models
 - Max. entropy models
 - Gibbs distributions
 - Boltzmann machines
 - Logistic regression
 - Hidden Markov models
 - Conditional random fields

Relation to First-Order Logic

- Infinite weights \Rightarrow First-order logic
- Satisfiable KB, positive weights ⇒
 Satisfying assignments = Modes of distribution
- Markov logic allows contradictions between formulas

Marginal/Counting Inference

Probabilistic Theorem Proving problem Given Probabilistic knowledge base K Query formula Q Output P(Q/K)

Compare to:

Logical Theorem proving Given Knowledge base K Query formula Q Output: Does K entail Q

- ModelCount(CNF) = # worlds that satisfy CNF
- Assign a weight to each literal
- Weight(world) = product of literals that are true in the world
- Weighted model counting:
 - Sum of weights of all world that satisfy CNF
- Lifted Weighted model counting:
 - Each literal is first-order literal

Inference Problems

PTP is reducible to LWMC

Weighted Model Counting

Weighted Model Counting

Vibhav Gogate

DALLAS

Weighted Model Counting

WMC(CNF, weights) if all clauses in CNF are satisfied $\prod_{A \in A(CNF)} (W_A + W_{A})$ return if CNF has empty unsatisfied clause return 0 if CNF can be partitioned into CNFs C_1, \dots, C_k sharing no atoms **return** $\prod_{i=1}^{k} WMC(C_i, weights)$ choose an atom A return $W_{A}WMC(CNF | A, weights)$ $+ w_{A} WMC(CNF | -A, weights)$

First-Order Case

- PTP schema remains the same
- Conversion of PKB to hard CNF and weights: New atom in $F_i \Leftrightarrow A_i$ is now *Predicate*_i(variables in F_i , constants in F_i)
- New argument in WMC:
 Set of substitution constraints of the form
 x = A, x ≠ A, x = y, x ≠ y
- Lift each step of WMC

Logical/First-order Structure

 Exploit Symmetry in the first-order representation

 $R(x) \vee S(x), v$ Independent $\begin{bmatrix} R(A) \lor S(A), v \\ R(B) \lor S(B), v \\ R(C) \lor S(C), v \\ R(D) \lor S(D), v \end{bmatrix}$ $Z[x \setminus X]$ Z = $X \in \{A, B, C, D\}$

Linear time

And

Indentical

$$R(x) \lor S(x), v$$

$$R(A) \lor S(A), v$$

$$R(B) \lor S(B), v$$

$$R(C) \lor S(C), v$$

$$R(D) \lor S(D), v$$

$$Z = (Z[x \setminus X])^4$$

Constant time

Lifted/First-order Structure: POWER RULE

- Of course, you cannot always take powers and solve it efficiently
- Following conditions must be satisfied for a variable x:
 - "x" must appear in every predicate symbol in the formula
 - If there is another unifiable variable "y", then "x" and "y" must appear in the same position in every predicate in every formula
- MLN: R(x,y) v S(x,z) and R(y,z) v T(y,u)
 - $Z=[Z[x/A, y/A]]^n$
- MLN: R(x,y) v S(x,z) and R(z,y) v T(y,u)
 - cannot apply.

Lifted/First-order Structure: BINOMIAL RULE

- Applies to singleton atoms
 - Condition on singleton atoms in a special way
- MLN: (f=R(x) v S(x,y) v T(y), v)
 - If domain-size of x is "n", naïve conditioning on R(x) yields 2ⁿ truth-assignments
- BINOMIAL RULE: Condition on (n+1)-truth assignments $Z(f, v) = \sum_{i=0}^{n} {n \choose i} Z(f_{R,i}, v)$

 $f_{R,i}$ is obtained from f by setting exactly "i" groundings of R to True

LWMC(*CNF, substs, weights*) **if** all clauses in *CNF* are satisfied **return** $\prod_{A \in A(CNF)} (w_A + w_{-A})^{n_A(substs)}$ **if** *CNF* has empty unsatisfied clause **return** 0

DALLAS

LWMC(*CNF*, substs, weights) if all clauses in *CNF* are satisfied return $\prod_{A \in A(CNF)} (w_A + w_{\neg A})^{n_A(substs)}$ if *CNF* has empty unsatisfied clause return 0 if there exists a lifted decomposition of *CNF* return $\prod_{i=1}^{k} [LWMC(CNF_{i,1}, substs, weights)]^{m_i}$ Decomp. Step. Power Rule

Approximate Inference

Link Prediction

Coreference (Cora)

• **Problem:** Find most likely state of world given evidence

• **Problem:** Find most likely state of world given evidence

$$\max_{y} \frac{1}{Z_{x}} \exp\left(\sum_{i} w_{i} n_{i}(x, y)\right)$$

• **Problem:** Find most likely state of world given evidence

$$\max_{y} \sum_{i} w_{i} n_{i}(x, y)$$

• **Problem:** Find most likely state of world given evidence $\max_{y} \sum_{i} w_{i} n_{i}(x, y)$

- This is just the weighted MaxSAT problem
- Use weighted SAT solver
 (e.g., MaxWalkSAT [Kautz et al., 1997])
- Potentially faster than logical inference (!)

The MaxWalkSAT Algorithm

But ... Memory Explosion

• Problem:

If there are **n** constants and **k** distinct logical variables in each formula, we get O(**n**^k) ground formulas

• Solution:

Exploit sparseness; ground clauses lazily

- LazySAT algorithm [Singla & Domingos, 2006]
- Fast WALKSAT by grounding to monadic first-order logic (In progress)
- Lifted MPE (in progress)

Learning

- Data is a relational database
- Closed world assumption (if not: EM)
- Learning parameters (weights)
- Learning structure (formulas)

Weight Learning

• Parameter tying: Groundings of same clause

- Generative learning: Pseudo-likelihood
- Discriminative learning: Cond. likelihood, use Lifted sampling or MaxWalkSAT for inference

Vibhav Gogate

Structure Learning

- Generalizes feature induction in Markov nets
- Any inductive logic programming approach can be used, but . . .
- Goal is to induce any clauses, not just Horn
- Evaluation function should be likelihood
- Requires learning weights for each candidate
- Turns out not to be bottleneck
- Bottleneck is counting clause groundings
- Solution: Subsampling

Structure Learning

- Initial state: Unit clauses or hand-coded KB
- **Operators:** Add/remove literal, flip sign
- Evaluation function:
 Pseudo-likelihood + Structure prior
- Search: Beam search, shortest-first search

Alchemy

Open-source software including:

- Full first-order logic syntax
- Generative & discriminative weight learning
- Structure learning
- Weighted satisfiability and MCMC
- Programming language features
- alchemy.cs.washington.edu
- http://www.hlt.utdallas.edu/~vgogate/software

	Alchemy	Prolog	BUGS
Represent- ation	F.O. Logic + Markov nets	Horn clauses	Bayes nets
Inference	Probabilistic Theorem proving	Theorem proving	Gibbs sampling
Learning	Parameters & structure	No	Params.
Uncertainty	Yes	No	Yes
Relational	Yes	Yes	No

Applications

- Statistical parsing
- Semantic processing
- Bayesian networks
- Relational models
- Robot mapping
- Planning and MDPs
- Practical tips

- Basics
- Logistic regression
- Hypertext classification
- Information retrieval
- Entity resolution
- Hidden Markov models
- Information extraction

Running Alchemy

- Programs
 - Infer
 - Learnwts
 - Learnstruct
 - LiftedInfer
- Options

- MLN file
 - Types (optional)
 - Predicates
 - Formulas
- Database files

Uniform Distribn.: Empty MLN

Example: Unbiased coin flips

Type: flip = { 1, ... , 20 }
Predicate: Heads(flip)

$$P(Heads(f)) = \frac{\frac{1}{Z}e^{0}}{\frac{1}{Z}e^{0} + \frac{1}{Z}e^{0}} = \frac{1}{2}$$

Binomial Distribn.: Unit Clause

Example: Biased coin flips

Type: flip = { 1, ..., 20 } Predicate: Heads(flip) Formula: Heads(f) Weight: Log odds of heads: $w = \log \left(\frac{1}{\sqrt{2}} \right)$

$$w = \log\left(\frac{p}{1-p}\right)$$

$$P(\text{Heads}(f)) = \frac{\frac{1}{Z}e^{w}}{\frac{1}{Z}e^{w} + \frac{1}{Z}e^{0}} = \frac{1}{1 + e^{-w}} = p$$

By default, MLN includes unit clauses for all predicates (captures marginal distributions, etc.)

Multinomial Distribution

Example: Throwing die

Too cumbersome!

Multinomial Distrib.: ! Notation

Example: Throwing die

Types: throw = { 1, ..., 20 }
 face = { 1, ..., 6 }
Predicate: Outcome(throw, face!)
Formulas:

Semantics: Arguments without "!" determine arguments with "!". Also makes inference more efficient (triggers blocking).

Multinomial Distrib.: + Notation

Example: Throwing biased die

Types: throw = { 1, ..., 20 } face = { 1, ..., 6 } Predicate: Outcome(throw, face!) Formulas: Outcome(t, +f)

Semantics: Learn weight for each grounding of args with "+".

Logistic Regression

Logistic regression:

$$\log\left(\frac{P(C=1 | \mathbf{F} = \mathbf{f})}{P(C=0 | \mathbf{F} = \mathbf{f})}\right) = a + \sum b_i f_i$$

Type: Query predicate: **Evidence predicates:** Formulas:

obj = { 1, ..., n }
C(obj)
$$F_i$$
(obj)
a C(x)
 $b_i F_i(x) ^ C(x)$

 $P(C = c, \mathbf{F} = \mathbf{f}) = \frac{1}{Z} \exp\left(ac + \sum_{i} b_{i} f_{i} c\right)$ **Resulting distribution:** $((\nabla \mathbf{r} \mathbf{r}))$ 1 10

Therefore:

$$\log\left(\frac{P(C=1|\mathbf{F}=\mathbf{f})}{P(C=0|\mathbf{F}=\mathbf{f})}\right) = \log\left(\frac{\exp\left(a+\sum b_i f_i\right)}{\exp(0)}\right) = a + \sum b_i f_i$$

Text Classification

```
page = { 1, ... , n }
word = { ... }
topic = { ... }
```

Topic(page,topic!)
HasWord(page,word)

```
!Topic(p,t)
HasWord(p,+w) => Topic(p,+t)
```

For all w, t pairs we will learn a weight Which denotes how indicative of a topic a particular word is

Hypertext Classification

```
Topic(page,topic!)
HasWord(page,word)
Links(page,page)
```

```
HasWord(p,+w) => Topic(p,+t)
Topic(p,t) ^ Links(p,p') => Topic(p',t)
```

Use hyperlinks to help classify text

Cf. S. Chakrabarti, B. Dom & P. Indyk, "Hypertext Classification Using Hyperlinks," in *Proc. SIGMOD-1998*.

Information Retrieval

```
InQuery(word)// Suppose word is in our search query
HasWord(page,word)
Relevant(page)
```

```
InQuery(+w) ^ HasWord(p,+w) => Relevant(p)
Relevant(p) ^ Links(p,p') => Relevant(p')
```

Cf. L. Page, S. Brin, R. Motwani & T. Winograd, "The PageRank Citation Ranking: Bringing Order to the Web," Tech. Rept., Stanford University, 1998.

Entity Resolution

Problem: Given database, find duplicate records

```
HasToken(token,field,record)
SameField(field,record,record)
SameRecord(record,record)
```

```
HasToken(+t,+f,r) ^ HasToken(+t,+f,r')
=> SameField(f,r,r')
SameField(+f,r,r') => SameRecord(r,r')
SameRecord(r,r') ^ SameRecord(r',r")
=> SameRecord(r,r")
```

Cf. A. McCallum & B. Wellner, "Conditional Models of Identity Uncertainty with Application to Noun Coreference," in *Adv. NIPS* 17, 2005.

Entity Resolution

Can also resolve fields:

```
HasToken(token,field,record)
SameField(field,record,record)
SameRecord(record,record)
```

```
HasToken(+t,+f,r) ^ HasToken(+t,+f,r')
=> SameField(f,r,r')
SameField(f,r,r') <=> SameRecord(r,r')
SameRecord(r,r') ^ SameRecord(r',r'')
=> SameRecord(r,r'')
SameField(f,r,r') ^ SameField(f,r',r'')
=> SameField(f,r,r'')
```

More: P. Singla & P. Domingos, "Entity Resolution with Markov Logic", in *Proc. ICDM-2006*.

Hidden Markov Models

```
obs = { Obs1, ... , ObsN }
state = { St1, ... , StM }
time = { 0, ... , T }
```

```
State(state!,time)
Obs(obs!,time)
```

```
State(+s,0)
State(+s,t) => State(+s',t+1)
Obs(+o,t) => State(+s,t)
```


Practical Tips

- Add all unit clauses (the default)
- Implications vs. conjunctions
- Open/closed world assumptions
- How to handle uncertain data:
 R(x,y) => R'(x,y) (the "HMM trick")
- Controlling complexity
 - Low clause arities
 - Low numbers of constants
 - Short inference chains
- Use the simplest MLN that works
- Cycle: Add/delete formulas, learn and test

