Advanced Machine Learning

Techniques for Temporal,
Multimedia, and Relational

Data

Vibhav Gogate
 The University of Texas at Dallas

Many slides courtesy of Pedro Domingos

Statistical Relational Learning:

Motivation

- Most learners assume i.i.d. data (independent and identically distributed)
- One type of object
- Objects have no relation to each other
- Real applications: dependent, variously distributed data
- Multiple types of objects
- Relations between objects

Examples

- Web search
- Information extraction
- Natural language processing
- Perception
- Medical diagnosis
- Computational biology
- Social networks
- Ubiquitous computing
- Etc.

Costs and Benefits of SRL

- Benefits
- Better predictive accuracy
- Better understanding of domains
- Growth path for machine learning
- Costs
- Learning is much harder
- Inference becomes a crucial issue
- Greater complexity for user

Goal and Progress

- Goal:

Learn from non-i.i.d. data as easily as from i.i.d. data

- Progress to date
- Burgeoning research area
- We're "close enough" to goal
- Easy-to-use open-source software available
- Lots of research questions (old and new)

Plan

- We have the elements:
- Probability for handling uncertainty
- Logic for representing types, relations, and complex dependencies between them
- Learning and inference algorithms for each
- Figure out how to put them together
- Tremendous leverage on a wide range of applications

Disclaimers

- Not a complete survey of statistical relational learning
- Or of foundational areas
- Focus is practical, not theoretical
- Assumes basic background in logic, probability and statistics, etc.
- Please ask questions
- Tutorial and examples available at alchemy.cs.washington.edu
- New version of alchemy available on my website
- http://www.hlt.utdallas.edu/~vgogate/software.html

Markov Logic

- An approach for statistical relational learning
- Most developed approach to date
- Many other approaches can be viewed as special cases
- Main focus of rest of this tutorial

Markov Logic: Intuition

- A logical KB is a set of hard constraints on the set of possible worlds
- Let's make them soft constraints: When a world violates a formula, It becomes less probable, not impossible
- Give each formula a weight
(Higher weight \Rightarrow Stronger constraint)
$\mathrm{P}($ world $) \propto \exp \left(\sum\right.$ weights of formulas it satisfies $)$

Markov Logic: Definition

- A Markov Logic Network (MLN) is a set of pairs (F, w) where
$-F$ is a formula in first-order logic
$-w$ is a real number
- Together with a set of constants, it defines a Markov network with
- One node for each grounding of each predicate in the MLN
- One feature for each grounding of each formula F in the MLN, with the corresponding weight w

Example: Friends \& Smokers

Smoking causes cancer.

Friends have similar smoking habits.

Example: Friends \& Smokers

$\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$ $\forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$

Example: Friends \& Smokers

$1.5 \quad \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
1.1 $\forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$

Example: Friends \& Smokers

1.5 $\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
1.1 $\forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$

Two constants: Anna (A) and Bob (B)

Example: Friends \& Smokers

$$
\begin{array}{l|l}
1.5 & \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x) \\
1.1 & \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y)) \\
\hline
\end{array}
$$

Two constants: Anna (A) and Bob (B)

Example: Friends \& Smokers

$1.5 \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Two constants: Anna (A) and Bob (B)

```
Friends(A,B)
```

Friends (A, A)

Example: Friends \& Smokers

$1.5 \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Two constants: Anna (A) and Bob (B)

```
Friends(A,B)
```


Example: Friends \& Smokers

$1.5 \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Two constants: Anna (A) and Bob (B)

Markov Logic Networks

- MLN is template for ground Markov nets
- Probability of a world x :

$$
\begin{aligned}
& P(x)=\frac{1}{Z} \exp \left(\sum_{i /} w_{i} n_{i}(x)\right) \\
& \text { Weight of formula } i \quad \text { No. of true groundings of formula } i \text { in } x
\end{aligned}
$$

- Typed variables and constants greatly reduce size of ground Markov net
- Functions, existential quantifiers, etc.
- Infinite and continuous domains

Markov logic

$$
\begin{aligned}
& \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x) \\
& \forall x, y \operatorname{Smokes}(x) \wedge \operatorname{Friends}(x, y) \Rightarrow \operatorname{Smokes}(y)
\end{aligned}
$$

1.5 1.1

Two constants: Anna (A) and Bob (B)
$\operatorname{Smokes}(A) \Rightarrow$ Cancer $(A), \exp (1.5)$

World ω :
$S(A), \neg C(A), F(A, A), \neg F(A, B)$,
$F(B, A), F(B, B), \neg S(B), \neg C(B)]$

Smokes $(B) \Rightarrow$ Cancer $(B), \exp (1.5)$
$\operatorname{Smokes}(A) \wedge$ Friends $(A, A) \Longrightarrow \operatorname{Smokes}(A), \exp (1.1)$
$\operatorname{Smokes}(A) \wedge$ Friends $(A, B) \Longrightarrow \operatorname{Smokes}(B), \exp (1.1)$

$$
n_{1}=1
$$

$$
n_{2}=4
$$

$\operatorname{Smokes}(B) \wedge$ Friends $(B, A) \Longrightarrow \operatorname{Smokes}(A), \exp (1.1)$
Smokes $(B) \wedge$ Friends $(B, B) \Longrightarrow$ Smokes $(B), \exp (1.1)$
Probability of ω is proportional to the product of exponentiated weights of satisfied ground formulas

Relation to Statistical Models

- Special cases:
- Markov networks
- Markov random fields
- Bayesian networks
- Log-linear models
- Exponential models
- Max. entropy models
- Gibbs distributions
- Boltzmann machines
- Logistic regression
- Hidden Markov models
- Conditional random fields

Relation to First-Order Logic

- Infinite weights \Rightarrow First-order logic
- Satisfiable KB, positive weights \Rightarrow Satisfying assignments = Modes of distribution
- Markov logic allows contradictions between formulas

Marginal/Counting Inference

Probabilistic Theorem Proving problem
Given Probabilistic knowledge base K Query formula Q
Output $P(Q \mid K)$
Compare to:

Logical Theorem proving
Given Knowledge base K
Query formula Q
Output: Does K entail Q

Lifted Weighted Model Counting

- ModelCount(CNF) = \# worlds that satisfy CNF
- Assign a weight to each literal
- Weight(world) = product of literals that are true in the world
- Weighted model counting:
- Sum of weights of all world that satisfy CNF
- Lifted Weighted model counting:
- Each literal is first-order literal

Inference Problems

PTP is reducible to LWMC

Weighted Model Counting

WMC(CNF, weights)
if all clauses in CNF are satisfied
return $\quad \prod_{A \in \mathrm{~A}(C N F)}\left(w_{A}+w_{\neg A}\right)$
if CNF has empty unsatisfied clause return 0

Base
Case

Weighted Model Counting

WMC(CNF, weights)
if all clauses in CNF are satisfied
return $\prod_{A \in \mathrm{~A}(C N F)}\left(w_{A}+w_{\neg A}\right)$
if CNF has empty unsatisfied clause return 0
if CNF can be partitioned into CNFs C_{1}, \ldots, C_{k} sharing no atoms
return $\prod_{i=1}^{k} W M C\left(C_{i}\right.$, weights $)$

Decomp. Step

Weighted Model Counting

WMC(CNF, weights)
if all clauses in CNF are satisfied
return $\prod_{A \in \mathrm{~A}(C N F)}\left(w_{A}+w_{-A}\right)$
if CNF has empty unsatisfied clause return 0
if $C N F$ can be partitioned into CNFs C_{1}, \ldots, C_{k} sharing no atoms
return $\prod_{i=1}^{k} W M C\left(C_{i}\right.$,weights $)$
choose an atom A
return

$$
\begin{aligned}
& w_{A} W M C(C N F \mid A, \text { weights }) \\
+ & w_{-A} W M C(C N F \mid \neg A, \text { weights })
\end{aligned}
$$

Splitting
Step

First-Order Case

- PTP schema remains the same
- Conversion of PKB to hard CNF and weights:

New atom in $F_{i} \Leftrightarrow A_{i}$ is now
Predicate ${ }_{i}$ (variables in F_{i}, constants in F_{i})

- New argument in WMC:

Set of substitution constraints of the form $x=A, x \neq A, x=y, x \neq y$

- Lift each step of WMC

Logical/First-order Structure

- Exploit Symmetry in the first-order representation
Independent $\left\{\begin{array}{l}R(x) \vee S(x), v \\ Z(A) \vee S(A), v \\ R(B) \vee S(B), v \\ R(C) \vee S(C), v \\ R(D) \vee S(D), v\end{array}\right.$
$Z=\prod_{X \in\{A, B, C, D\}} Z[x \backslash X]$

	$R(x) \vee S(x), v$
	$[R(A) \vee S(A), v$
	$R(B) \vee S(B), v$
	$R(C) \vee S(C), v$
Indentical	$R(D) \vee S(D), v$
$7=$	$Z[x \backslash \mathrm{X}])^{4}$

Linear time

Lifted/First-order Structure: POWER RULE

- Of course, you cannot always take powers and solve it efficiently
- Following conditions must be satisfied for a variable x :
- " x " must appear in every predicate symbol in the formula
- If there is another unifiable variable " y ", then " x " and " y " must appear in the same position in every predicate in every formula
- MLN: $R(x, y) \vee S(x, z)$ and $R(y, z) \vee T(y, u)$
$-Z=[Z[x / A, y / A]]^{n}$
- MLN: $R(x, y) \vee S(x, z)$ and $R(z, y) \vee T(y, u)$
- cannot apply.

Lifted/First-order Structure: BINOMIAL RULE

- Applies to singleton atoms
- Condition on singleton atoms in a special way
- MLN: ($f=R(x) \vee S(x, y) \vee T(y), v)$
- If domain-size of x is " n ", naïve conditioning on $R(x)$ yields 2^{n} truth-assignments
- BINOMIAL RULE: Condition on ($\mathrm{n}+1$)-truth assignments

$$
Z(f, v)=\sum_{i=0}^{n}\binom{n}{i} Z\left(f_{R, i}, v\right)
$$

$f_{R, i}$ is obtained from f by setting exactly " i " groundings of R to True

Lifted Weighted Model Counting

LWMC(CNF, substs, weights)
if all clauses in CNF are satisfied
Base return $\prod_{A \in \mathcal{A}(C N F)}\left(w_{A}+w_{-A}\right)^{n_{A}(\text { substs })}$
if CNF has empty unsatisfied clause return 0

Lifted Weighted Model Counting

LWMC(CNF, substs, weights)
if all clauses in CNF are satisfied
return $\prod_{A \in A(C N F)}\left(w_{A}+w_{-A}\right)^{n_{A}(\text { substs })}$
if CNF has empty unsatisfied clause return 0
if there exists a lifted decomposition of CNF return $\prod_{i=1}^{k}\left[L W M C\left(C N F_{i, 1} \text {, substs, weights }\right)\right]^{m_{i}}$

Lifted Weighted Model Counting

LWMC(CNF, substs, weights)
if all clauses in CNF are satisfied

```
return 諀A(CNF)
```

if CNF has empty unsatisfied clause return 0
if there exists a lifted decomposition of CNF return $\prod_{i=1}^{k}\left[L W M C\left(C N F_{i, 1} \text {, substs, weights }\right)\right]^{m_{i}}$
choose an atom A
return $\sum_{i=1}^{l} n_{i} w_{A}^{t_{i}} w_{-A}^{f_{i}} L W M C\left(C N F \mid \sigma_{j}\right.$, substs ${ }_{j}$, weights $)$

Splitting Step Binomial Rule

Approximate Inference

WMC(CNF, weights)
if all clauses in CNF are satisfied
return $\Pi_{\text {AEA (CNF) }}\left(w_{A}+w_{-A}\right)$
if CNF has empty unsatisfied clause return 0
if $C N F$ can be partitioned into CNFs C_{1}, \ldots, C_{k} sharing no atoms
return $\prod_{i=1}^{k} W M C\left(C_{i}\right.$,weights $)$
choose an atom A
return $\frac{w_{s}}{Q(A \mid C N F, \text { weighs }}$ wMC(CNF $\mid A$, weighs $)$
with probability $Q(A \mid C N F$, weights), etc.

Approximate Splitting Step

Link Prediction

Coreference (Cora)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAP/MPE Inference

- Problem: Find most likely state of world given evidence

MAP/MPE Inference

- Problem: Find most likely state of world given evidence

$$
\max _{y} \frac{1}{Z_{x}} \exp \left(\sum_{i} w_{i} n_{i}(x, y)\right)
$$

MAP/MPE Inference

- Problem: Find most likely state of world given evidence

$$
\max _{y} \sum_{i} w_{i} n_{i}(x, y)
$$

MAP/MPE Inference

- Problem: Find most likely state of world given evidence

$$
\max _{y} \sum_{i} w_{i} n_{i}(x, y)
$$

- This is just the weighted MaxSAT problem
- Use weighted SAT solver
(e.g., MaxWalkSAT [Kautz et al., 1997])
- Potentially faster than logical inference (!)

The MaxWalkSAT Algorithm

```
for i}<<1\mathrm{ to max-tries do
    solution = random truth assignment
    for }j\leftarrow1\mathrm{ to max-flips do
        if \sum weights(sat. clauses) > threshold then
        return solution
        c \leftarrow \text { random unsatisfied clause}
        with probability p
        flip a random variable in c
        else
        flip variable in c that maximizes
        \Sigma weights(sat. clauses)
return failure, best solution found
```


But ... Memory Explosion

- Problem:

If there are \mathbf{n} constants and \mathbf{k} distinct logical variables in each formula, we get $O\left(n^{k}\right)$ ground formulas

- Solution:

Exploit sparseness; ground clauses lazily

- LazySAT algorithm [Singla \& Domingos, 2006]
- Fast WALKSAT by grounding to monadic first-order logic (In progress)
- Lifted MPE (in progress)

Learning

- Data is a relational database
- Closed world assumption (if not: EM)
- Learning parameters (weights)
- Learning structure (formulas)

Weight Learning

- Parameter tying: Groundings of same clause

$$
\begin{aligned}
& \frac{\partial}{\partial w_{i}} \log P_{w}(x)=n_{i}(x)-E_{w}\left[n_{i}(x)\right] \\
& \text { Eximes clause iis true in data } \\
& \text { Expected no. times clause } i \text { is true according to MLN }
\end{aligned}
$$

- Generative learning: Pseudo-likelihood
- Discriminative learning: Cond. likelihood, use Lifted sampling or MaxWalkSAT for inference

Structure Learning

- Generalizes feature induction in Markov nets
- Any inductive logic programming approach can be used, but...
- Goal is to induce any clauses, not just Horn
- Evaluation function should be likelihood
- Requires learning weights for each candidate
- Turns out not to be bottleneck
- Bottleneck is counting clause groundings
- Solution: Subsampling

Structure Learning

- Initial state: Unit clauses or hand-coded KB
- Operators: Add/remove literal, flip sign
- Evaluation function:

Pseudo-likelihood + Structure prior

- Search: Beam search, shortest-first search

Alchemy

Open-source software including:

- Full first-order logic syntax
- Generative \& discriminative weight learning
- Structure learning
- Weighted satisfiability and MCMC
- Programming language features
- alchemy.cs.washington.edu
- http://www.hlt.utdallas.edu/~vgogate/software

	Alchemy	Prolog	BUGS
Represent- ation	F.O. Logic + Markov nets	Horn clauses	Bayes nets
Inference	Probabilistic Theorem proving	Theorem proving	Gibbs sampling
Learning	Parameters \& structure	No	Params.
Uncertainty	Yes	No	Yes
Relational	Yes	Yes	No

Applications

- Statistical parsing
- Semantic processing
- Bayesian networks
- Relational models
- Robot mapping
- Planning and MDPs
- Practical tips
- Basics
- Logistic regression
- Hypertext classification
- Information retrieval
- Entity resolution
- Hidden Markov models
- Information extraction

Running Alchemy

- Programs
- Infer
- Learnwts
- Learnstruct
- LiftedInfer
- Options
- MLN file
- Types (optional)
- Predicates
- Formulas
- Database files

Uniform Distribn.: Empty MLN

Example: Unbiased coin flips

Type: flip $=\{1, \ldots, 20\}$
Predicate: Heads (flip)

$$
P(H e a d s(f))=\frac{\frac{1}{Z} e^{0}}{\frac{1}{Z} e^{0}+\frac{1}{Z} e^{0}}=\frac{1}{2}
$$

Binomial Distribn.: Unit Clause

Example: Biased coin flips
Type: flip $=\{1, \ldots, 20\}$
Predicate: Heads (flip)
Formula: Heads (f)
Weight: Log odds of heads: $\quad w=\log \left(\frac{p}{1-p}\right)$

$$
P(\operatorname{Heads}(\mathrm{f}))=\frac{\frac{1}{Z} e^{w}}{\frac{1}{Z} e^{w}+\frac{1}{Z} e^{0}}=\frac{1}{1+e^{-w}}=p
$$

By default, MLN includes unit clauses for all predicates (captures marginal distributions, etc.)

Multinomial Distribution

Example: Throwing die

Types: throw $=\{1, \ldots, 20\}$
face $=\{1, \ldots, 6\}$
Predicate: Outcome (throw,face)
Formulas: Outcome (t,f) ^ f ! = $\mathbf{f}^{\prime}=>$! Outcome (t, f^{\prime}). Exist f Outcome (t,f).

Too cumbersome!

Multinomial Distrib.: ! Notation

Example: Throwing die

Types: throw $=\{1, \ldots, 20\}$
face $=\{1, \ldots, 6\}$
Predicate: Outcome (throw,face!)
Formulas:

Semantics: Arguments without "!" determine arguments with "!". Also makes inference more efficient (triggers blocking).

Multinomial Distrib.: + Notation

Example: Throwing biased die

Types: throw $=\{1, \ldots, 20\}$
face $=\{1, \ldots, 6\}$
Predicate: Outcome (throw,face!)
Formulas: Outcome ($t,+f$)

Semantics: Learn weight for each grounding of args with " + ".

Logistic Regression

Logistic regression: $\quad \log \left(\frac{P(C=1 \mid \mathbf{F}=\mathbf{f})}{P(C=0 \mid \mathbf{F}=\mathbf{f})}\right)=a+\sum b_{i} f_{i}$
Type:

$$
\begin{aligned}
& \mathrm{obj}=\{1, \ldots, n\} \\
& \mathrm{c}(\mathrm{obj})
\end{aligned}
$$

Query predicate:
Evidence predicates:
F_{i} (obj)
Formulas:
a $C(x)$
$b_{i} \quad F_{i}(x) \wedge C(x)$
Resulting distribution: $\quad P(C=c, \mathbf{F}=\mathbf{f})=\frac{1}{Z} \exp \left(a c+\sum_{i} b_{i} f_{i} c\right)$
Therefore: $\quad \log \left(\frac{P(C=1 \mid \mathbf{F}=\mathbf{f})}{P(C=0 \mid \mathbf{F}=\mathbf{f})}\right)=\log \left(\frac{\exp \left(a+\sum b_{i} f_{i}\right)}{\exp (0)}\right)=a+\sum b_{i} f_{i}$

Text Classification

```
page = { 1, .. , n }
word = { ... }
topic = { ... }
Topic(page,topic!)
HasWord(page,word)
!Topic(p,t)
HasWord(p,+w) => Topic(p,+t)
```

For all w, t pairs we will learn a weight
Which denotes how indicative of a topic a particular word is

Hypertext Classification

```
Topic(page,topic!)
HasWord(page,word)
Links (page,page)
HasWord(p,+w) => Topic(p,+t)
Topic(p,t) ^ Links(p,p') => Topic(p',t)
```

Use hyperlinks to help classify text

Cf. S. Chakrabarti, B. Dom \& P. Indyk, "Hypertext Classification Using Hyperlinks," in Proc. SIGMOD-1998.

Information Retrieval

InQuery (word) // Suppose word is in our search query HasWord (page, word) Relevant (page)

InQuery (+w) ^ HasWord ($p,+w$) => Relevant (p)
Relevant (p) ^ Links (p, p^{\prime}) => Relevant (p^{\prime})

Cf. L. Page, S. Brin, R. Motwani \& T. Winograd, "The PageRank Citation Ranking: Bringing Order to the Web," Tech. Rept., Stanford University, 1998.

Entity Resolution

Problem: Given database, find duplicate records

HasToken (token,field,record)
SameField(field,record, record)
SameRecord (record, record)
HasToken ($+\mathrm{t}, \mathbf{+ f}, \mathrm{r}$) ^ HasToken ($+\mathrm{t},+\mathrm{f}, \mathrm{r}^{\prime}$)
=> SameField(f,r, \mathbf{r}^{\prime})
SameField (+f,r, r^{\prime}) => SameRecord (r, r^{\prime})
SameRecord (r, r^{\prime}) ^ SameRecord ($r^{\prime}, r^{\prime \prime}$)
\Rightarrow SameRecord (r, $\mathbf{r}^{\prime \prime}$)

Cf. A. McCallum \& B. Wellner, "Conditional Models of Identity Uncertainty with Application to Noun Coreference," in Adv. NIPS 17, 2005.

Entity Resolution

Can also resolve fields:

HasToken (token,field,record)
SameField (field,record,record)
SameRecord (record, record)
HasToken (+t, $+\mathrm{f}, \mathrm{r}$) ^ HasToken ($+\mathrm{t}, \mathbf{+ f , \mathrm { r } ^ { \prime } \text {) }) ~}$
=> SameField(f,r, \mathbf{r}^{\prime})
SameField(f,r, r') <=> SameRecord(r, \mathbf{r}^{\prime})
SameRecord (r,r') ^ SameRecord ($r^{\prime}, r^{\prime \prime}$)
=> SameRecord ($r, r^{\prime \prime}$)
SameField(f,r,r') ^ SameField(f,r'r")
\Rightarrow SameField(f,r, $\mathbf{r l}^{\prime \prime}$)

More: P. Singla \& P. Domingos, "Entity Resolution with
Markov Logic", in Proc. ICDM-2006.

Hidden Markov Models

```
obs = { Obs1, ... , ObsN }
state = { St1, ... , StM }
time = { 0, .. , T }
State(state!,time)
Obs (obs!,time)
State (+s,0)
State(+s,t) => State(+s',t+1)
Obs(+o,t) => State (+s,t)
```


Practical Tips

- Add all unit clauses (the default)
- Implications vs. conjunctions
- Open/closed world assumptions
- How to handle uncertain data: $R(x, y)=>R^{\prime}(x, y) \quad$ (the "HMM trick")
- Controlling complexity
- Low clause arities
- Low numbers of constants
- Short inference chains
- Use the simplest MLN that works
- Cycle: Add/delete formulas, learn and test

