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Statistical Relational Learning: 
Motivation 
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• Most learners assume i.i.d. data 
(independent and identically distributed) 

– One type of object 

– Objects have no relation to each other 

• Real applications: 
dependent, variously distributed data 

– Multiple types of objects 

– Relations between objects 



Examples 

• Web search 

• Information extraction 

• Natural language processing 

• Perception 

• Medical diagnosis 

• Computational biology 

• Social networks 

• Ubiquitous computing 

• Etc. 
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Costs and Benefits of SRL 

• Benefits 

– Better predictive accuracy 

– Better understanding of domains 

– Growth path for machine learning 

• Costs 

– Learning is much harder 

– Inference becomes a crucial issue 

– Greater complexity for user 
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Goal and Progress 

• Goal: 
Learn from non-i.i.d. data as easily 
as from i.i.d. data 

• Progress to date 
– Burgeoning research area 

– We’re “close enough” to goal 

– Easy-to-use open-source software available 

• Lots of research questions (old and new) 
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Plan 

• We have the elements: 

– Probability for handling uncertainty 

– Logic for representing types, relations, 
and complex dependencies between them 

– Learning and inference algorithms for each 

• Figure out how to put them together 

• Tremendous leverage on a wide range of 
applications 

Vibhav Gogate 6 



Disclaimers 

• Not a complete survey of statistical 
relational learning 

• Or of foundational areas 
• Focus is practical, not theoretical 
• Assumes basic background in logic, probability and 

statistics, etc. 
• Please ask questions 
• Tutorial and examples available at 

alchemy.cs.washington.edu 
• New version of alchemy available on my website 

– http://www.hlt.utdallas.edu/~vgogate/software.html 
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Markov Logic 

• An approach for statistical relational learning 

• Most developed approach to date 

• Many other approaches can be viewed as 
special cases 

• Main focus of rest of this tutorial 
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Markov Logic: Intuition 

• A logical KB is a set of hard constraints 
on the set of possible worlds 

• Let’s make them soft constraints: 
When a world violates a formula, 
It becomes less probable, not impossible 

• Give each formula a weight 
(Higher weight    Stronger constraint) 
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Markov Logic: Definition 

• A Markov Logic Network (MLN) is a set of pairs 
(F, w) where 
– F is a formula in first-order logic 
– w is a real number 

• Together with a set of constants, 
it defines a Markov network with 
– One node for each grounding of each predicate in 

the MLN 
– One feature for each grounding of each formula F 

in the MLN, with the corresponding weight w 
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Example: Friends & Smokers 

habits.  smoking  similar  have  Friends

cancer.  causes  Smoking
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Example: Friends & Smokers 
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xCancerxSmokesx
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Example: Friends & Smokers 
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1.1

5.1

Two constants: Anna (A) and Bob (B) 



Example: Friends & Smokers 
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1.1

5.1

Cancer(A) 

Smokes(A) Smokes(B) 

Cancer(B) 

Two constants: Anna (A) and Bob (B) 



Example: Friends & Smokers 
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1.1

5.1

Cancer(A) 

Smokes(A) Friends(A,A) 

Friends(B,A) 

Smokes(B) 

Friends(A,B) 

Cancer(B) 

Friends(B,B) 

Two constants: Anna (A) and Bob (B) 



Example: Friends & Smokers 
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5.1
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Example: Friends & Smokers 
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1.1

5.1

Cancer(A) 

Smokes(A) Friends(A,A) 

Friends(B,A) 

Smokes(B) 

Friends(A,B) 

Cancer(B) 

Friends(B,B) 

Two constants: Anna (A) and Bob (B) 



Markov Logic Networks 

• MLN is template for ground Markov nets 

• Probability of a world x: 
 
 
 
 
• Typed variables and constants greatly reduce 

size of ground Markov net 
• Functions, existential quantifiers, etc. 
• Infinite and continuous domains 
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Weight of formula i No. of true groundings of formula i in x 









 

i

ii xnw
Z

xP )(exp
1

)(



Markov logic 
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Two constants: Anna (A) and Bob (B) 

1.1

5.1

World ω: 
S(A),C(A), F(A,A),  F(A,B), 
F(B,A), F(B,B),  S(B),  C(B)] 𝑆𝑚𝑜𝑘𝑒𝑠 𝐴 ⟹ 𝐶𝑎𝑛𝑐𝑒𝑟 𝐴 , exp(1.5) 

𝑆𝑚𝑜𝑘𝑒𝑠 𝐵 ⟹ 𝐶𝑎𝑛𝑐𝑒𝑟 𝐵 , exp(1.5) 

𝑆𝑚𝑜𝑘𝑒𝑠 𝐴 ∧ 𝐹𝑟𝑖𝑒𝑛𝑑𝑠(𝐴, 𝐴) ⟹ 𝑆𝑚𝑜𝑘𝑒𝑠 𝐴 , exp(1.1) 

𝑆𝑚𝑜𝑘𝑒𝑠 𝐴 ∧ 𝐹𝑟𝑖𝑒𝑛𝑑𝑠(𝐴, 𝐵) ⟹ 𝑆𝑚𝑜𝑘𝑒𝑠 𝐵 , exp(1.1) 

𝑆𝑚𝑜𝑘𝑒𝑠 𝐵 ∧ 𝐹𝑟𝑖𝑒𝑛𝑑𝑠(𝐵, 𝐴) ⟹ 𝑆𝑚𝑜𝑘𝑒𝑠 𝐴 , exp(1.1) 

𝑆𝑚𝑜𝑘𝑒𝑠 𝐵 ∧ 𝐹𝑟𝑖𝑒𝑛𝑑𝑠(𝐵, 𝐵) ⟹ 𝑆𝑚𝑜𝑘𝑒𝑠 𝐵 , exp(1.1) 

Probability of ω is proportional to the  product of exponentiated weights of satisfied 
ground formulas 

n1= 1 
n2=4 



Relation to Statistical Models 

• Special cases: 
– Markov networks 

– Markov random fields 

– Bayesian networks 

– Log-linear models 

– Exponential models 

– Max. entropy models 

– Gibbs distributions 

– Boltzmann machines 

– Logistic regression 

– Hidden Markov models 

– Conditional random fields 
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Relation to First-Order Logic 

• Infinite weights    First-order logic 

• Satisfiable KB, positive weights   
Satisfying assignments = Modes of distribution 

• Markov logic allows contradictions between 
formulas 
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Marginal/Counting Inference 

Probabilistic Theorem Proving problem 
Given Probabilistic knowledge base K 

           Query formula Q 
Output P(Q|K) 
 
Compare to: 
 
Logical Theorem proving 
Given Knowledge base K 

           Query formula Q 
Output: Does K entail Q 

 
Vibhav Gogate 23 



Lifted Weighted Model Counting 

• ModelCount(CNF) = # worlds that satisfy CNF 

• Assign a weight to each literal 

• Weight(world) = product of literals that are 
true in the world 

• Weighted model counting: 

– Sum of weights of all world that satisfy CNF 

• Lifted Weighted model counting: 

– Each literal is first-order literal 
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Inference Problems 

PTP is reducible to LWMC 
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Weighted Model Counting 

WMC(CNF, weights) 

 if all clauses in CNF are satisfied 

    return 

 if CNF has empty unsatisfied clause return 0 

  

)()A( AACNFA ww  
Base 

Case 
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Weighted Model Counting 

WMC(CNF, weights) 

 if all clauses in CNF are satisfied 

    return 

 if CNF has empty unsatisfied clause return 0 

 if CNF can be partitioned into CNFs C1,…, Ck 
   sharing no atoms 

    return 

  

)()A( AACNFA ww  

),(1 weightsCWMC i

k

i

Decomp. 

Step 

Vibhav Gogate 27 



Weighted Model Counting 
WMC(CNF, weights) 

 if all clauses in CNF are satisfied 

    return 

 if CNF has empty unsatisfied clause return 0 

 if CNF can be partitioned into CNFs C1,…, Ck 
   sharing no atoms 

    return 

 choose an atom A 

 return 

)()A( AACNFA ww  

),(1 weightsCWMC i

k

i

),|( weightsACNFWMCw A  

),|( weightsACNFWMCwA
Splitting 

Step 
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First-Order Case 

• PTP schema remains the same 

• Conversion of PKB to hard CNF and weights: 
New atom in  Fi  Ai  is now 
Predicatei(variables in Fi, constants in Fi) 

• New argument in WMC: 
Set of substitution constraints of the form 
x = A, x ≠ A, x = y, x ≠ y 

• Lift each step of WMC 
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Logical/First-order Structure 

• Exploit Symmetry in the first-order 
representation 
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𝑅 𝑥 ∨ 𝑆 𝑥 , 𝑣 

𝑅 𝐴 ∨ 𝑆 𝐴 , 𝑣 

𝑅 𝐷 ∨ 𝑆 𝐷 , 𝑣 

𝑅 𝐶 ∨ 𝑆 𝐶 , 𝑣 

𝑅 𝐵 ∨ 𝑆 𝐵 , 𝑣 

𝑍 =  𝑍,𝑥\X-

𝑋∈*𝐴,𝐵,𝐶,𝐷+

 

Independent 

Linear time 

𝑅 𝑥 ∨ 𝑆 𝑥 , 𝑣 

𝑅 𝐴 ∨ 𝑆 𝐴 , 𝑣 

𝑅 𝐷 ∨ 𝑆 𝐷 , 𝑣 

𝑅 𝐶 ∨ 𝑆 𝐶 , 𝑣 

𝑅 𝐵 ∨ 𝑆 𝐵 , 𝑣 

𝑍 = (𝑍 𝑥\X )4 

Independent 
And 
Indentical 

Constant time 



Lifted/First-order Structure: 
POWER RULE 

• Of course, you cannot always take powers and solve it 
efficiently 

• Following conditions must be satisfied for a variable x: 
–  “x” must appear in every predicate symbol in the formula 
– If there is another unifiable variable “y”, then “x” and “y” 

must appear in the same position in every predicate in 
every formula 

• MLN: R(x,y) v S(x,z) and R(y,z) v T(y,u)  
– Z=[Z[x/A, y/A]]n 

• MLN: R(x,y) v S(x,z) and R(z,y) v T(y,u)  
– cannot apply. 
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Lifted/First-order Structure: 
BINOMIAL RULE 

• Applies to singleton atoms 

–  Condition on singleton atoms in a special way 

• MLN: (f=R(x) v S(x,y) v T(y), v) 

– If domain-size of x is “n”, naïve conditioning on 
R(x) yields 2n truth-assignments 

• BINOMIAL RULE: Condition on (n+1)-truth 
assignments 
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𝑍(𝑓, 𝑣) = 
𝑛
𝑖
𝑍(𝑓𝑅,𝑖 , 𝑣)

𝑛

𝑖=0

 

𝑓𝑅,𝑖  𝑖𝑠 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑓 𝑏𝑦 𝑠𝑒𝑡𝑡𝑖𝑛𝑔 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 "𝑖" 𝑔𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑠 𝑜𝑓 𝑅 𝑡𝑜 𝑇𝑟𝑢𝑒 



Lifted Weighted Model Counting 

LWMC(CNF, substs, weights) 

 if all clauses in CNF are satisfied 

    return 

 if CNF has empty unsatisfied clause return 0 

  

)(

)A( )(
substsn

AACNFA
Aww  

Base 

Case 
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Lifted Weighted Model Counting 

LWMC(CNF, substs, weights) 

 if all clauses in CNF are satisfied 

    return 

 if CNF has empty unsatisfied clause return 0 

 if there exists a lifted decomposition of CNF 

    return 

  

)(

)A( )(
substsn

AACNFA
Aww  

Decomp. 

Step. 

Power  

Rule 

im

i

k

i weightssubstsCNFLWMC )],,([ 1,1
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Lifted Weighted Model Counting 

LWMC(CNF, substs, weights) 

 if all clauses in CNF are satisfied 

    return 

 if CNF has empty unsatisfied clause return 0 

 if there exists a lifted decomposition of CNF 

    return 

 choose an atom A 

 return  

  

)(

)A( )(
substsn

AACNFA
Aww  

Splitting 

Step 

Binomial 

Rule 

im

i

k

i weightssubstsCNFLWMC )],,([ 1,1

),,|(1 weightssubstsCNFLWMCwwn jj

f

A

t

Ai

l

i
ii 
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Approximate Inference 

WMC(CNF, weights) 

 if all clauses in CNF are satisfied 

    return 

 if CNF has empty unsatisfied clause return 0 

 if CNF can be partitioned into CNFs C1,…, Ck 
   sharing no atoms 

    return 

 choose an atom A 

 return 

    with probability                             , etc. 

)()A( AACNFA ww  

),(1 weightsCWMC i

k

i

),|(
),|(

weightsACNFWMC
weightsCNFAQ

wA

Approximate 

Splitting 

Step ),|( weightsCNFAQ
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Link Prediction 
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Coreference (Cora) 
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MAP/MPE Inference 

• Problem: Find most likely state of world given 
evidence 
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MAP/MPE Inference 

• Problem: Find most likely state of world given 
evidence 
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MAP/MPE Inference 

• Problem: Find most likely state of world given 
evidence 
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MAP/MPE Inference 

• Problem: Find most likely state of world given 
evidence 

 

 

• This is just the weighted MaxSAT problem 

• Use weighted SAT solver 
(e.g., MaxWalkSAT [Kautz et al., 1997] ) 

• Potentially faster than logical inference (!) 
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The MaxWalkSAT Algorithm 
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for i ← 1 to max-tries do 
    solution = random truth assignment 
    for j ← 1 to max-flips do 
        if ∑ weights(sat. clauses) > threshold then 
            return solution 
        c ← random unsatisfied clause 
        with probability p 
            flip a random variable in c 
        else 
            flip variable in c that maximizes 
                ∑ weights(sat. clauses)                 
return failure, best solution found 



But … Memory Explosion 

• Problem:  
If there are n constants and k distinct logical 
variables in each formula, we get O(nk) ground 
formulas 

• Solution: 
Exploit sparseness; ground clauses lazily 
– LazySAT algorithm [Singla & Domingos, 2006] 

– Fast WALKSAT by grounding to monadic first-order 
logic (In progress) 

– Lifted MPE (in progress) 
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Learning 

• Data is a relational database 

• Closed world assumption (if not: EM) 

• Learning parameters (weights) 

• Learning structure (formulas) 
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Weight Learning 

• Parameter tying: Groundings of same clause 
 
 
 
 
 

• Generative learning: Pseudo-likelihood 
• Discriminative learning: Cond. likelihood, 

use Lifted sampling or MaxWalkSAT for 
inference 
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No. of times clause i is true in data 

Expected no. times clause i is true according to MLN 

 )()()(log xnExnxP
w

iwiw

i








Structure Learning 

• Generalizes feature induction in Markov nets 

• Any inductive logic programming approach can be used, 
but . . . 

• Goal is to induce any clauses, not just Horn 

• Evaluation function should be likelihood 

• Requires learning weights for each candidate 

• Turns out not to be bottleneck 

• Bottleneck is counting clause groundings 

• Solution: Subsampling 
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Structure Learning 

• Initial state: Unit clauses or hand-coded KB 

• Operators: Add/remove literal, flip sign 

• Evaluation function:  
Pseudo-likelihood + Structure prior 

• Search: Beam search, shortest-first search 
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Alchemy 

Open-source software including: 

• Full first-order logic syntax 

• Generative & discriminative weight learning 

• Structure learning 

• Weighted satisfiability and MCMC 

• Programming language features 
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• alchemy.cs.washington.edu 
• http://www.hlt.utdallas.edu/~vgogate/software 



Alchemy Prolog BUGS 

Represent-

ation 

F.O. Logic + 

Markov nets 

Horn 

clauses 

Bayes 

nets 

Inference Probabilistic 

Theorem 

proving 

Theorem 

proving 

Gibbs 

sampling 

Learning Parameters 

& structure 

No Params. 

Uncertainty Yes No Yes 

Relational Yes Yes No 
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Applications 

• Statistical parsing 

• Semantic processing 

• Bayesian networks 

• Relational models 

• Robot mapping 

• Planning and MDPs 

• Practical tips 

• Basics 

• Logistic regression 

• Hypertext classification 

• Information retrieval 

• Entity resolution 

• Hidden Markov models 

• Information extraction 
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Running Alchemy 

• MLN file 

– Types (optional) 

– Predicates 

– Formulas 

• Database files 

• Programs 

– Infer 

– Learnwts 

– Learnstruct 

– LiftedInfer 

• Options 
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Uniform Distribn.: Empty MLN 

Example: Unbiased coin flips 

 

Type:           flip = { 1, … , 20 } 

Predicate:   Heads(flip) 
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1
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Binomial Distribn.: Unit Clause 

Example: Biased coin flips 

Type:          flip = { 1, … , 20 } 

Predicate:  Heads(flip) 

Formula:    Heads(f) 

Weight:     Log odds of heads:  

 

 

 

 

By default, MLN includes unit clauses for all predicates 

(captures marginal distributions, etc.) 
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Multinomial Distribution 

Example: Throwing die 

 

Types:       throw = { 1, … , 20 } 

                   face = { 1, … , 6 } 

Predicate:  Outcome(throw,face) 

Formulas:  Outcome(t,f) ^ f != f’ => !Outcome(t,f’). 

         Exist f Outcome(t,f). 

 

Too cumbersome! 
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Multinomial Distrib.: ! Notation 

Example: Throwing die 

 

Types:       throw = { 1, … , 20 } 

                   face = { 1, … , 6 } 

Predicate:  Outcome(throw,face!) 

Formulas: 

 

Semantics: Arguments without “!” determine arguments with “!”. 

Also makes inference more efficient (triggers blocking). 
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Multinomial Distrib.: + Notation 

Example: Throwing biased die 

 

Types:       throw = { 1, … , 20 } 

                   face = { 1, … , 6 } 

Predicate:  Outcome(throw,face!) 

Formulas:  Outcome(t,+f) 

 

Semantics: Learn weight for each grounding of args with “+”. 
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Logistic regression: 
 
Type:                        obj = { 1, ... , n } 
Query predicate:     C(obj) 
Evidence predicates:  Fi(obj) 
Formulas:                        a  C(x) 
                bi  Fi(x) ^ C(x) 

 

Resulting distribution:  
 
 
Therefore: 
 
 

Logistic Regression 
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Text Classification 
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page = { 1, … , n } 

word = { … } 

topic = { … } 

 

Topic(page,topic!) 

HasWord(page,word) 

 

!Topic(p,t) 

HasWord(p,+w) => Topic(p,+t) 

For all w, t pairs we will learn a weight 
Which denotes how indicative of a topic a particular word is 



Hypertext Classification 
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Topic(page,topic!) 

HasWord(page,word) 

Links(page,page) 

 

HasWord(p,+w) => Topic(p,+t) 

Topic(p,t) ^ Links(p,p') => Topic(p',t) 

 

 

 

 

 

 

Cf.  S. Chakrabarti, B. Dom & P. Indyk, “Hypertext Classification 
Using Hyperlinks,” in Proc. SIGMOD-1998. 

Use hyperlinks to help classify text 



Information Retrieval 
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InQuery(word)// Suppose word is in our search query 

HasWord(page,word) 

Relevant(page) 

 

InQuery(+w) ^ HasWord(p,+w) => Relevant(p) 

Relevant(p) ^ Links(p,p’) => Relevant(p’) 

 

 

 

 

 

 

Cf.  L. Page, S. Brin, R. Motwani & T. Winograd, “The PageRank Citation 
Ranking: Bringing Order to the Web,” Tech. Rept., Stanford University, 1998. 



Problem: Given database, find duplicate records 
 

 

HasToken(token,field,record) 

SameField(field,record,record) 

SameRecord(record,record) 

 

HasToken(+t,+f,r) ^ HasToken(+t,+f,r’) 

   => SameField(f,r,r’) 

SameField(+f,r,r’) => SameRecord(r,r’) 

SameRecord(r,r’) ^ SameRecord(r’,r”) 

   => SameRecord(r,r”) 

 

 

Cf.  A. McCallum & B. Wellner, “Conditional Models of Identity Uncertainty 
with Application to Noun Coreference,” in Adv. NIPS 17, 2005. 

Entity Resolution 
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Can also resolve fields: 
 

HasToken(token,field,record) 

SameField(field,record,record) 

SameRecord(record,record) 

 

HasToken(+t,+f,r) ^ HasToken(+t,+f,r’) 

   => SameField(f,r,r’) 

SameField(f,r,r’) <=> SameRecord(r,r’) 

SameRecord(r,r’) ^ SameRecord(r’,r”) 

   => SameRecord(r,r”) 

SameField(f,r,r’) ^ SameField(f,r’,r”) 

   => SameField(f,r,r”) 

 

More: P. Singla & P. Domingos, “Entity Resolution with 
Markov Logic”, in Proc. ICDM-2006. 

Entity Resolution 
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Hidden Markov Models 
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obs = { Obs1, … , ObsN } 

state = { St1, … , StM } 

time = { 0, … , T } 

 

State(state!,time) 

Obs(obs!,time) 

 

State(+s,0) 

State(+s,t) => State(+s',t+1) 

Obs(+o,t) => State(+s,t) 



Practical Tips 

• Add all unit clauses (the default) 
• Implications vs. conjunctions 
• Open/closed world assumptions 
• How to handle uncertain data: 
R(x,y) => R’(x,y)   (the “HMM trick”) 

• Controlling complexity 
– Low clause arities 
– Low numbers of constants 
– Short inference chains 

• Use the simplest MLN that works 
• Cycle: Add/delete formulas, learn and test 
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