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Probabilistic Reasoning;
Graphical models

• Graphical models:

– Bayesian network, constraint networks, mixed network 

• Queries

• Exact algorithm 

– using  inference, 

– search and hybrids

• Graph parameters: 

– tree-width, cycle-cutset, w-cutset
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Bayesian Networks (Pearl, 1988)

P(S, C, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B

lung Cancer

Smoking

X-ray

Bronchitis

Dyspnoea

P(D|C,B)

P(B|S)

P(S)

P(X|C,S)

P(C|S)

CPT:

C  B   P(D|C,B)
0  0    0.1  0.9
0  1    0.7  0.3
1  0    0.8  0.2
1  1    0.9  0.1

Belief Updating:
P (lung cancer=yes | smoking=no, dyspnoea=yes ) = ?
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      :CPTs

Probability of evidence:
P ( smoking=no, dyspnoea=yes ) = ?



Queries 

• Probability of evidence (or partition function)

• Posterior marginal (beliefs):

• Most Probable Explanation
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A B
red green

red yellow

green red

green yellow

yellow green

yellow red

Map coloring

Variables: countries (A B C etc.)

Values: colors (red green blue)

Constraints: etc.  ,ED  D,  AB,A 

C

A

B

D

E

F

G

Constraint Networks 

Constraint graph

A

B

D

C

G
F

E

Task: find a solution
Count solutions, find a good one
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 = {(¬C), (A v B v C), (¬A v B v E), (¬B v C v D)}.

Propositional Satisfiability



Mixed Networks: Mixing Belief and 
Constraints

Belief or Bayesian Networks

A

D

B C

E

F

A

D

B C

E

F

)|(),,|(           

),|(),|(),|(),( :CPTS

}1,0{:Domains

,,,,, :Variables

AFPBAEP

CBDPACPABPAP

DDDDDD

FEDCBA

FEDCBA 

Constraint Networks

)( :solutions ofset    theExpresses

),(),(),(),( :sConstraint

}1,0{:Domains

,,,,, :Variables

4321

Rsol

EARBCDRACFRABCR

DDDDDD

FEDCBA

FEDCBA 

B C D=0 D=1

0 0 0 1

0 1 .1 .9

1 0 .3 .7

1 1 1 0

),|( CBDP

 allowednot  is 1D1,C1,B

 allowednot  is  0,0,0

)(3



 DCB

BCDR

B= R=

Constraints could be specified externally or may occur as zeros in 
the Belief network

Same queries (e.g.,  weighted counts) 
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Belief Updating

“Moral” graph

A

D E

CB

P(a|e=0) P(a,e=0)=


 bcde ,,,0

P(a)P(b|a)P(c|a)P(d|b,a)P(e|b,c)=


0e

P(a) 
d

),,,( ecdahB


b

P(b|a)P(d|b,a)P(e|b,c)

B C

ED

Variable Elimination

P(c|a)
c
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Bucket Elimination 
Algorithm elim-bel (Dechter 1996)


b

Elimination operator

P(a|e=0)

W*=4
Exp(w*)

bucket  B: 

P(a)

P(c|a)

P(b|a)   P(d|b,a)   P(e|b,c)

bucket  C: 

bucket  D:

bucket  E: 

bucket  A:

e=0

B

C

D

E

A

e)(a,hD

(a)hE

e)c,d,(a,hB

e)d,(a,hC
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Bucket Elimination 
)0,()0|(  eaPeaP
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Elimination Order: d,e,b,cQuery:

D:

E:

B:

C:

A:


d

D badPbaf ),|(),(),|( badP

),|( cbeP ),|0(),( cbePcbfE 


b

EDB cbfbafabPcaf ),(),()|(),(

)()()0,( afApeaP C)(aP

)|( acP 
c

BC cafacPaf ),()|()(

)|( abP

D,A,B E,B,C

B,A,C

C,A

A

),( bafD ),( cbfE

),( cafB

)(afC

AA

DD EE

CCBB

Bucket Tree
D E

B
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Original Functions Messages

Time and space exp(w*)
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Complexity of Elimination

))((exp ( * dwnO

ddw  ordering along graph moral of  widthinduced the)(* 

The effect of the ordering:

4)( 1
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* dw“Moral” graph

A

D E

CB

B

C

D

E

A

E

D

C

B

A



Cutset-Conditioning 
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Search Over the Cutset

A=yellow A=green

B=red B=blue B=red B=blueB=green B=yellow
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• Inference may require too much memory

• Condition on some of the variables
A

C

B K

G
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F
H

M

J

E

Graph
Coloring
problem

Space: exp(w): w is a user-controled parameter 
Time: exp(w+c(w))
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?    ?
?    ?

A    a
B    b

A    A
B    b

3 4
A | ?
B | ?

?    ?
? ?

5 6
A | a
B | b •6 individuals

•Haplotype: {2, 3}
• Genotype: {6}
• Unknown

Linkage Analysis
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L11m L11f

X11

L12m L12f

X12

L13m L13f

X13

L14m L14f

X14

L15m L15f

X15

L16m L16f

X16

S13m

S15m

S16mS15m

S15m

S15m

L21m L21f

X21

L22m L22f

X22

L23m L23f

X23

L24m L24f

X24

L25m L25f

X25

L26m L26f

X26

S23m

S25m

S26mS25m

S25m

S25m

L31m L31f

X31

L32m L32f

X32

L33m L33f

X33

L34m L34f

X34

L35m L35f

X35

L36m L36f

X36

S33m

S35m

S36mS35m

S35m

S35m

Linkage Analysis:  6 People, 3 Markers



Applications

• Determinism: More Ubiquitous than you may think! 

• Transportation Planning (Liao et al. 2004, Gogate et al. 2005)
– Predicting and Inferring Car Travel Activity of individuals

• Genetic Linkage Analysis (Fischelson and Geiger, 2002)
– associate functionality of genes to their location on chromosomes.

• Functional/Software Verification (Bergeron, 2000)
– Generating random test programs to check validity of hardware

• First Order Probabilistic models (Domingos et al. 2006, Milch et 
al. 2005)
– Citation matching
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Inference vs Conditioning-Search 

Inference

Exp(w*) time/space

A

D

B C

E

F
0 1 0 1 0 1 0 1
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0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

E

C
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D
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A 0 1 Search
Exp(n) time
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Search+inference:
Space: exp(w)
Time: exp(w+c(w))
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Approximation

• Since inference, search and hybrids are  too expensive when 
graph is dense; (high treewidth) then:

• Bounding inference:
• mini-bucket and mini-clustering
• Belief propagation

• Bounding search:
• Sampling

• Goal: an anytime scheme



21

Approximation

• Since inference, search and hybrids are  too expensive when 
graph is dense; (high treewidth) then:

• Bounding inference:
• mini-bucket and mini-clustering
• Belief propagation

• Bounding search:
• Sampling

• Goal: an anytime scheme



Overview

1. Probabilistic Reasoning/Graphical models

2. Importance Sampling

3. Markov Chain Monte Carlo: Gibbs Sampling

4. Sampling in presence of Determinism 

5. Rao-Blackwellisation

6. AND/OR importance sampling



Outline

• Definitions and Background on Statistics

• Theory of importance sampling

• Likelihood weighting

• State-of-the-art importance sampling 
techniques
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A sample

• Given a set of variables X={X1,...,Xn}, a sample, 
denoted by St is an instantiation of all 
variables:

24

),...,,(
t

n

ttt xxxS 21



How to draw a sample ?
Univariate distribution

• Example: Given random variable X having 
domain {0, 1} and a distribution P(X) = (0.3, 
0.7). 

• Task: Generate samples of X from P.

• How?

– draw random number r  [0, 1]

– If (r < 0.3) then set X=0

– Else set X=1

25



How to draw a sample?
Multi-variate distribution

• Let X={X1,..,Xn} be a set of variables

• Express the distribution in product form

• Sample variables one by one from left to right, 
along the ordering dictated by the product 
form.

• Bayesian network literature: Logic sampling

26
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Logic sampling (example)
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X1

X4

X2
X3

)( 1XP

)|( 12 XXP )|( 13 XXP

)|( from  Sample .4

)|( from  Sample .3

)|( from  Sample .2

)( from  Sample .1

 sample generate//

Evidence No

33,2244

1133

1122

11

xXxXxPx

xXxPx

xXxPx

xPx

k
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Expected value: Given a probability distribution P(X) 

and a function g(X) defined over a set of variables X = 

{X1, X2, … Xn}, the expected value of g w.r.t. P is

Variance: The variance of g w.r.t. P is:

Expected value and Variance
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Monte Carlo Estimate

• Estimator: 

– An estimator is a function of the samples.

– It produces an estimate of the unknown 
parameter of the sampling distribution.
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Example: Monte Carlo estimate
• Given: 

– A distribution P(X) = (0.3, 0.7).
– g(X) = 40 if X equals 0  

= 50 if X equals 1.

• Estimate EP[g(x)]=(40x0.3+50x0.7)=47.
• Generate k samples from P: 0,1,1,1,0,1,1,0,1,0

30
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Outline

• Definitions and Background on Statistics

• Theory of importance sampling

• Likelihood weighting

• State-of-the-art importance sampling 
techniques
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Importance sampling: Main idea

• Transform the probabilistic inference problem 
into the problem of computing the expected 
value of a random variable w.r.t. to a 
distribution Q.

• Generate random samples from Q.

• Estimate the expected value from the 
generated samples.

32



Importance sampling for P(e)
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Properties of IS estimate of P(e) 

• Convergence: by law of large numbers

• Unbiased.

• Variance:
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Properties of IS estimate of P(e)

• Mean Squared Error of the estimator
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zero because the expected value of the 

estimator equals the expected value of g(x)



Estimating P(Xi|e)
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Properties of the IS estimator for 
P(Xi|e)

• Convergence: By Weak law of large numbers

• Asymptotically unbiased

• Variance

– Harder to analyze

– Liu suggests a measure called “Effective sample 
size”

37

 T as )|()|( exPexP ii

)|()]|([lim exPexPE iiPT 



Effective Sample size
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Ideal estimator

Measures how much the 
estimator deviates from the 
ideal one.



Outline

• Definitions and Background on Statistics

• Theory of importance sampling

• Likelihood weighting

• State-of-the-art importance sampling 
techniques
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Likelihood Weighting: Proposal Distribution 
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Likelihood Weighting: Sampling

41

e e e e e

e e e e

Sample in topological order over X !

Clamp evidence, Sample xi P(Xi|pai), P(Xi|pai) is a 
look-up in CPT!



Outline

• Definitions and Background on Statistics

• Theory of importance sampling

• Likelihood weighting

• State-of-the-art importance sampling 
techniques
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Proposal selection

• One should try to select a proposal that is as 
close as possible to the posterior distribution.
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Proposal Distributions used in 
Literature

• AIS-BN (Adaptive proposal) 

• Cheng and Druzdzel, 2000

• Iterative Belief Propagation 

• Changhe and Druzdzel, 2003

• Iterative Join Graph Propagation (IJGP) and 
variable ordering 

• Gogate and Dechter, 2005



Perfect sampling using Bucket 
Elimination

• Algorithm:

– Run Bucket elimination on the problem along an 
ordering o=(XN,..,X1).

– Sample along the reverse ordering: (X1,..,XN)

– At each variable Xi, recover the probability 
P(Xi|x1,...,xi-1) by referring to the bucket.
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Bucket elimination (BE) 
Algorithm elim-bel (Dechter 1996)


b

Elimination operator

P(e)

bucket  B: 

P(a)

P(C|A)

P(B|A)   P(D|B,A)   P(e|B,C)

bucket  C: 

bucket  D:

bucket  E: 

bucket  A:

B

C

D

E

A

e)(A,hD

(a)hE

e)C,D,(A,hB

e)D,(A,hC
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Sampling from the output of BE
(Dechter 2002)

bucket  B: 

P(A)

P(C|A)

P(B|A)   P(D|B,A)   P(e|B,C)

bucket  C: 

bucket  D:

bucket  E: 

bucket  A:

e)(A,hD

(A)hE

e)C,D,(A,hB

e)D,(A,hC

Q(A)aA:

(A)hP(A)Q(A)
E





Sample

ignore :bucket Evidence

e)D,(a,he)a,|Q(Dd D :Sample

bucket in the aASet 

C



e)C,d,(a,hd)e,a,|Q(C cC :Sample

bucket in the dDa,ASet 

B
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Mini-buckets: “local inference”

• Computation in a bucket is time and space 
exponential in the number of variables 
involved

• Therefore, partition functions in a bucket   into 
“mini-buckets” on smaller number of variables

• Can control the size of each “mini-bucket”, 
yielding polynomial complexity.
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Mini-Bucket Elimination

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

ΣB

P(B|A) P(D|B,A)

hE(A)

hB(A,D)

P(e|B,C)

Mini-buckets

ΣB

P(C|A) hB(C,e)

hD(A)

hC(A,e)

Approximation of P(e)

Space and Time constraints:
Maximum scope size of the new 
function generated should be 
bounded by 2

BE generates a function having scope 
size 3. So it cannot be used.

P(A)
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Sampling from the output of MBE

bucket A:

bucket E:

bucket D:

bucket C:

bucket B: P(B|A) P(D|B,A)

hE(A)

hB(A,D)

P(e|B,C)

P(C|A) hB(C,e)

hD(A)

hC(A,e)
Sampling is same as in BE-sampling 
except that now we construct Q 
from a randomly selected “mini-
bucket”



IJGP-Sampling 
(Gogate and Dechter, 2005)

• Iterative Join Graph Propagation (IJGP)

– A Generalized Belief Propagation scheme (Yedidia
et al., 2002)

• IJGP yields better approximations of P(X|E) 
than MBE

– (Dechter, Kask and Mateescu, 2002)

• Output of IJGP is same as mini-bucket 
“clusters”

• Currently the best performing IS scheme!
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Adaptive Importance Sampling



Adaptive Importance Sampling

• General case

• Given k proposal distributions

• Take N samples out of each distribution

• Approximate P(e) 
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 )Z,..,Z|(ZQ'each  where

))(|('...))(|(')(')(Q

1-i1i

221

'

nn ZpaZQZpaZQZQZ 



Overview
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2. Importance Sampling
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Markov Chain 

• A Markov chain is a discrete random process with 
the property that the next state depends only on the 

current state (Markov Property):

56
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• If P(Xt|xt-1) does not depend on t (time 
homogeneous) and state space is finite, then it is 
often expressed as a transition function (aka 
transition matrix) 1)( 
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Example: Drunkard’s Walk
• a random walk on the number line where, at 

each step, the position may change by +1 or 
−1 with equal probability
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Example: Weather Model
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5.05.0

1.09.0
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sunny
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transition matrix P(X)
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Multi-Variable System

• state is an assignment of values to all the 
variables
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Bayesian Network System

• Bayesian Network is a representation of the 
joint probability distribution over 2 or more 
variables

X1
t

X2
t

X3
t

},,{ 321

tttt xxxx 

X1

X2 X3
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Stationary Distribution
Existence

• If the Markov chain is time-homogeneous, 
then the vector (X) is a stationary distribution 
(aka invariant or equilibrium distribution, aka 
“fixed point”), if its entries sum up to 1 and 
satisfy:

• Finite state space Markov chain has a unique 
stationary distribution if and only if:
– The chain is irreducible

– All of its states are positive recurrent
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Irreducible

• A state x is irreducible if under the transition rule 
one has nonzero probability of moving from x to 
any other state and then coming back in a finite 
number of steps

• If one state is irreducible, then all the states 
must be irreducible

(Liu, Ch. 12, pp. 249, Def. 12.1.1)
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Recurrent

• A state x is recurrent if the chain returns to x

with probability 1

• Let M(x ) be the expected number of steps to 
return to state x

• State x is positive recurrent if M(x ) is finite
The recurrent states in a finite state chain are positive recurrent .



Stationary Distribution Convergence

• Consider infinite Markov chain:
nnn PPxxPP 00)( )|( 

• Initial state is not important in the limit

“The most useful feature of a “good” Markov 
chain is its fast forgetfulness of its past…”

(Liu, Ch. 12.1)

)(lim n

n
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• If the chain is both irreducible and aperiodic, 
then:



Aperiodic

• Define d(i) = g.c.d.{n > 0 | it is possible to go 
from i to i in n steps}. Here, g.c.d. means the 
greatest common divisor of the integers in the 
set.  If d(i)=1 for i, then chain is aperiodic

• Positive recurrent, aperiodic states are ergodic
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Markov Chain Monte Carlo

• How do we estimate P(X), e.g., P(X|e) ?
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• Generate samples that form Markov Chain 
with stationary distribution =P(X|e)

• Estimate  from samples (observed states):

visited states x0,…,xn can be viewed as “samples” 
from distribution 
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MCMC Summary

• Convergence is guaranteed in the limit

• Samples are dependent, not i.i.d.

• Convergence (mixing rate) may be slow

• The stronger correlation between states, the 
slower convergence!

• Initial state is not important, but… typically, 
we throw away first K samples - “burn-in”
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Gibbs Sampling (Geman&Geman,1984)

• Gibbs sampler is an algorithm to generate a 
sequence of samples from the joint probability 
distribution of two or more random variables

• Sample new variable value one variable at a 
time from the variable’s conditional 
distribution:

• Samples form a Markov chain with stationary 
distribution P(X|e)
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Gibbs Sampling: Illustration

The process of Gibbs sampling can be understood as a random walk 
in the space of all instantiations of X=x (remember drunkard’s walk):

In one step we can reach instantiations 
that differ from current one by value 
assignment to at most one variable 
(assume randomized choice of variables 
Xi).



Ordered Gibbs Sampler

Generate sample xt+1 from xt :

In short, for i=1 to N:
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Transition Probabilities in BN

Markov blanket:
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Xi

Given Markov blanket (parents, 
children, and their parents),
Xi is independent of all other nodes
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Computation is linear in the size of Markov blanket!



Ordered Gibbs Sampling Algorithm
(Pearl,1988) 

Input: X, E=e

Output: T samples {xt }

Fix evidence E=e, initialize x0 at random
1. For t = 1 to T (compute samples)

2. For i = 1 to N (loop through variables)

3. xi
t+1  P(Xi | markovi

t)

4. End For

5. End For



Gibbs Sampling Example - BN
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X1 

X4 
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X1 = x1
0

X6 = x6
0

X2 = x2
0

X7 = x7
0

X3 = x3
0

X8 = x8
0

X4 = x4
0

X5 = x5
0



Gibbs Sampling Example - BN
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Answering Queries P(xi |e) = ?
• Method 1: count # of samples where Xi = xi (histogram estimator):
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Dirac delta f-n

• Method 2: average probability (mixture estimator):

• Mixture estimator converges faster (consider 
estimates for the unobserved values of Xi; prove via 
Rao-Blackwell theorem)



Rao-Blackwell Theorem

Rao-Blackwell Theorem: Let random variable set X be 
composed of two groups of variables, R and L. Then, 
for the joint distribution (R,L) and function g, the 
following result applies
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)]([}|)({[ RgVarLRgEVar 

for a function of interest g, e.g., the mean or 
covariance (Casella&Robert,1996, Liu et. al. 1995).

• theorem makes a weak promise, but works well in practice!
• improvement depends the choice of R and L



Importance vs. Gibbs
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Gibbs Sampling: Convergence
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• Sample from `P(X|e)P(X|e)

• Converges iff chain is irreducible and ergodic

• Intuition - must be able to explore all states:
– if Xi and Xj are strongly correlated, Xi=0 Xj=0, 

then, we cannot explore states with Xi=1 and Xj=1

• All conditions are satisfied when all 
probabilities are positive

• Convergence rate can be characterized by the 
second eigen-value of transition matrix



Gibbs: Speeding Convergence

Reduce dependence between samples 
(autocorrelation)

• Skip samples

• Randomize Variable Sampling Order

• Employ blocking (grouping)

• Multiple chains

Reduce variance (cover in the next section)
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Blocking Gibbs Sampler

• Sample several variables together, as a block

• Example: Given three variables X,Y,Z, with domains of 
size 2, group Y and Z together to form a variable 
W={Y,Z} with domain size 4. Then, given sample 
(xt,yt,zt), compute next sample:

+ Can improve convergence greatly when two variables 
are strongly correlated! 

- Domain of the block variable grows exponentially with 
the #variables in a block!
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Gibbs: Multiple Chains

• Generate M chains of size K

• Each chain produces independent estimate Pm:
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Treat Pm as independent random variables.

• Estimate P(xi|e) as average of  Pm (xi|e) :



Gibbs Sampling Summary

• Markov Chain Monte Carlo method
(Gelfand and Smith, 1990, Smith and Roberts, 1993, Tierney, 1994)

• Samples are dependent, form Markov Chain

• Sample from which converges to

• Guaranteed to converge when all P > 0

• Methods to improve convergence:
– Blocking

– Rao-Blackwellised
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Overview

1. Probabilistic Reasoning/Graphical models

2. Importance Sampling

3. Markov Chain Monte Carlo: Gibbs Sampling

4. Sampling in presence of Determinism 

5. Rao-Blackwellisation

6. AND/OR importance sampling



Outline

• Rejection problem

• Backtrack-free distribution

– Constructing it in practice

• SampleSearch

– Construct the backtrack-free distribution on the 
fly.

• Approximate estimators

• Experiments



Outline

• Rejection problem

• Backtrack-free distribution

– Constructing it in practice

• SampleSearch

– Construct the backtrack-free distribution on the 
fly.

• Approximate estimators

• Experiments



Rejection problem

• Importance sampling requirement 
– P(z,e) > 0  Q(z)>0

• When P(z,e)=0 but Q(z) > 0, the weight of the 
sample is zero and it is rejected.

• The probability of generating a rejected 
sample should be very small.
– Otherwise the estimate will be zero.
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Rejection Problem

All Blue leaves correspond to solutions i.e. g(x) >0
All Red leaves correspond to non-solutions i.e. g(x)=0

solution. anot  is  if 0

1
 :sampling  Importance

1

ii

N

i
i

i

zezP

zQ

ezP

N
eP



 


),(

)(

),(
)(ˆ

A=0

B=0

C=0

B=1 B=0 B=1

A=1

C=1C=1C=1 C=0 C=0 C=0 C=1

Root

0.8 0.2

0.4 0.6

0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8

0.2 0.8

Constraints: A≠B A≠C

If z violates either A≠B or A≠C 
then P(z,e)=0

Q: Positive



Outline

• Rejection problem

• Backtrack-free distribution

– Constructing it in practice

• SampleSearch

– Construct the backtrack-free distribution on the 
fly.

• Approximate estimators

• Experiments



Backtrack-free distribution: A rejection-free 
distribution

All Blue leaves correspond to solutions i.e. g(x) >0
All Red leaves correspond to non-solutions i.e. g(x)=0

A=0

B=0

C=0

B=1 B=0 B=1

A=1

C=1C=1C=1 C=0 C=0 C=0 C=1

Root

0.8 0.2

0 1

0 0 0 1 1 0 0 0

1 0

QF(branch)=0 if no 
solutions under it 

QF(branch) αQ(branch) 
otherwise

Constraints: A≠B A≠C



Generating samples from QF

C=1

Root

0.8
0.2

?? Solution?? Solution

?? Solution
?? Solution

A=0

00.4 0.6  1

?? Solution ?? Solution

B=1

00.2 0.81

QF(branch)=0 if no solutions 
under it 

QF(branch) αQ(branch) 
otherwise

• Invoke an oracle at
each branch.
• Oracle returns 

True if there is a 
solution under a 
branch

• False, otherwise

Constraints: A≠B A≠C



Generating samples from QF

• Oracles
• Adaptive consistency as pre-

processing step
• Constant time table look-

up
• Exponential in the 

treewidth of the constraint 
portion.

• A complete CSP solver 
• Need to run it at each 

assignment.

A=0

B=1

C=1

Root

0.8
0.2

1

1

Constraints: A≠B A≠C

Gogate et al., UAI 2005,  Gogate and Dechter, UAI 2005



Outline

• Rejection problem

• Backtrack-free distribution

– Constructing it in practice

• SampleSearch

– Construct the backtrack-free distribution on the 
fly.

• Approximate estimators

• Experiments
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Algorithm SampleSearch

A=0

B=0

C=0

B=1 B=0 B=1

A=1

C=1C=1C=1 C=0 C=0 C=0 C=1

Root

0.8 0.2

0.4 0.6

0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8

0.2 0.8
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Gogate and Dechter, AISTATS 2007, AAAI 2007

Constraints: A≠B A≠C
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Algorithm SampleSearch

A=0

B=0

C=0

B=1 B=0 B=1

A=1

C=1C=1C=1 C=0 C=0 C=0 C=1

Root

0.8 0.2

0.4 0.6

0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8

0.2 0.8
1

Gogate and Dechter, AISTATS 2007, AAAI 2007

Constraints: A≠B A≠C 
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Algorithm SampleSearch

A=0

B=1 B=0 B=1

A=1

C=1C=1C=0 C=0 C=0 C=1

Root

0.8 0.2

0.2 0.8 0.2 0.8 0.2 0.8

0.2 0.8

Resume Sampling

1

Gogate and Dechter, AISTATS 2007, AAAI 2007

Constraints: A≠B A≠C 
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Algorithm SampleSearch

A=0

B=1 B=0 B=1

A=1

C=1C=1C=0 C=0 C=0 C=1

Root

0.8 0.2

1

0.2 0.8 0.2 0.8 0.2 0.8

0.2 0.8

Constraint Violated

Until P(sample,e)>0 

1

Gogate and Dechter, AISTATS 2007, AAAI 2007

Constraints: A≠B A≠C 
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Generate more Samples

A=0

B=0

C=0

B=1 B=0 B=1

A=1

C=1C=1C=1 C=0 C=0 C=0 C=1

Root

0.8 0.2

0.4 0.6

0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8

0.2 0.8

Gogate and Dechter, AISTATS 2007, AAAI 2007

Constraints: A≠B A≠C 
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Generate more Samples

A=0

B=0

C=0

B=1 B=0 B=1

A=1

C=1C=1C=1 C=0 C=0 C=0 C=1

Root

0.8 0.2

0.4 0.6

0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8

0.2 0.8

1

Gogate and Dechter, AISTATS 2007, AAAI 2007

Constraints: A≠B A≠C 
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Traces of SampleSearch

A=0

B=1

C=1

Root

A=0

B=0
B=1

C=1

Root

A=0

B=1

C=1

Root

C=0

A=0

B=0 B=1

C=1

Root

C=0

Constraints: A≠B A≠C

Gogate and Dechter, AISTATS 2007, AAAI 2007
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SampleSearch: Sampling Distribution

• Problem: Due to Search, the samples are no 
longer i.i.d. from Q.

• Thm: SampleSearch generates i.i.d. samples 
from the backtrack-free distribution

  )()(,
)(

),(
)( ePePE

zQ

ezP

N
eP Q

N

j
j

j

 


   
1

1

Gogate and Dechter, AISTATS 2007, AAAI 2007
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The Sampling distribution QF of 
SampleSearch

A=0

B=0 B=1

C=1C=1 C=0

Root

0.8

0 1

0 0 0 1

C=0

What is probability of generating A=0?

QF(A=0)=0.8

Why? SampleSearch is systematic

What is probability of generating (A=0,B=1)?

QF(B=1|A=0)=1

Why? SampleSearch is systematic

What is probability of generating (A=0,B=0)?

Simple: QF(B=0|A=0)=0

All samples generated by SampleSearch are 

solutions

Backtrack-free distribution

Gogate and Dechter, AISTATS 2007, AAAI 2007

Constraints: A≠B A≠C 
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Outline

• Rejection problem

• Backtrack-free distribution

– Constructing it in practice

• SampleSearch

– Construct the backtrack-free distribution on the 
fly.

• Approximate estimators

• Experiments



Asymptotic approximations of QF

A=0

B=0 B=1

C=1C=1 C=0

Root

0.8

0 1

0 0 0 1

C=0

Hole ?

Don’t know

No solutions here

No solutions here

•IF Hole THEN 

•UF=Q (i.e. there is a solution at 
the other branch)

•LF=0 (i.e. no solution at the 
other branch)

Gogate and Dechter, AISTATS 2007, AAAI 2007



Approximations:
Convergence in the limit

• Store all possible traces

A=0

B=1

C=1

Root

0.8

1

1

?

Gogate and Dechter, AISTATS 2007, AAAI 2007

A=0

B=1

C=1

Root

C=0

0.8

?

0.6

1

?
A=0

B=0
B=1

C=1

Root

0.8

?

1

0.8

?



Approximations:
Convergence in the limit

• From the combined sample tree, update U and L.

IF Hole THEN  UF
N=Q and LF

N=0
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 :Bounding

unbiasedally Asymptotic A=0

B=1

C=1

Root

0.8

1

1

?

Gogate and Dechter, AISTATS 2007, AAAI 2007



Upper and Lower Approximations

• Asymptotically unbiased.

• Upper and lower bound on the unbiased 
sample mean

• Linear time and space overhead

• Bias versus variance tradeoff

– Bias = difference between the upper and lower 
approximation.



Improving Naive SampleSeach

• Better Search Strategy

– Can use any state-of-the-art CSP/SAT solver e.g. 
minisat (Een and Sorrenson 2006)

• All theorems and result hold

• Better Importance Function

– Use output of generalized belief propagation to 
compute the initial importance function Q (Gogate
and Dechter, 2005)

Gogate and Dechter, AISTATS 2007, AAAI 2007



Experiments

• Tasks
– Weighted Counting
– Marginals

• Benchmarks
– Satisfiability problems (counting solutions)
– Linkage networks
– Relational instances (First order probabilistic networks)
– Grid networks
– Logistics planning instances

• Algorithms
– SampleSearch/UB, SampleSearch/LB
– SampleCount (Gomes et al. 2007, SAT)
– ApproxCount (Wei and Selman, 2007, SAT)
– RELSAT (Bayardo and Peshoueshk, 2000, SAT)
– Edge Deletion Belief Propagation (Choi and Darwiche, 2006)
– Iterative Join Graph Propagation (Dechter et al., 2002)
– Variable Elimination and Conditioning (VEC)
– EPIS (Changhe and Druzdzel, 2006)



Results: Solution Counts
Langford instances

Time Bound: 10 hrs





Results: Probability of Evidence
Linkage instances (UAI 2006 evaluation)

Time Bound: 3 hrs



Results: Probability of Evidence
Linkage instances (UAI 2008 evaluation)

Time Bound: 3 hrs





Results on Marginals

• Evaluation Criteria

• Always bounded between 0 and 1

• Lower Bounds the KL distance

• When probabilities close to zero are present KL 
distance may tend to infinity.
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Results: Posterior Marginals
Linkage instances (UAI 2006 evaluation)

Time Bound: 3 hrs
Distance measure: Hellinger distance





Summary: SampleSearch

• Manages rejection problem while sampling
– Systematic backtracking search

• Sampling Distribution of SampleSearch is the backtrack-free 
distribution QF

– Expensive to compute

• Approximation of QF based on storing all traces that yields an 
asymptotically unbiased estimator
– Linear time and space overhead
– Bound the sample mean from above and below

• Empirically, when a substantial number of zero probabilities 
are present, SampleSearch based schemes dominate their 
pure sampling counter-parts and Generalized Belief 
Propagation.



Overview

1. Probabilistic Reasoning/Graphical models

2. Importance Sampling

3. Markov Chain Monte Carlo: Gibbs Sampling

4. Sampling in presence of Determinism 

5. Rao-Blackwellisation

6. AND/OR importance sampling



Sampling: Performance

• Gibbs sampling

– Reduce dependence between samples

• Importance sampling

– Reduce variance

• Achieve both by sampling a subset of variables 
and integrating out the rest (reduce 
dimensionality), aka Rao-Blackwellisation

• Exploit graph structure to manage the extra cost
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Smaller Subset State-Space

• Smaller state-space is easier to cover

120
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Smoother Distribution
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Speeding Up Convergence

• Mean Squared Error of the estimator:

   PVarBIASPMSE QQ  2

  




  2

2

][ˆ]ˆ[]ˆ[ PEPEPVarPMSE QQQQ

• Reduce variance  speed up convergence !

• In case of unbiased estimator, BIAS=0
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Rao-Blackwellisation
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Liu, Ch.2.3



Rao-Blackwellisation

• X=RL

• Importance Sampling:

• Gibbs Sampling: 
– autocovariances are lower (less correlation 

between samples)

– if Xi and Xj are strongly correlated, Xi=0  Xj=0, 
only include one fo them into a sampling set
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“Carry out analytical computation as much as possible” - Liu



Blocking Gibbs Sampler vs. Collapsed

• Standard Gibbs:

(1)

• Blocking:

(2)

• Collapsed:

(3)
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Collapsed Gibbs Sampling

Generating Samples

Generate sample ct+1 from ct :
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In short, for i=1 to K:



Collapsed Gibbs Sampler

Input: C X, E=e

Output: T samples {ct }

Fix evidence E=e, initialize c0 at random
1. For t = 1 to T (compute samples)

2. For i = 1 to N (loop through variables)

3. ci
t+1  P(Ci | ct\ci)

4. End For

5. End For



Calculation Time

• Computing P(ci| ct\ci,e) is more expensive 
(requires inference)

• Trading #samples for smaller variance:

– generate more samples with higher covariance

– generate fewer samples with lower covariance

• Must control the time spent computing 
sampling probabilities in order to be time-
effective!
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Exploiting Graph Properties

Recall… computation time is exponential in the 
adjusted induced width of a graph

• w-cutset is a subset of variable s.t. when they 
are observed, induced width of the graph is w

• when sampled variables form a w-cutset , 
inference is exp(w) (e.g., using Bucket Tree 

Elimination)

• cycle-cutset is a special case of w-cutset

129

Sampling w-cutset  w-cutset sampling!



What If C=Cycle-Cutset ?
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P(x2,x5,x9) – can compute using Bucket Elimination

P(x2,x5,x9) – computation complexity is O(N)



Computing Transition Probabilities
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Compute joint probabilities:

Normalize:



Cutset Sampling-Answering Queries

• Query: ci C, P(ci |e)=? same as Gibbs:
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computed while generating sample t
using bucket tree elimination

compute after generating sample t
using bucket tree elimination
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• Query: xi X\C, P(xi |e)=? 



Cutset Sampling vs. Cutset Conditioning
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• Cutset Conditioning

• Cutset Sampling
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Cutset Sampling Example 
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Estimating P(x2|e) for sampling node X2 :

Sample 1

Sample 2

Sample 3



Cutset Sampling Example 
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Estimating P(x3 |e) for non-sampled node X3 :
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CPCS54 Test Results
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MSE vs. #samples (left) and time (right) 

Ergodic, |X|=54, D(Xi)=2, |C|=15, |E|=3

Exact Time = 30 sec using Cutset Conditioning

CPCS54, n=54, |C|=15, |E|=3 
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CPCS179 Test Results
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MSE vs. #samples (left) and time (right) 
Non-Ergodic (1 deterministic CPT entry)
|X| = 179, |C| = 8, 2<= D(Xi)<=4, |E| = 35

Exact Time = 122 sec using Cutset Conditioning

CPCS179, n=179, |C|=8, |E|=35
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CPCS360b Test Results
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MSE vs. #samples (left) and time (right) 

Ergodic, |X| = 360, D(Xi)=2, |C| = 21, |E| = 36

Exact Time > 60 min using Cutset Conditioning

Exact Values obtained via Bucket Elimination

CPCS360b, n=360, |C|=21, |E|=36
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Random Networks
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MSE vs. #samples (left) and time (right)

|X| = 100, D(Xi) =2,|C| = 13, |E| = 15-20

Exact Time = 30 sec using Cutset Conditioning

RANDOM, n=100, |C|=13, |E|=15-20
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Coding Networks
Cutset Transforms Non-Ergodic Chain to Ergodic
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MSE vs. time (right)

Non-Ergodic, |X| = 100, D(Xi)=2, |C| = 13-16, |E| = 50

Sample Ergodic Subspace U={U1, U2,…Uk}

Exact Time = 50 sec using Cutset Conditioning
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Coding Networks, n=100, |C|=12-14

0.001

0.01

0.1

0 10 20 30 40 50 60

Time(sec)

IBP Gibbs Cutset



Non-Ergodic Hailfinder
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MSE vs. #samples (left) and time (right)

Non-Ergodic, |X| = 56, |C| = 5, 2 <=D(Xi) <=11, |E| = 0

Exact Time = 2 sec using Loop-Cutset Conditioning

HailFinder, n=56, |C|=5, |E|=1 
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CPCS360b - MSE
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cpcs360b, N=360, |E|=[20-34], w*=20, MSE
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Ergodic, |X| = 360, |C| = 26, D(Xi)=2

Exact Time = 50 min using BTE



Cutset Importance Sampling

• Apply Importance Sampling over cutset C
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where P(ct,e) is computed using Bucket Elimination

(Gogate & Dechter, 2005) and (Bidyuk & Dechter, 2006)



Likelihood Cutset Weighting (LCS)

• Z=Topological Order{C,E}

• Generating sample t+1:
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For End

If End   

),...,|(        

Else   

        

 If    

:do For 
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ZZ • computed while generating 
sample t
using bucket tree 
elimination

• can be memoized for some 
number of instances K 
(based on memory available

KL[P(C|e), Q(C)+ ≤ KL*P(X|e), Q(X)]



Pathfinder 1
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Pathfinder 2
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Link
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Summary

• i.i.d. samples

• Unbiased estimator

• Generates samples fast

• Samples from Q

• Reject samples with 
zero-weight

• Improves on cutset

• Dependent samples

• Biased estimator

• Generates samples 
slower

• Samples from `P(X|e)

• Does not converge in 
presence of constraints

• Improves on cutset
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Importance Sampling Gibbs Sampling



CPCS360b
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cpcs360b, N=360, |LC|=26, w*=21, |E|=15
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CPCS422b

150

1.0E-05

1.0E-04

1.0E-03

1.0E-02

0 10 20 30 40 50 60

M
S

E

Time (sec)

cpcs422b, N=422, |LC|=47, w*=22, |E|=28 LW

AIS-BN

Gibbs

LCS

IBP

LW – likelihood weighting
LCS – likelihood weighting on a cutset



Coding Networks
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coding, N=200, P=3, |LC|=26, w*=21
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Overview

1. Probabilistic Reasoning/Graphical models

2. Importance Sampling

3. Markov Chain Monte Carlo: Gibbs Sampling

4. Sampling in presence of Determinism 

5. Rao-Blackwellisation

6. AND/OR importance sampling



Motivation
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Expected value of the number on the face of a die:

What is the expected value of the product of the 

numbers on the face of “k” dice?

53
6

654321
.



k
).( 53



Monte Carlo estimate

• Perform the following experiment N times.
– Toss all the k dice.
– Record the product of the numbers on the top 

face of each die.

• Report the average over the N runs.
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How the sample average converges?
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10 dice. Exact Answer is (3.5)10



But This is Really Dumb?
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The dice are independent. 

A better Monte Carlo estimate
1. Perform the experiment N times

2. For each dice record the average

3. Take a product of the averages

• Conventional estimate: Averages of products.
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How the sample Average Converges
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Moral of the story

158

• Make use of (conditional) independence to get 
better results

• Used for exact inference extensively
– Bucket Elimination (Dechter, 1996)
– Junction tree (Lauritzen and Speigelhalter, 1988)
– Value Elimination (Bacchus et al. 2004)
– Recursive Conditioning (Darwiche, 2001)
– BTD (Jegou et al., 2002)
– AND/OR search (Dechter and Mateescu, 2007)

• How to use it for sampling?
– AND/OR Importance sampling



Background: AND/OR search space

B

A

C

≠

≠

{0,1,2}

{0,1,2}

{0,1,2}

Problem

A

B C

Pseudo-tree

A

B

C
Chain 

Pseudo-tree

A

0 1 2

B C B C B C

1 2 1 202 0 2 0 101

OR

AND

OR

AND

AND/OR Tree

A

0 1 2

B B B

1 2 20 0 1

C

1 2

C

1 2

C

0 2

C

0 2

C

0 1

C

0 1

OR Tree

159



AND/OR sampling: Example
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AND/OR Importance Sampling 
(General Idea)
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• Decompose Expectation
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AND/OR Importance Sampling 
(General Idea)

162

• Decompose Expectation
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Pseudo-tree
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• Compute all expectations separately
• How?

– Record all samples
– For each sample that has A=a

• Estimate  the conditional expectations separately using the 
generated samples

• Combine the results

AND/OR Importance Sampling 
(General Idea)
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AND/OR Importance Sampling
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AND/OR Importance Sampling

All AND nodes: Separate Components. Take Product
Operator: Product

All OR nodes: Conditional Expectations given the assignment 
above it

Operator: Weighted Average

Sample # Z X Y

1 0 1 0

2 0 2 1

3 1 1 1

4 1 2 0

Gogate and Dechter, UAI 2008, CP2008
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Algorithm AND/OR Importance 
Sampling
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1. Construct a pseudo-tree.
2. Construct a proposal distribution along the pseudo-tree
3. Generate samples x1, . . . ,xN from Q along O.
4. Build a AND/OR sample tree for the samples x1, . . . ,xN

along the ordering O.
5. FOR all leaf nodes i of AND-OR tree do

1. IF AND-node v(i)= 1 ELSE v(i)=0

6. FOR every node n from leaves to the root do
1. IF AND-node v(n)=product of children
2. IF OR-node v(n) = Average of children

7. Return v(root-node)

Gogate and Dechter, UAI 2008, CP2008



# samples in AND/OR vs Conventional 
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• 8 Samples in AND/OR space versus 4 samples in importance 
sampling

• Example: A=0, B=2, C=0 is not generated but still considered 
in the AND/OR space

A

0

B

2

1

1

C

0 1

A

21

B

0 1

Sample # A B C

1 0 1 0

2 0 2 1

3 1 1 1

4 1 2 0

Gogate and Dechter, UAI 2008, CP2008



Why AND/OR Importance Sampling
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• AND/OR estimates have smaller variance.

• Variance Reduction
– Easy to Prove for case of complete independence 

(Goodman, 1960)

– Complicated to prove for general conditional 
independence case (See Vibhav Gogate’s thesis)!

Gogate and Dechter, UAI 2008, CP2008
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Combining AND/OR sampling 
and w-cutset sampling

• Reduce the variance of weights
– Rao-Blackwellised w-cutset sampling (Bidyuk and 

Dechter, 2007)

• Increase the number of samples; kind of
– AND/OR Tree and Graph sampling (Gogate and 

Dechter, 2008)

• Combine the two
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Algorithm AND/OR w-cutset sampling

Given an integer constant w
1. Partition the set of variables into K and R, such that the 

treewidth of R is bounded by w.
2. AND/OR sampling on K

1. Construct a pseudo-tree of K and compute Q(K) consistent with K
2. Generate samples from Q(K) and store them on an AND/OR tree

3. Rao-Blackwellisation (Exact inference) at each leaf
1. For each leaf node of the tree compute Z(R|g) where g is the 

assignment from the leaf to the root.

4. Value computation: Recursively from the leaves to the root
1. At each AND node compute product of values at children
2. At each OR node compute a weighted average over the values at 

children

5. Return the value of the root node
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AND/OR w-cutset sampling:
Step 1: Partition the set of variables

D

E G

F

C

A B

Graphical model

Practical constraint: Can only 
perform exact inference if the 
treewidth is bounded by 1.
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AND/OR w-cutset sampling:
Step 2: AND/OR sampling over {A,B,C}
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Pseudo-tree
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F

C

A B

Graphical model



Samples: (C=0,A=0,B=1), (C=0,A=1,B=1), 
(C=1,A=0,B=0), (C=1,A=1,B=0)

AND/OR w-cutset sampling:
Step 2: AND/OR sampling over {A,B,C}
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AND/OR w-cutset sampling:
Step 3: Exact inference at each leaf
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AND/OR w-cutset sampling:
Step 4: Value computation
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Value of C: Estimate of the 
partition function



Properties and Improvements

• Basic underlying scheme for sampling remains 
the same

– The only thing that changes is what you estimate 
from the samples

– Can be combined with any state-of-the-art 
importance sampling technique

• Graph vs Tree sampling

– Take full advantage of the conditional 
independence properties uncovered from the 
primal graph
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AND/OR w-cutset sampling
Advantages and Disadvantages

• Advantages
– Variance Reduction

– Relatively fewer calls to the Rao-Blackwellisation step 
due to efficient caching (Lazy Rao-Blackwellisation)

– Dynamic Rao-Blackwellisation when context-specific 
or logical dependencies are present
• Particularly suitable for Markov logic networks (Richardson 

and Domingos, 2006).

• Disadvantages
– Increases time and space complexity and therefore 

fewer samples may be generated.
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Take away Figure:
Variance Hierarchy and Complexity

IS
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AND/OR  Tree 
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O(nN)
O(1) O(nN)

O(h)

O(nNexp(w))
O(h+nexp(w))

O(nNexp(w))
O(exp(w))

O(nNt)
O(nN)

O(nNtexp(w))
O(nN+nexp(w))
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Experiments

• Benchmarks

– Linkage analysis

– Graph coloring

• Algorithms

– OR tree sampling

– AND/OR tree sampling

– AND/OR graph sampling

– w-cutset versions of the three schemes above



Results: Probability of Evidence
Linkage instances (UAI 2006 evaluation)

Time Bound: 1hr





Results: Probability of Evidence
Linkage instances (UAI 2008 evaluation)

Time Bound: 1hr





Results: Solution counting
Graph coloring instance

Time Bound: 1hr



Summary: AND/OR Importance 
sampling

• AND/OR sampling: A general scheme to 
exploit conditional independence in sampling

• Theoretical guarantees: lower sampling error 
than conventional sampling

• Variance reduction orthogonal to Rao-
Blackwellised sampling.

• Better empirical performance than 
conventional sampling.
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