Sampling Techniques for Probabilistic and Deterministic Graphical models

Bozhena Bidyuk Vibhav Gogate Rina Dechter

Overview

- 1. Probabilistic Reasoning/Graphical models
- 2. Importance Sampling
- 3. Markov Chain Monte Carlo: Gibbs Sampling
- 4. Sampling in presence of Determinism
- 5. Rao-Blackwellisation
- 6. AND/OR importance sampling

- 1. Probabilistic Reasoning/Graphical models
- 2. Importance Sampling
- 3. Markov Chain Monte Carlo: Gibbs Sampling
- 4. Sampling in presence of Determinism
- 5. Cutset-based Variance Reduction
- 6. AND/OR importance sampling

Probabilistic Reasoning; Graphical models

- Graphical models:
 - Bayesian network, constraint networks, mixed network
- Queries
- Exact algorithm
 - using inference,
 - search and hybrids
- Graph parameters:
 - tree-width, cycle-cutset, w-cutset

P(S, C, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

Belief Updating:

P (lung cancer=yes | smoking=no, dyspnoea=yes) = ?
Probability of evidence:
P (smoking=no, dyspnoea=yes) = ?

Queries

Probability of evidence (or partition function)

$$P(e) = \sum_{X - \operatorname{var}(e)} \prod_{i=1}^{n} P(x_i \mid pa_i) \mid_e \qquad Z = \sum_X \prod_i \psi_i(C_i)$$

Posterior marginal (beliefs):

$$P(x_i \mid e) = \frac{P(x_i, e)}{P(e)} = \frac{\sum_{X = \text{var}(e) = X_i} \prod_{j=1}^n P(x_j \mid pa_j)|_e}{\sum_{X = \text{var}(e)} \prod_{j=1}^n P(x_j \mid pa_j)|_e}$$

Most Probable Explanation

$$\overline{\mathbf{x}}^* = \arg\max_{\overline{\mathbf{x}}} \mathbf{P}(\overline{\mathbf{x}}, \mathbf{e})$$

Constraint Networks

Map coloring

Task: find a solution Count solutions, find a good one

Propositional Satisfiability

 $\varphi = \{ (\neg C), (A \lor B \lor C), (\neg A \lor B \lor E), (\neg B \lor C \lor D) \}.$

Domains : $D_A = D_B = D_C = D_D = D_E = D_F = \{0,1\}$ CPTS : P(A), P(B | A), P(C | A), P(D | B, C)

 $P(E \mid A, B), P(F \mid A)$

Variables : A, B, C, D, E, FDomains : $D_A = D_B = D_C = D_D = D_E = D_F = \{0,1\}$ Constraints : $R_1(ABC), R_2(ACF), R_3(BCD), R_4(A, E)$

Expresses the set of solutions : sol(R)Constraints could be specified externally or may occur as zeros in the Belief network

Same queries (e.g., weighted counts)

$$M = \sum_{x \in sol(R)} P_B(x)$$

Belief Updating

Bucket Elimination

Query:
$$P(a | e = 0) \propto P(a, e = 0)$$
 Elimination Order: d,e,b,c

$$P(a, e = 0) = \sum_{c,b,e=0,d} P(a)P(b | a)P(c | a)P(d | a,b)P(e | b,c)$$

$$= P(a)\sum_{c} P(c | a)\sum_{b} P(b | a)\sum_{e=0} P(e | b,c)\sum_{d} P(d | a,b)$$

Complexity of Elimination

$O(n \exp(w^*(d)))$

 $w^*(d)$ – the induced width of moral graph along ordering d

The effect of the ordering:

Cutset-Conditioning

Search Over the Cutset

Space: exp(w): w is a user-controled parameter Time: exp(w+c(w))

Linkage Analysis

- 6 individuals
- Haplotype: {2, 3}
- Genotype: {6}
- Unknown

Linkage Analysis: 6 People, 3 Markers

Applications

- Determinism: More Ubiquitous than you may think!
- Transportation Planning (Liao et al. 2004, Gogate et al. 2005)
 - Predicting and Inferring Car Travel Activity of individuals
- Genetic Linkage Analysis (Fischelson and Geiger, 2002)
 - associate functionality of genes to their location on chromosomes.
- Functional/Software Verification (Bergeron, 2000)
 - Generating random test programs to check validity of hardware
- First Order Probabilistic models (Domingos et al. 2006, Milch et al. 2005)
 - Citation matching

Inference vs Conditioning-Search

Approximation

- Since inference, search and hybrids are too expensive when graph is dense; (high treewidth) then:
- Bounding inference:
 - mini-bucket and mini-clustering
 - Belief propagation
- Bounding search:
 - Sampling
- Goal: an anytime scheme

Approximation

- Since inference, search and hybrids are too expensive when graph is dense; (high treewidth) then:
- Bounding inference:
 - mini-bucket and mini-clustering
 - Belief propagation
- Bounding search:
 Sampling
- Goal: an anytime scheme

Overview

- 1. Probabilistic Reasoning/Graphical models
- 2. Importance Sampling
- 3. Markov Chain Monte Carlo: Gibbs Sampling
- 4. Sampling in presence of Determinism
- 5. Rao-Blackwellisation
- 6. AND/OR importance sampling

Outline

- Definitions and Background on Statistics
- Theory of importance sampling
- Likelihood weighting
- State-of-the-art importance sampling techniques

A sample

 Given a set of variables X={X₁,...,X_n}, a sample, denoted by S^t is an instantiation of all variables:

$$S^t = (x_1^t, x_2^t, \dots, x_n^t)$$

How to draw a sample ? Univariate distribution

- Example: Given random variable X having domain {0, 1} and a distribution P(X) = (0.3, 0.7).
- Task: Generate samples of X from P.
- How?
 - draw random number $r \in [0, 1]$
 - If (r < 0.3) then set X=0
 - Else set X=1

How to draw a sample? Multi-variate distribution

- Let X={X₁,..,X_n} be a set of variables
- Express the distribution in product form

 $P(X) = P(X_1) \times P(X_2 | X_1) \times ... \times P(X_n | X_1, ..., X_{n-1})$

- Sample variables one by one from left to right, along the ordering dictated by the product form.
- Bayesian network literature: Logic sampling

Logic sampling (example)

 $P(X_1, X_2, X_3, X_4) = P(X_1) \times P(X_2 | X_1) \times P(X_3 | X_1) \times P(X_4 | X_2, X_3)$

Expected value and Variance

Expected value: Given a probability distribution P(X)and a function g(X) defined over a set of variables $X = \{X_1, X_2, ..., X_n\}$, the expected value of g w.r.t. P is

$$E_P[g(x)] = \sum_x g(x)P(x)$$

Variance: The variance of g w.r.t. P is:

$$Var_{P}[g(x)] = \sum_{x} [g(x) - E_{P}[g(x)]]^{2} P(x)$$

Monte Carlo Estimate

• Estimator:

- An estimator is a function of the samples.
- It produces an estimate of the unknown parameter of the sampling *distribution*.

Given i.i.d. samples $S^1, S^2, \dots S^T$ drawn from P,

the Monte carlo estimate of $E_P[g(x)]$ is given by:

$$\hat{g} = \frac{1}{T} \sum_{t=1}^{T} g(S^t)$$

Example: Monte Carlo estimate

- Given:
 - A distribution P(X) = (0.3, 0.7).
 - -g(X) = 40 if X equals 0 = 50 if X equals 1.
- Estimate $E_P[g(x)] = (40x0.3+50x0.7)=47$.
- Generate k samples from P: 0,1,1,1,0,1,1,0,1,0

$$\hat{g} = \frac{40 \times \# samples(X = 0) + 50 \times \# samples(X = 1)}{\# samples}$$
$$= \frac{40 \times 4 + 50 \times 6}{10} = 46$$

Outline

- Definitions and Background on Statistics
- Theory of importance sampling
- Likelihood weighting
- State-of-the-art importance sampling techniques

Importance sampling: Main idea

- Transform the probabilistic inference problem into the problem of computing the expected value of a random variable w.r.t. to a distribution Q.
- Generate random samples from Q.
- Estimate the expected value from the generated samples.

Importance sampling for P(e)

Let $Z = X \setminus E$,

Let Q(Z) be a (proposal) distribution, satisfying

 $P(z,e) > 0 \Longrightarrow Q(z) > 0$

Then, we can rewrite P(e) as :

$$P(e) = \sum_{z} P(z, e) = \sum_{z} P(z, e) \frac{Q(z)}{Q(z)} = E_{Q} \left[\frac{P(z, e)}{Q(z)} \right] = E_{Q} [w(z)]$$

Monte Carlo estimate :

$$\hat{P}(e) = \frac{1}{T} \sum_{t=1}^{T} w(z^t)$$
, where $z^t \leftarrow Q(Z)$

Properties of IS estimate of P(e)

• Convergence: by law of large numbers

$$\hat{P}(e) = \frac{1}{T} \sum_{i=1}^{T} w(z^{i}) \xrightarrow{a.s.} P(e) \text{ for } T \to \infty$$

• Unbiased.

$$E_Q[\hat{P}(e)] = P(e)$$

• Variance:

$$Var_{Q}\left[\hat{P}(e)\right] = Var_{Q}\left[\frac{1}{T}\sum_{i=1}^{N}w(z^{i})\right] = \frac{Var_{Q}[w(z)]}{T}$$

Properties of IS estimate of P(e)

Mean Squared Error of the estimator

$$MSE_{Q}[\hat{P}(e)] = E_{Q}[(\hat{P}(e) - P(e))^{2}]$$

$$= (P(e) - E_{Q}[\hat{P}(e)])^{2} + Var_{Q}[\hat{P}(e)]$$

$$= Var_{Q}[\hat{P}(e)]$$
This quantity enclosed in the brackets is zero because the expected value of the estimator equals the expected value of g(x)

ckets is

e of the

Estimating P(X_i|e)

Let $\delta_{x_i}(z)$ be a dirac-delta function, which is 1 if z contains x_i and 0 otherwise.

$$P(x_{i} | e) = \frac{P(x_{i}, e)}{P(e)} = \frac{\sum_{z} \delta_{x_{i}}(z) P(z, e)}{\sum_{z} P(z, e)} = \frac{E_{Q} \left[\frac{\delta_{x_{i}}(z) P(z, e)}{Q(z)} \right]}{E_{Q} \left[\frac{P(z, e)}{Q(z)} \right]}$$

Idea : Estimate numerator and denominator by IS.

Ratio estimate :
$$\overline{P}(x_i | e) = \frac{\hat{P}(x_i, e)}{\hat{P}(e)} = \frac{\sum_{k=1}^{T} \delta_{x_i}(z^k) w(z^k, e)}{\sum_{k=1}^{T} w(z^k, e)}$$

Estimate is biased : $\mathbb{E}[\overline{P}(x_i | e)] \neq P(x_i | e)$

Properties of the IS estimator for $P(X_i | e)$

Convergence: By Weak law of large numbers

 $\overline{P}(x_i \mid e) \rightarrow P(x_i \mid e) \text{ as } T \rightarrow \infty$

• Asymptotically unbiased

$$\lim_{T \to \infty} E_P[\overline{P}(x_i | e)] = P(x_i | e)$$

- Variance
 - Harder to analyze
 - Liu suggests a measure called "Effective sample size"

Effective Sample size

$$P(x_i \mid e) = \sum_{z} g_{x_i}(z) P(z \mid e)$$

Given samples from P(z | e), we can estimate $P(x_i | e)$ using :

$$\hat{P}(x_i/e) = \frac{1}{T} \sum_{j=1}^{T} g_{x_i}(z^t) \qquad \qquad \text{Ideal estimator}$$

$$Define: ESS(Q,T) = \frac{T}{1 + \operatorname{var}_{Q}[w(z)]} \longrightarrow$$
$$\frac{Var_{P}[\hat{P}(x_{i} \mid e)]}{Var_{Q}[\overline{P}(x_{i} \mid e)]} \approx \frac{T}{ESS(Q,T)}$$

Measures how much the estimator deviates from the ideal one.

Thus T samples from P are worth ESS(Q, T) samples from Q.

Therefore, the variance of the weights must be as small as possible.

Outline

- Definitions and Background on Statistics
- Theory of importance sampling
- Likelihood weighting
- State-of-the-art importance sampling techniques

Likelihood Weighting: Proposal Distribution

$$Q(X \setminus E) = \prod_{X_i \in X \setminus E} P(X_i \mid pa_i, e)$$

Example :

Given a Bayesian network : $P(X_1, X_2, X_3) = P(X_1) \times P(X_2 | X_1) \times P(X_3 | X_1, X_2)$ and Evidence $X_2 = x_2$. $Q(X_1, X_3) = P(X_1) \times P(X_3 | X_1, X_2 = x_2)$

Weights:

Given a sample : $x = (x_1, ..., x_n)$

$$w = \frac{P(x,e)}{Q(x)} = \frac{\prod_{X_i \in X \setminus E} P(x_i \mid pa_i, e) \times \prod_{E_j \in E} P(e_j \mid pa_j)}{\prod_{X_i \in X \setminus E} P(x_i \mid pa_i, e)}$$
$$= \prod_{E_j \in E} P(e_j \mid pa_j)$$

Likelihood Weighting: Sampling

Sample in topological order over X !

Clamp evidence, Sample $x_i \leftarrow P(X_i | pa_i)$, $P(X_i | pa_i)$ is a look-up in CPT!

Outline

- Definitions and Background on Statistics
- Theory of importance sampling
- Likelihood weighting
- State-of-the-art importance sampling techniques

Proposal selection

 One should try to select a proposal that is as close as possible to the posterior distribution.

$$Var_{Q}\left[\hat{P}(e)\right] = \frac{Var_{Q}[w(z)]}{T} = \frac{1}{N} \sum_{z \in Z} \left(\frac{P(z,e)}{Q(z)} - P(e)\right)^{2} Q(z)$$

 $\frac{P(z,e)}{Q(z)} - P(e) = 0$, to have a zero - variance estimator

$$\therefore \frac{P(z,e)}{P(e)} = Q(z)$$

 $\therefore Q(z) = P(z \mid e)$

Proposal Distributions used in Literature

- AIS-BN (Adaptive proposal)
 - Cheng and Druzdzel, 2000
- Iterative Belief Propagation
 - Changhe and Druzdzel, 2003
- Iterative Join Graph Propagation (IJGP) and variable ordering
 - Gogate and Dechter, 2005

Perfect sampling using Bucket Elimination

- Algorithm:
 - Run Bucket elimination on the problem along an ordering $o=(X_N,..,X_1)$.
 - Sample along the reverse ordering: $(X_1, ..., X_N)$
 - At each variable X_i , recover the probability $P(X_i | x_1, ..., x_{i-1})$ by referring to the bucket.

Sampling from the output of BE (Dechter 2002)

Set A = a, D = d, C = c in the bucket Sample : $B = b \leftarrow Q(C \mid a, e, d) \propto P(B \mid a)P(d \mid B, a)P(e \mid b, c)$ bucket B: P(B|A) P(D|B,A) P(e|B,C)bucket C: P(C|A) $h^{B}(A, D, C, e) \xrightarrow{Set A = a, D = d in the bucket}$ Sample : $C = c \leftarrow Q(C | a, e, d) \propto h^{B}(a, d, C, e)$ Set A = a in the bucket h^c(A,D,e) bucket D: Sample : $D = d \leftarrow Q(D | a, e) \propto h^{C}(a, D, e)$ bucket E: **h^D(A,e)** Evidence bucket : ignore $P(A) \quad \boldsymbol{h}^{\boldsymbol{E}}(\boldsymbol{A})$ bucket A: $\mathbf{Q}(\mathbf{A}) \propto \mathbf{P}(\mathbf{A}) \times \mathbf{h}^{\mathrm{E}}(\mathbf{A})$ Sample : $A = a \leftarrow Q(A)$

Mini-buckets: "local inference"

- Computation in a bucket is time and space exponential in the number of variables involved
- Therefore, partition functions in a bucket into "mini-buckets" on smaller number of variables
- Can control the size of each "mini-bucket", yielding polynomial complexity.

Mini-Bucket Elimination

Space and Time constraints: Maximum scope size of the new function generated should be bounded by 2

BE generates a function having scope size 3. So it cannot be used.

Sampling from the output of MBE

Sampling is same as in BE-sampling except that now we construct Q from a randomly selected "minibucket"

IJGP-Sampling (Gogate and Dechter, 2005)

• Iterative Join Graph Propagation (IJGP)

A Generalized Belief Propagation scheme (Yedidia et al., 2002)

 IJGP yields better approximations of P(X|E) than MBE

- (Dechter, Kask and Mateescu, 2002)

- Output of IJGP is same as mini-bucket "clusters"
- Currently the best performing IS scheme!

Adaptive Importance Sampling

Initial Proposal = $Q^1(Z) = Q(Z_1) \times Q(Z_2 \mid pa(Z_2)) \times ... \times Q(Z_n \mid pa(Z_n))$ $\hat{P}(E = e) = 0$

For i = 1 to k do

Generate samples $z^1, ..., z^N$ from Q^k

$$\hat{P}(E = e) = \hat{P}(E = e) + \frac{1}{N} \sum_{j=1}^{N} w_k(z^i)$$
Update $Q^{k+1} = Q^k + \eta(k) [Q^k - Q']$
End

Return
$$\frac{\hat{P}(E=e)}{k}$$

Adaptive Importance Sampling

- General case
- Given k proposal distributions
- Take N samples out of each distribution
- Approximate P(e)

$$\hat{P}(e) = \frac{1}{k} \sum_{j=1}^{k} \left[Avg - weight - jth - proposal \right]$$

Estimating Q'(z)

 $Q'(Z) = Q'(Z_1) \times Q'(Z_2 | pa(Z_2)) \times ... \times Q'(Z_n | pa(Z_n))$ where each $Q'(Z_i | Z_1,..., Z_{i-1})$

is estimated by importance sampling

Overview

- 1. Probabilistic Reasoning/Graphical models
- 2. Importance Sampling
- 3. Markov Chain Monte Carlo: Gibbs Sampling
- 4. Sampling in presence of Determinism
- 5. Rao-Blackwellisation
- 6. AND/OR importance sampling

 A Markov chain is a discrete random process with the property that the next state depends only on the current state (Markov Property):

$$P(x^{t} | x^{1}, x^{2}, ..., x^{t-1}) = P(x^{t} | x^{t-1})$$

• If $P(X^t|x^{t-1})$ does not depend on t (time homogeneous) and state space is finite, then it is often expressed as a transition function (aka transition matrix) $\sum P(X = x) = 1$

Example: Drunkard's Walk

 a random walk on the number line where, at each step, the position may change by +1 or -1 with equal probability

Multi-Variable System

 $X = \{X_1, X_2, X_3\}, D(X_i) = discrete, finite$

state is an assignment of values to all the variables

Bayesian Network System

 Bayesian Network is a representation of the joint probability distribution over 2 or more variables

 $X = \{X_1, X_2, X_3\}$

Stationary Distribution Existence

 If the Markov chain is time-homogeneous, then the vector π(X) is a *stationary* distribution (aka *invariant* or *equilibrium* distribution, aka "fixed point"), if its entries sum up to 1 and satisfy:

$$\pi(x_i) = \sum_{x_i \in D(X)} \pi(x_j) P(x_i \mid x_j)$$

- Finite state space Markov chain has a unique stationary distribution if and only if:
 - The chain is irreducible
 - All of its states are positive recurrent

Irreducible

- A state x is *irreducible* if under the transition rule one has nonzero probability of moving from x to any other state and then coming back in a finite number of steps
- If one state is irreducible, then all the states must be irreducible

(Liu, Ch. 12, pp. 249, Def. 12.1.1)

Recurrent

- A state χ is *recurrent* if the chain returns to χ with probability 1
- Let $M(\chi)$ be the expected number of steps to return to state χ
- State χ is *positive recurrent* if M(χ) is finite The recurrent states in a finite state chain are positive recurrent.

Stationary Distribution Convergence

• Consider infinite Markov chain:

 $n \rightarrow \infty$

$$P^{(n)} = P(x^n | x^0) = P^0 P^n$$

- If the chain is both *irreducible* and *aperiodic*, then: $\pi = \lim P^{(n)}$
- Initial state is not important in the limit *"The most useful feature of a "good" Markov chain is its fast forgetfulness of its past..."* (Liu, Ch. 12.1)

Aperiodic

- Define d(i) = g.c.d.{n > 0 | it is possible to go from i to i in n steps}. Here, g.c.d. means the greatest common divisor of the integers in the set. If d(i)=1 for ∀i, then chain is aperiodic
- Positive recurrent, aperiodic states are ergodic

Markov Chain Monte Carlo

- How do we estimate P(X), e.g., P(X/e) ?
- Generate samples that form Markov Chain with stationary distribution π=P(X/e)
- Estimate π from samples (observed states): visited states x⁰,...,xⁿ can be viewed as "samples" from distribution π

$$\overline{\pi}(x) = \frac{1}{T} \sum_{t=1}^{T} \delta(x, x^{t})$$
$$\pi = \lim_{T \to \infty} \overline{\pi}(x)$$

MCMC Summary

- Convergence is guaranteed in the limit
- Initial state is not important, but... typically, we throw away first K samples - "burn-in"
- Samples are dependent, not i.i.d.
- Convergence (*mixing rate*) may be slow
- The stronger correlation between states, the slower convergence!

Gibbs Sampling (Geman&Geman, 1984)

- Gibbs sampler is an algorithm to generate a sequence of samples from the joint probability distribution of two or more random variables
- Sample new variable value one variable at a time from the variable's conditional distribution:

 $P(X_i) = P(X_i \mid x_1^t, ..., x_{i-1}^t, x_{i+1}^t, ..., x_n^t) = P(X_i \mid x^t \setminus x_i)$

Samples form a Markov chain with stationary distribution *P(X/e)*

Gibbs Sampling: Illustration

The process of Gibbs sampling can be understood as a *random walk* in the space of all instantiations of X=x (remember drunkard's walk):

In one step we can reach instantiations that differ from current one by value assignment to at most one variable (assume randomized choice of variables X_i).

Ordered Gibbs Sampler

Generate sample x^{t+1} from x^t :

Process All Variables In Some Order

In

$$X_{1} = x_{1}^{t+1} \leftarrow P(X_{1} | x_{2}^{t}, x_{3}^{t}, ..., x_{N}^{t}, e)$$

$$X_{2} = x_{2}^{t+1} \leftarrow P(X_{2} | x_{1}^{t+1}, x_{3}^{t}, ..., x_{N}^{t}, e)$$

$$...$$

$$X_{N} = x_{N}^{t+1} \leftarrow P(X_{N} | x_{1}^{t+1}, x_{2}^{t+1}, ..., x_{N-1}^{t+1}, e)$$
short, for i=1 to N:
$$X_{i} = x_{i}^{t+1} \leftarrow \text{sampled from } P(X_{i} | x^{t} \setminus x_{i}, e)$$

Transition Probabilities in BN

Given *Markov blanket* (parents, children, and their parents), X_i is independent of all other nodes

Markov blanket: $markov(X_i) = pa_i \bigcup ch_i \bigcup (\bigcup_{X_j \in ch_j} pa_j)$

$$P(X_i \mid x^t \setminus x_i) = P(X_i \mid markov_i^t):$$
$$P(x_i \mid x^t \setminus x_i) \propto P(x_i \mid pa_i) \prod_{X_j \in ch_i} P(x_j \mid pa_j)$$

Computation is linear in the size of Markov blanket!

Ordered Gibbs Sampling Algorithm (Pearl,1988)

Input: *X, E=e*

Output: *T* samples {*x*^{*t*} }

Fix evidence E=e, initialize x⁰ at random

- 1. For t = 1 to T (compute samples)
- 2. For i = 1 to N (loop through variables)

3.
$$\mathbf{x}_{i}^{t+1} \leftarrow P(X_{i} \mid markov_{i}^{t})$$

- 4. End For
- 5. End For

Gibbs Sampling Example - BN

$$X = \{X_1, X_2, ..., X_9\}, E = \{X_9\}$$

$$X_{6} - X_{6}$$

$$X_{2} = X_{2}^{0}$$

$$X_{7} = X_{7}^{0}$$

$$X_{3} = X_{3}^{0}$$

$$X_{8} = X_{8}^{0}$$

$$X_{4} = X_{4}^{0}$$

$$X_{5} = X_{5}^{0}$$

Gibbs Sampling Example - BN

$$X = \{X_1, X_2, ..., X_9\}, E = \{X_9\}$$

$$x_1^1 \leftarrow P(X_1 | x_2^0, ..., x_8^0, x_9)$$

 $x_2^1 \leftarrow P(X_2 | x_1^1, ..., x_8^0, x_9)$

Answering Queries $P(x_i | e) = ?$

• **Method 1**: count # of samples where $X_i = x_i$ (*histogram estimator*):

$$\overline{P}(X_i = x_i) = \frac{1}{T} \sum_{t=1}^{T} \delta(x_i, x^t)$$
 Dirac delta f-n

- Method 2: average probability (*mixture estimator*): $\overline{P}(X_i = x_i) = \frac{1}{T} \sum_{t=1}^{T} P(X_i = x_i | markov_i^t)$
- Mixture estimator converges faster (consider estimates for the unobserved values of X_i; prove via Rao-Blackwell theorem)

Rao-Blackwell Theorem

Rao-Blackwell Theorem: Let random variable set X be composed of two groups of variables, R and L. Then, for the joint distribution π(R,L) and function g, the following result applies

 $Var[E\{g(R) | L\} \leq Var[g(R)]$ for a function of interest g, e.g., the mean or covariance (*Casella&Robert*, 1996, Liu et. al. 1995).

- theorem makes a weak promise, but works well in practice!
- improvement depends the choice of R and L

Importance vs. Gibbs Gibbs: $x^t \leftarrow \hat{P}(X \mid e)$ $\hat{P}(X \mid e) \xrightarrow{T \to \infty} P(X \mid e)$ $\hat{g}(X) = \frac{1}{T} \sum_{i=1}^{I} g(x^{t})$ Importance: $X^{t} \leftarrow Q(X \mid e)$ W_t $\overline{g} = \frac{1}{T} \sum_{t=1}^{T} \frac{g(x^t)P(x^t)}{Q(x^t)}$

Gibbs Sampling: Convergence

- Sample from $\overline{P}(X|e) \rightarrow P(X|e)$
- Converges iff chain is irreducible and ergodic
- Intuition must be able to explore all states:
 - if X_i and X_j are strongly correlated, X_i=0↔ X_j=0, then, we cannot explore states with X_i=1 and X_i=1
- All conditions are satisfied when all probabilities are positive
- Convergence rate can be characterized by the second eigen-value of transition matrix

Gibbs: Speeding Convergence

Reduce dependence between samples (autocorrelation)

- Skip samples
- Randomize Variable Sampling Order
- Employ blocking (grouping)
- Multiple chains

Reduce variance (cover in the next section)

Blocking Gibbs Sampler

- Sample several variables together, as a block
- Example: Given three variables X,Y,Z, with domains of size 2, group Y and Z together to form a variable W={Y,Z} with domain size 4. Then, given sample (x^t, y^t, z^t), compute next sample:

$$x^{t+1} \leftarrow P(X \mid y^t, z^t) = P(w^t)$$

$$(y^{t+1}, z^{t+1}) = w^{t+1} \leftarrow P(Y, Z \mid x^{t+1})$$

- + Can improve convergence greatly when two variables are strongly correlated!
- Domain of the block variable grows exponentially with the #variables in a block!

Gibbs: Multiple Chains

- Generate M chains of size K
- Each chain produces independent estimate P_m :

$$\overline{P}_m(x_i \mid e) = \frac{1}{K} \sum_{t=1}^K P(x_i \mid x^t \setminus x_i)$$

• Estimate $P(x_i/e)$ as average of $P_m(x_i/e)$: $\hat{P}(\bullet) = \frac{1}{M} \sum_{i=1}^{M} P_m(\bullet)$

Treat *P_m* as independent random variables.

Gibbs Sampling Summary

• Markov Chain Monte Carlo method

(Gelfand and Smith, 1990, Smith and Roberts, 1993, Tierney, 1994)

- Samples are **dependent**, form Markov Chain
- Sample from $\overline{P}(X \mid e)$ which **converges** to $\overline{P}(X \mid e)$
- Guaranteed to converge when all *P* > 0
- Methods to improve convergence:
 - Blocking
 - Rao-Blackwellised

Overview

- 1. Probabilistic Reasoning/Graphical models
- 2. Importance Sampling
- 3. Markov Chain Monte Carlo: Gibbs Sampling
- 4. Sampling in presence of Determinism
- 5. Rao-Blackwellisation
- 6. AND/OR importance sampling

Outline

- Rejection problem
- Backtrack-free distribution
 - Constructing it in practice
- SampleSearch
 - Construct the backtrack-free distribution on the fly.
- Approximate estimators
- Experiments

Outline

- Rejection problem
- Backtrack-free distribution
 - Constructing it in practice
- SampleSearch
 - Construct the backtrack-free distribution on the fly.
- Approximate estimators
- Experiments

Rejection problem

$$\hat{P}(e) = \frac{1}{N} \sum_{i=1}^{N} \frac{P(z^i, e)}{Q(z^i)}$$

- Importance sampling requirement $-P(z,e) > 0 \rightarrow Q(z) > 0$
- When P(z,e)=0 but Q(z) > 0, the weight of the sample is zero and it is rejected.
- The probability of generating a rejected sample should be very small.

- Otherwise the estimate will be zero.

Rejection Problem

All Blue leaves correspond to solutions i.e. g(x) >0 All Red leaves correspond to non-solutions i.e. g(x)=0

Outline

- Rejection problem
- Backtrack-free distribution

Constructing it in practice

- SampleSearch
 - Construct the backtrack-free distribution on the fly.
- Approximate estimators
- Experiments

All Blue leaves correspond to solutions i.e. g(x) >0 All Red leaves correspond to non-solutions i.e. g(x)=0

Generating samples from Q^F

Constraints: A≠B A≠C

Q^F(branch)=0 if no solutions under it Q^F(branch) αQ(branch) otherwise

- Invoke an oracle at each branch.
 - Oracle returns True if there is a solution under a branch
 - False, otherwise

Generating samples from Q^F

Constraints: A≠B A≠C

- Oracles
 - Adaptive consistency as preprocessing step
 - Constant time table lookup
 - Exponential in the treewidth of the constraint portion.
 - A complete CSP solver
 - Need to run it at each assignment.

Outline

- Rejection problem
- Backtrack-free distribution
 Constructing it in practice
- SampleSearch
 - Construct the backtrack-free distribution on the fly.
- Approximate estimators
- Experiments

Algorithm SampleSearch

Algorithm SampleSearch

Algorithm SampleSearch

Algorithm SampleSearch

Until P(sample,e)>0

Constraint Violated

Generate more Samples

Generate more Samples

Traces of SampleSearch

Constraints: A≠B A≠C

SampleSearch: Sampling Distribution

• Problem: Due to Search, the samples are no longer i.i.d. from Q.

$$\overline{P}(e) = \frac{1}{N} \sum_{j=1}^{N} \frac{P(z^{j}, e)}{Q(z^{j})}, \quad E_{Q}[\overline{P}(e)] \neq P(e)$$

• Thm: SampleSearch generates i.i.d. samples from the **backtrack-free distribution**

$$\hat{P}_{F}(e) = \frac{1}{N} \sum_{j=1}^{N} \frac{P(z^{j}, e)}{Q^{F}(z^{j})}, \quad E_{Q^{F}}[\hat{P}_{F}(e)] = P(e)$$

The Sampling distribution Q^F of SampleSearch $\hat{P}(e) = \frac{1}{N} \sum_{j=1}^{N} \frac{P(z^{j}, e)}{O(z^{j})}$

Constraints: A≠B A≠C

What is probability of generating A=0? $Q^{F}(A=0)=0.8$

Why? SampleSearch is systematic

What is probability of generating (A=0,B=1)? Q^F(B=1|A=0)=1

Why? SampleSearch is systematic

What is probability of generating (A=0,B=0)?

Simple: Q^F(B=0|A=0)=0

All samples generated by SampleSearch are solutions

Backtrack-free distribution

Outline

- Rejection problem
- Backtrack-free distribution
 - Constructing it in practice
- SampleSearch
 - Construct the backtrack-free distribution on the fly.
- Approximate estimators
- Experiments

Asymptotic approximations of Q^F

•IF Hole THEN

•U^F=Q (i.e. there is a solution at the other branch)

•L^F=0 (i.e. no solution at the other branch)

Approximations: Convergence in the limit

• Store all possible traces

Approximations: Convergence in the limit

• From the combined sample tree, update U and L. IF Hole THEN $U_{N}^{F}=Q$ and $L_{N}^{F}=0$

$$\lim_{N \to \infty} E\left[\frac{P(z,e)}{U_N^F(z)}\right] = \lim_{N \to \infty} E\left[\frac{P(z,e)}{L_N^F(z)}\right] = P(e)$$

Asymptotic ally unbiased Bounding $: U_N^F(z) \le Q^F(z) \le L_N^F(z)$ $\overline{P}_E^U(e) \ge \hat{P}_E(e) \ge \overline{P}_E^L(e)$

Upper and Lower Approximations

- Asymptotically unbiased.
- Upper and lower bound on the unbiased sample mean
- Linear time and space overhead
- Bias versus variance tradeoff
 - Bias = difference between the upper and lower approximation.

Improving Naive SampleSeach

- Better Search Strategy
 - Can use any state-of-the-art CSP/SAT solver e.g. minisat (Een and Sorrenson 2006)
 - All theorems and result hold
- Better Importance Function
 - Use output of generalized belief propagation to compute the initial importance function Q (Gogate and Dechter, 2005)

Experiments

- Tasks
 - Weighted Counting
 - Marginals
- Benchmarks
 - Satisfiability problems (counting solutions)
 - Linkage networks
 - Relational instances (First order probabilistic networks)
 - Grid networks
 - Logistics planning instances
- Algorithms
 - SampleSearch/UB, SampleSearch/LB
 - SampleCount (Gomes et al. 2007, SAT)
 - ApproxCount (Wei and Selman, 2007, SAT)
 - RELSAT (Bayardo and Peshoueshk, 2000, SAT)
 - Edge Deletion Belief Propagation (Choi and Darwiche, 2006)
 - Iterative Join Graph Propagation (Dechter et al., 2002)
 - Variable Elimination and Conditioning (VEC)
 - EPIS (Changhe and Druzdzel, 2006)

Results: Solution Counts Langford instances

Problem	$\langle n,k,c,w angle$	Exact	Sample	Approx	REL	SS	SS
			Count	Count	SAT	/LB	/UB
lang12	$\langle 576, 2, 13584, 383 \rangle$	2.16E+5	1.93E+05	2.95E+04	2.16E+05	2.16E+05	2.16E+05
lang16	$\langle 1024, 2, 32320, 639 \rangle$	6.53E+08	5.97E+08	8.22E+06	6.28E+06	6.51E+08	6.99E+08
lang19	$\langle 1444, 2, 54226, 927 \rangle$	5.13E+11	9.73E+10	6.87E+08	8.52E+05	6.38E+11	7.31E+11
lang20	$\langle 1600, 2, 63280, 1023 \rangle$	5.27E+12	1.13E+11	3.99E+09	8.55E+04	2.83E+12	3.45E+12
lang23	$\langle 2116, 2, 96370, 1407 \rangle$	7.60E+15	7.53E+14	3.70E+12	Х	4.17E+15	4.19E+15
lang24	$\langle 2304, 2, 109536, 1535 \rangle$	9.37E+16	1.17E+13	4.15E+11	Х	8.74E+15	1.40E+16
lang27	$\langle 2916, 2, 156114, 1919 \rangle$		4.38E+16	1.32E+14	Х	2.41E+19	2.65E+19

Time Bound: 10 hrs

1e+17 1e+16 - - + - -2.5 I. 1e+15 1e+14 1e+13 1e+12 ..×....×....×....× x 1e+11 5000 10000 15000 20000 25000 30000 35000 40000 0 Time in seconds ApproxCountX····· SS/UB Exact SampleCount ---+---SS/LB ---

Number of Solutions

Solution Counts vs Time for lang24.cnf

Results: Probability of Evidence Linkage instances (UAI 2006 evaluation)

Problem	$\langle n, k, e, w \rangle$	Exact	VEC	EDBP	SS/LB	SS/UB
BN_69	$\langle 777, 7, 78, 47 \rangle$	5.28E-054	1.93E-61	2.39E-57	3.00E-55	3.00E-55
BN_70	$\langle 2315, 5, 159, 87 \rangle$	2.00E-71	7.99E-82	6.00E-79	1.21E-73	1.21E-73
BN_71	$\langle 1740, 6, 202, 70 \rangle$	5.12E-111	7.05E-115	1.01E-114	1.28E-111	1.28E-111
BN_72	$\langle 2155, 6, 252, 86 \rangle$	4.21E-150	1.32E-153	9.21E-155	4.73E-150	4.73E-150
BN_73	$\langle 2140, 5, 216, 101 \rangle$	2.26E-113	6.00E-127	2.24E-118	2.00E-115	2.00E-115
BN_74	$\langle 749, 6, 66, 45 \rangle$	3.75E-45	3.30E-48	5.84E-48	2.13E-46	2.13E-46
BN_75	$\langle 1820, 5, 155, 92 \rangle$	5.88E-91	5.83E-97	3.10E-96	2.19E-91	2.19E-91
BN_76	$\langle 2155, 7, 169, 64 \rangle$	4.93E-110	1.00E-126	3.86E-114	1.95E-111	1.95E-111

Time Bound: 3 hrs

Results: Probability of Evidence

Linkage instances (UAI 2008 evaluation)

U		\				
Problem	$\langle n,k,e,w angle$	Exact	SS/LB	SS/UB	VEC	EDBP
pedigree18	$\langle 1184,1,0,26 angle$	7.18E-79	7.39E-79	7.39E-79	7.18E-79*	7.18E-79*
pedigree1	$\langle 334,2,0,20 angle$	7.81E-15	7.81E-15	7.81E-15	7.81E-15	7.81E-15*
pedigree20	$\langle 437, 2, 0, 25 angle$	2.34E-30	2.31E-30	2.31E-30	2.34E-30*	6.19E-31
pedigree23	$\langle 402, 1, 0, 26 angle$	2.78E-39	2.76E-39	2.76E-39	2.78E-39*	1.52E-39
pedigree25	$\langle 1289, 1, 0, 38 \rangle$	1.69E-116	1.69E-116	1.69E-116	1.69E-116*	1.69E-116*
pedigree30	$\langle 1289, 1, 0, 27 \rangle$	1.84E-84	1.90E-84	1.90E-84	1.85E-84*	1.85E-84*
pedigree37	$\langle 1032, 1, 0, 25 \rangle$	2.63E-117	1.18E-117	1.18E-117	2.63E-117*	5.69E-124
pedigree38	$\langle 724, 1, 0, 18 \rangle$	5.64E-55	3.80E-55	3.80E-55	5.65E-55*	8.41E-56
pedigree39	$\langle 1272, 1, 0, 29 \rangle$	6.32E-103	6.29E-103	6.29E-103	6.32E-103*	6.32E-103*
pedigree42	$\langle 448, 2, 0, 23 angle$	1.73E-31	1.73E-31	1.73E-31	1.73E-31*	8.91E-32
pedigree19	$\langle 793,2,0,23 angle$		6.76E-60	6.76E-60	1.597E-60	3.35E-60
pedigree31	$\langle 1183, 2, 0, 45 \rangle$		2.08E-70	2.08E-70	1.67E-76	1.34E-70
pedigree34	$\langle 1160, 1, 0, 59 \rangle$		3.84E-65	3.84E-65	2.58E-76	4.30E-65
pedigree13	$\langle 1077, 1, 0, 51 \rangle$		7.03E-32	7.03E-32	2.17E-37	6.53E-32
pedigree40	$\langle 1030,2,0,49 angle$		1.25E-88	1.25E-88	2.45E-91	7.02E-17
pedigree41	$\langle 1062, 2, 0, 52 \rangle$		4.36E-77	4.36E-77	4.33E-81	1.09E-10
pedigree44	$\langle 811,1,0,29 angle$		3.39E-64	3.39E-64	2.23E-64	7.69E-66
pedigree51	$\langle 1152, 1, 0, 51 \rangle$		2.47E-74	2.47E-74	5.56E-85	6.16E-76
pedigree7	$\langle 1068, 1, 0, 56 \rangle$		1.33E-65	1.33E-65	1.66E-72	2.93E-66
pedigree9	$\langle 1118, 2, 0, 41 \rangle$		2.93E-79	2.93E-79	8.00E-82	3.13E-89
1 0	X ///////		l I			

Time Bound: 3 hrs

Probability of Evidence vs Time for BN_76, num-vars= 2155

Results on Marginals

• Evaluation Criteria

Exact: $P(x_i)$ Approximate: $A(x_i)$ $\frac{\sum_{i=1}^{n} \frac{1}{2} \sum_{x_i \in D_i} \left(\sqrt{P(x_i)} - \sqrt{A(x_i)} \right)^2}{n}$ Hellinger distance = $\frac{n}{n}$

- Always bounded between 0 and 1
- Lower Bounds the KL distance
- When probabilities close to zero are present KL distance may tend to infinity.

Results: Posterior Marginals Linkage instances (UAI 2006 evaluation)

Problem	$\langle n, K, e, w \rangle$	SampleSearch	IJGP	EPIS	EDBP
BN_69	$\langle 777, 7, 78, 47 \rangle$	9.4E-04	3.2E-02	1	8.0E-02
BN_70	$\langle 2315, 5, 159, 87 \rangle$	2.6E-03	3.3E-02	1	9.6E-02
BN_71	$\langle 1740, 6, 202, 70 \rangle$	5.6E-03	1.9E-02	1	2.5E-02
BN_72	$\langle 2155, 6, 252, 86 \rangle$	3.6E-03	7.2E-03	1	1.3E-02
BN_73	$\langle 2140, 5, 216, 101 \rangle$	2.1E-02	2.8E-02	1	6.1E-02
BN_74	$\langle 749, 6, 66, 45 \rangle$	6.9E-04	4.3E-06	1	4.3E-02
BN_75	$\langle 1820, 5, 155, 92 \rangle$	8.0E-03	6.2E-02	1	9.3E-02
BN_76	$\langle 2155, 7, 169, 64 \rangle$	1.8E-02	2.6E-02	1	2.7E-02

Time Bound: 3 hrs Distance measure: Hellinger distance

Average Hellinger Distance

Summary: SampleSearch

- Manages rejection problem while sampling
 - Systematic backtracking search
- Sampling Distribution of SampleSearch is the backtrack-free distribution Q^F
 - Expensive to compute
- Approximation of Q^F based on storing all traces that yields an asymptotically unbiased estimator
 - Linear time and space overhead
 - Bound the sample mean from above and below
- Empirically, when a substantial number of zero probabilities are present, SampleSearch based schemes dominate their pure sampling counter-parts and Generalized Belief Propagation.

Overview

- 1. Probabilistic Reasoning/Graphical models
- 2. Importance Sampling
- 3. Markov Chain Monte Carlo: Gibbs Sampling
- 4. Sampling in presence of Determinism
- 5. Rao-Blackwellisation
- 6. AND/OR importance sampling

Sampling: Performance

• Gibbs sampling

Reduce dependence between samples

- Importance sampling
 - Reduce variance
- Achieve both by sampling a subset of variables and integrating out the rest (reduce dimensionality), aka Rao-Blackwellisation
- Exploit graph structure to manage the extra cost

Smaller Subset State-Space

• Smaller state-space is easier to cover

$$X = \{X_1, X_2, X_3, X_4\} \qquad X = \{X_1, X_2\}$$
$$D(X) = 64 \qquad D(X) = 16$$

Smoother Distribution

 $P(X_1, X_2, X_3, X_4)$

■ 0-0.1 ■ 0.1-0.2 ■ 0.2-0.26

0-0.1 0.1-0.2 0.2-0.26

Speeding Up Convergence

• Mean Squared Error of the estimator:

$$MSE_{Q}\left[\overline{P}\right] = BIAS^{2} + Var_{Q}\left[\overline{P}\right]$$

- In case of unbiased estimator, BIAS=0 $MSE_{Q}[\hat{P}] = Var_{Q}[\hat{P}] = \left(E_{Q}[\hat{P}]^{2} - E_{Q}[P]^{2}\right)$
- Reduce variance \Rightarrow speed up convergence !

$$Rao-Blackwellisation$$

$$X = R \bigcup L$$

$$\hat{g}(x) = \frac{1}{T} \{h(x^{1}) + \dots + h(x^{T})\}$$

$$\tilde{g}(x) = \frac{1}{T} \{E[h(x) | l^{1}] + \dots + E[h(x) | l^{T}]\}$$

$$Var\{g(x)\} = Var\{E[g(x) | l]\} + E\{var[g(x) | l]\}$$

$$Var\{g(x)\} \ge Var\{E[g(x) | l]\}$$

$$Var\{\hat{g}(x)\} = \frac{Var\{h(x)\}}{T} \ge \frac{Var\{E[h(x) | l]\}}{T} = Var\{\tilde{g}(x)\}$$

Liu, Ch.2.3

Rao-Blackwellisation

"Carry out analytical computation as much as possible" - Liu

- X=R∪L
- Importance Sampling:

$$Var_{Q}\left\{\frac{P(R,L)}{Q(R,L)}\right\} \ge Var_{Q}\left\{\frac{P(R)}{Q(R)}\right\}$$
Liu, Ch.2.5.5

- Gibbs Sampling:
 - autocovariances are lower (less correlation between samples)
 - if X_i and X_j are strongly correlated, $X_i=0 \leftrightarrow X_j=0$, only include one fo them into a sampling set

Blocking Gibbs Sampler vs. Collapsed

Faster Convergence

- Standard Gibbs: $P(x \mid y, z), P(y \mid x, z), P(z \mid x, y)$ (1)
 - Blocking: $P(x \mid y, z), P(y, z \mid x)$ (2)
- Collapsed:
 - $P(x \mid y), P(y \mid x)$ (3)

Collapsed Gibbs Sampling Generating Samples

Generate sample c^{t+1} from c^t :

. . .

$$C_{1} = c_{1}^{t+1} \leftarrow P(c_{1} \mid c_{2}^{t}, c_{3}^{t}, ..., c_{K}^{t}, e)$$
$$C_{2} = c_{2}^{t+1} \leftarrow P(c_{2} \mid c_{1}^{t+1}, c_{3}^{t}, ..., c_{K}^{t}, e)$$

$$C_{K} = c_{K}^{t+1} \leftarrow P(c_{K} \mid c_{1}^{t+1}, c_{2}^{t+1}, ..., c_{K-1}^{t+1}, e)$$

In short, for i=1 to K: $C_i = c_i^{t+1} \leftarrow \text{sampled from } P(c_i \mid c^t \setminus c_i, e)$

Collapsed Gibbs Sampler

Input: *CX*, *E=e* Output: *T* samples {*c*^{*t*} } *Fix evidence E=e, initialize c*⁰ at random

- 1. For t = 1 to T (compute samples)
- 2. For i = 1 to N (loop through variables)

3.
$$c_i^{t+1} \leftarrow P(C_i \mid c^t \setminus c_i)$$

- 4. End For
- 5. End For

Calculation Time

- Computing P(c_i / c^t\c_i, e) is more expensive (requires inference)
- Trading #samples for smaller variance:
 - generate more samples with higher covariance
 - generate fewer samples with lower covariance
- Must control the time spent computing sampling probabilities in order to be timeeffective!

Exploiting Graph Properties

- Recall... computation time is *exponential in the adjusted induced width* of a graph
- *w*-cutset is a subset of variable s.t. when they are observed, induced width of the graph is *w*
- when sampled variables form a *w*-cutset , inference is exp(*w*) (e.g., using *Bucket Tree Elimination*)
- cycle-cutset is a special case of *w*-cutset

Sampling *w*-cutset \Rightarrow w-cutset sampling!

What If C=Cycle-Cutset ?

$$c^{0} = \{x_{2}^{0}, x_{5}^{0}\}, E = \{X_{9}\}$$

 $P(x_2, x_5, x_9)$ – can compute using Bucket Elimination

 $P(x_2, x_5, x_9)$ – computation complexity is O(N)

Computing Transition Probabilities

Compute joint probabilities:

$$BE: P(x_2 = 0, x_3, x_9)$$
$$BE: P(x_2 = 1, x_3, x_9)$$

Normalize:

$$\alpha = P(x_2 = 0, x_3, x_9) + P(x_2 = 1, x_3, x_9)$$
$$P(x_2 = 0 | x_3) = \alpha P(x_2 = 0, x_3, x_9)$$
$$P(x_2 = 1 | x_3) = \alpha P(x_2 = 1, x_3, x_9)$$

Cutset Sampling-Answering Queries

• Query: $\forall c_i \in C$, $P(c_i | e) = ?$ same as Gibbs:

$$\hat{P}(c_i | e) = \frac{1}{T} \sum_{t=1}^{T} P(c_i | e^t \setminus c_i, e)$$
computed while generating sample t
using bucket tree elimination

• Query: $\forall x_i \in X \setminus C, P(x_i | e) = ?$

$$\overline{P}(x_i/e) = \frac{1}{T} \sum_{t=1}^{T} P(x_i \mid c^t, e)$$

compute after generating sample t using bucket tree elimination

Cutset Sampling vs. Cutset Conditioning

- Cutset Conditioning $P(x_i|e) = \sum_{c \in D(C)} P(x_i \mid c, e) \times P(c \mid e)$
- Cutset Sampling

$$\overline{P}(x_i/e) = \frac{1}{T} \sum_{t=1}^{T} P(x_i \mid c^t, e)$$

$$= \sum_{c \in D(C)} P(x_i \mid c, e) \times \frac{count(c)}{T}$$
$$= \sum_{c \in D(C)} P(x_i \mid c, e) \times \overline{P(c \mid e)}$$

Cutset Sampling Example Estimating $P(x_2|e)$ for sampling node X_2 :

$$x_{2}^{1} \leftarrow P(x_{2}/x_{5}^{0}, x_{9}) \quad \text{Sample 1}$$

$$\cdots$$

$$x_{2}^{2} \leftarrow P(x_{2}/x_{5}^{1}, x_{9}) \quad \text{Sample 2}$$

$$\cdots$$

$$x_{2}^{3} \leftarrow P(x_{2}/x_{5}^{2}, x_{9}) \quad \text{Sample 3}$$

$$\overline{P}(x_{2} \mid x_{9}) = \frac{1}{3} \begin{bmatrix} P(x_{2}/x_{5}^{0}, x_{9}) \\ + P(x_{2}/x_{5}^{1}, x_{9}) \\ + P(x_{2}/x_{5}^{2}, x_{9}) \end{bmatrix}$$

Cutset Sampling Example Estimating $P(x_3 | e)$ for non-sampled node X_3 :

$$c^{1} = \{x_{2}^{1}, x_{5}^{1}\} \Longrightarrow P(x_{3} \mid x_{2}^{1}, x_{5}^{1}, x_{9})$$

$$c^{2} = \{x_{2}^{2}, x_{5}^{2}\} \Longrightarrow P(x_{3} \mid x_{2}^{2}, x_{5}^{2}, x_{9})$$

$$c^{3} = \{x_{2}^{3}, x_{5}^{3}\} \Longrightarrow P(x_{3} \mid x_{2}^{3}, x_{5}^{3}, x_{9})$$

$$\Box P(x_{3} \mid x_{2}^{1}, x_{5}^{1}, x_{9})$$

$$P(x_3 \mid x_9) = \frac{1}{3} \begin{bmatrix} P(x_3 \mid x_2^1, x_5^1, x_9) \\ + P(x_3 \mid x_2^2, x_5^2, x_9) \\ + P(x_3 \mid x_2^3, x_5^3, x_9) \end{bmatrix}$$

CPCS54 Test Results

MSE vs. #samples (left) and time (right) Ergodic, |X|=54, $D(X_i)=2$, |C|=15, |E|=3Exact Time = 30 sec using Cutset Conditioning

CPCS179 Test Results

MSE vs. #samples (left) and time (right) Non-Ergodic (1 deterministic CPT entry) |X| = 179, |C| = 8, $2 \le D(X_i) \le 4$, |E| = 35

Exact Time = 122 sec using Cutset Conditioning

CPCS360b Test Results

MSE vs. #samples (left) and time (right) Ergodic, |X| = 360, $D(X_i)=2$, |C| = 21, |E| = 36Exact Time > 60 min using Cutset Conditioning Exact Values obtained via Bucket Elimination

Random Networks

MSE vs. #samples (left) and time (right) |X| = 100, $D(X_i) = 2$, |C| = 13, |E| = 15-20Exact Time = 30 sec using Cutset Conditioning

Coding Networks

Cutset Transforms Non-Ergodic Chain to Ergodic

MSE vs. time (right) Non-Ergodic, |X| = 100, $D(X_i)=2$, |C| = 13-16, |E| = 50Sample Ergodic Subspace $U=\{U_1, U_2, ..., U_k\}$ Exact Time = 50 sec using Cutset Conditioning

Non-Ergodic Hailfinder

MSE vs. #samples (left) and time (right) Non-Ergodic, |X| = 56, |C| = 5, $2 <=D(X_i) <=11$, |E| = 0Exact Time = 2 sec using Loop-Cutset Conditioning

CPCS360b - MSE

MSE vs. Time

Ergodic, |X| = 360, |C| = 26, $D(X_i)=2$

Exact Time = 50 min using BTE

Cutset Importance Sampling

(Gogate & Dechter, 2005) and (Bidyuk & Dechter, 2006)

• Apply Importance Sampling over cutset C

$$\hat{P}(e) = \frac{1}{T} \sum_{t=1}^{T} \frac{P(c^{t}, e)}{Q(c^{t})} = \frac{1}{T} \sum_{t=1}^{T} w^{t}$$

where $P(c^t, e)$ is computed using Bucket Elimination

$$\overline{P}(c_i \mid e) = \alpha \frac{1}{T} \sum_{t=1}^T \delta(c_i, c^t) w^t$$

$$\overline{P}(x_i \mid e) = \alpha \frac{1}{T} \sum_{t=1}^{T} P(x_i \mid c^t, e) w^t$$

Likelihood Cutset Weighting (LCS)

- Z=Topological Order{C,E}
- Generating sample t+1:

For $Z_i \in Z$ do: If $Z_i \in E$ $z_i^{t+1} = z_i, z_i \in e$ Else $z_i^{t+1} \leftarrow P(Z_i \mid z_1^{t+1}, \dots, z_{i-1}^{t+1})$ End If

 computed while generating sample t using bucket tree elimination

 can be memoized for some number of instances K
 (based on memory available)

End For

 $KL[P(C|e), Q(C)] \le KL[P(X|e), Q(X)]$

Pathfinder 1

Pathfinder 2

Link

Summary

Importance Sampling

- i.i.d. samples
- Unbiased estimator
- Generates samples fast
- Samples from Q
- Reject samples with zero-weight
- Improves on cutset

Gibbs Sampling

- Dependent samples
- Biased estimator
- Generates samples slower
- Samples from $\overline{P}(X|e)$
- Does not converge in presence of constraints
- Improves on cutset

CPCS360b

LW – likelihood weighting

LCS – likelihood weighting on a cutset

CPCS422b

LW – likelihood weighting

LCS – likelihood weighting on a cutset

Coding Networks

LW – likelihood weighting

LCS – likelihood weighting on a cutset

Overview

- 1. Probabilistic Reasoning/Graphical models
- 2. Importance Sampling
- 3. Markov Chain Monte Carlo: Gibbs Sampling
- 4. Sampling in presence of Determinism
- 5. Rao-Blackwellisation
- 6. AND/OR importance sampling

Motivation

Expected value of the number on the face of a die: $\frac{1+2+3+4+5+6}{6} = 3.5$

What is the expected value of the product of the numbers on the face of "k" dice?

 $(3.5)^{k}$

Monte Carlo estimate

- Perform the following experiment N times.
 - Toss all the k dice.
 - Record the product of the numbers on the top face of each die.
- Report the average over the N runs.

 $\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} \prod_{j=1}^{k} \text{ (the number on the face of the "jth" dice in the Nth run)}$

How the sample average converges?

10 dice. Exact Answer is (3.5)¹⁰

But This is Really Dumb?

- The dice are independent.
- A better Monte Carlo estimate
 - 1. Perform the experiment N times
 - 2. For each dice record the average
 - 3. Take a product of the averages

 $\hat{Z}_{new} = \prod_{j=1}^{k} \frac{1}{N} \sum_{i=1}^{N} (\text{the number on the face of the "jth" dice in the Nth run)}$

• Conventional estimate: Averages of products.

 $\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} \prod_{j=1}^{k} \text{ (the number on the face of the "jth" dice in the Nth run)}$

How the sample Average Converges

Moral of the story

- Make use of (conditional) independence to get better results
- Used for exact inference extensively
 - Bucket Elimination (Dechter, 1996)
 - Junction tree (Lauritzen and Speigelhalter, 1988)
 - Value Elimination (Bacchus et al. 2004)
 - Recursive Conditioning (Darwiche, 2001)
 - BTD (Jegou et al., 2002)
 - AND/OR search (Dechter and Mateescu, 2007)
- How to use it for sampling?
 AND/OR Importance sampling

Background: AND/OR search space

AND/OR sampling: Example

a,b,c

Gogate and Dechter, UAI 2008, CP2008

AND/OR Importance Sampling (General Idea)

• Decompose Expectation $P(d, f) = \sum_{a,b,c} P(a)P(c \mid a)P(b \mid a)P(d \mid b)P(f \mid c)$

 $Q(A, B, C) = Q(A)Q(B \mid A)Q(C \mid A)$

Pseudo-tree

С

$$P(d, f) = \sum_{a,b,c} \frac{P(a)P(c \mid a)P(b \mid a)P(d \mid b)P(f \mid c)}{Q(a)Q(b \mid a)Q(c \mid a)} Q(a)Q(b \mid a)Q(c \mid a)$$

= $E_{Q} \left[\frac{P(a)P(c \mid a)P(b \mid a)P(d \mid b)P(f \mid c)}{Q(a)Q(b \mid a)Q(c \mid a)} \right]$

AND/OR Importance Sampling (General Idea)

Decompose Expectation

Pseudo-tree

 $P(d, f) = \sum_{a,b,c} \frac{P(a)P(c \mid a)P(b \mid a)P(d \mid b)P(f \mid c)}{Q(a)Q(b \mid a)Q(c \mid a)} Q(a)Q(b \mid a)Q(c \mid a)$

$$P(d,f) = \sum_{a} \frac{P(a)}{Q(a)} Q(a) \sum_{b} \frac{P(b \mid a) P(d \mid b)}{Q(b \mid a)} Q(b \mid a) \sum_{c} \frac{P(c \mid a) P(f \mid c)}{Q(c \mid a)} Q(c \mid a)$$

$$P(d,f) = E_{Q} \begin{bmatrix} \frac{P(a)}{Q(a)} E_{Q} \begin{bmatrix} P(b \mid a)P(d \mid b) \\ Q(b \mid a) \end{bmatrix} B_{Q} \begin{bmatrix} P(c \mid a)P(f \mid c) \\ Q(c \mid a) \end{bmatrix}$$

- Compute all expectations separately
- How?
 - Record all samples
 - For each sample that has A=a
 - Estimate the conditional expectations separately using the generated samples
 - Combine the results

Pseudo-tree

AND/OR Importance Sampling

Pseudo-tree

Sample #	A	B	С
1	0	1	0
2	0	2	1
3	1	1	1
4	1	2	0

Estimate of
$$E\left[\frac{P(b \mid A=0)P(d \mid b)}{Q(b \mid A=0)} \mid A=0\right]$$

= Average Weight of samples of B having A = 0 = $\frac{w(B=1, A=0) + w(B=2, A=0)}{2}$

AND/OR Importance Sampling

Sample #	Z	X	Y
1	0	1	0
2	0	2	1
3	1	1	1
4	1	2	0

All AND nodes: Separate Components. Take Product

Operator: Product

All OR nodes: Conditional Expectations given the assignment above it

Operator: Weighted Average

Algorithm AND/OR Importance Sampling

- 1. Construct a pseudo-tree.
- 2. Construct a proposal distribution along the pseudo-tree
- 3. Generate samples $\mathbf{x}_1, \ldots, \mathbf{x}_N$ from Q along O.
- 4. Build a AND/OR sample tree for the samples x_1, \ldots, x_N along the ordering O.
- 5. FOR all leaf nodes *i of AND-OR tree do*
 - 1. IF AND-node v(i)= 1 ELSE v(i)=0
- 6. FOR every node *n* from leaves to the root do
 - 1. IF AND-node v(n)=product of children
 - 2. IF OR-node v(n) = Average of children
- 7. Return v(root-node)

Gogate and Dechter, UAI 2008, CP2008

samples in AND/OR vs Conventional

- 8 Samples in AND/OR space versus 4 samples in importance sampling
- Example: A=0, B=2, C=0 is not generated but still considered in the AND/OR space

Why AND/OR Importance Sampling

- AND/OR estimates have smaller variance.
- Variance Reduction
 - Easy to Prove for case of complete independence (Goodman, 1960)

$$V[\overline{xy}] = \frac{V[x]E[y]^{2}}{N} + \frac{V[y]E[x]^{2}}{N} + \frac{V[x]V[y]}{N}, \text{ not independent}$$
Note the squared
$$V[\overline{xy}] = \frac{V[x]E[y]^{2}}{N} + \frac{V[y]E[x]^{2}}{N} + \frac{V[x]V[y]}{N^{2}}, \text{ independent}$$
term.

 Complicated to prove for general conditional independence case (See Vibhav Gogate's thesis)!

Combining AND/OR sampling and w-cutset sampling $Var_{Q}[\hat{P}(e)] = Var_{Q}\left[\frac{1}{N}\sum_{i=1}^{N}w(z^{i})\right] = \frac{Var_{Q}[w(z)]}{N}$

- Reduce the variance of weights
 - Rao-Blackwellised w-cutset sampling (Bidyuk and Dechter, 2007)
- Increase the number of samples; kind of
 - AND/OR Tree and Graph sampling (Gogate and Dechter, 2008)
- Combine the two

Algorithm AND/OR w-cutset sampling

Given an integer constant w

- 1. Partition the set of variables into K and R, such that the treewidth of R is bounded by w.
- 2. AND/OR sampling on K
 - 1. Construct a pseudo-tree of K and compute Q(K) consistent with K
 - 2. Generate samples from Q(K) and store them on an AND/OR tree
- 3. Rao-Blackwellisation (Exact inference) at each leaf
 - 1. For each leaf node of the tree compute Z(R|g) where g is the assignment from the leaf to the root.
- 4. Value computation: Recursively from the leaves to the root
 - 1. At each AND node compute product of values at children
 - 2. At each OR node compute a weighted average over the values at children
- 5. Return the value of the root node

AND/OR w-cutset sampling: Step 1: Partition the set of variables

Practical constraint: Can only perform exact inference if the treewidth is bounded by 1.

Graphical model

AND/OR w-cutset sampling: Step 2: AND/OR sampling over {A,B,C}

Pseudo-tree

Graphical model

AND/OR w-cutset sampling: Step 2: AND/OR sampling over {A,B,C}

Pseudo-tree

Samples: (C=0,A=0,B=1), (C=0,A=1,B=1), (C=1,A=0,B=0), (C=1,A=1,B=0)

AND/OR w-cutset sampling: Step 4: Value computation

Properties and Improvements

- Basic underlying scheme for sampling remains the same
 - The only thing that changes is what you estimate from the samples
 - Can be combined with any state-of-the-art importance sampling technique
- Graph vs Tree sampling
 - Take full advantage of the conditional independence properties uncovered from the primal graph

AND/OR w-cutset sampling Advantages and Disadvantages

- Advantages
 - Variance Reduction
 - Relatively fewer calls to the Rao-Blackwellisation step due to efficient caching (Lazy Rao-Blackwellisation)
 - Dynamic Rao-Blackwellisation when context-specific or logical dependencies are present
 - Particularly suitable for Markov logic networks (Richardson and Domingos, 2006).
- Disadvantages
 - Increases time and space complexity and therefore fewer samples may be generated.

Take away Figure: Variance Hierarchy and Complexity

Experiments

- Benchmarks
 - Linkage analysis
 - Graph coloring
- Algorithms
 - OR tree sampling
 - AND/OR tree sampling
 - AND/OR graph sampling
 - w-cutset versions of the three schemes above

Results: Probability of Evidence Linkage instances (UAI 2006 evaluation)

Problem	$\langle n, k, E, t^*, c \rangle$	Exact	or-	ao-	ao-	or-wc-	ao-wc-	ao-wc-
			tree-IS	tree-IS	graph-IS	tree-IS	tree-IS	graph-IS
			Δ	Δ	Δ	Δ	Δ	Δ
BN_69.uai	$\langle 777, 7, 78, 47, 59 \rangle$	5.28E-54	2.26E-02	2.46E-02	2.43E-02	2.42E-02	2.34E-02	4.22E-03
BN_70.uai	$\langle 2315, 5, 159, 87, 98 \rangle$	2.00E-71	6.32E-02	7.25E-02	5.12E-02	8.18E-02	5.36E-02	2.62E-02
BN_71.uai	$\langle 1740, 6, 202, 70, 139 \rangle$	5.12E-111	6.74E-02	5.51E-02	2.35E-02	8.58E-02	9.46E-03	1.21E-02
BN_72.uai	$\langle 2155, 6, 252, 86, 88 \rangle$	4.21E-150	3.19E-02	4.61E-02	2.46E-03	6.12E-02	1.41E-03	2.63E-03
BN_73.uai	$\langle 2140, 5, 216, 101, 149 \rangle$	2.26E-113	1.18E-01	1.12E-01	4.55E-02	1.58E-01	3.54E-02	3.95E-02
BN_74.uai	$\langle 749, 6, 66, 45, 72 \rangle$	3.75E-45	5.34E-02	4.31E-02	2.87E-02	8.08E-02	2.83E-02	2.76E-02
BN_75.uai	$\langle 1820, 5, 155, 92, 131 \rangle$	5.88E-91	4.47E-02	8.15E-02	4.73E-02	7.28E-02	4.20E-02	7.60E-03
BN_76.uai	$\langle 2155, 7, 169, 64, 239 \rangle$	4.93E-110	1.07E-01	1.39E-01	6.95E-02	1.13E-01	5.03E-02	2.26E-02
BN_77.uai	$\langle 1020,9,135,22,97\rangle$	6.88E-79	1.06E-01	9.38E-02	8.26E-02	1.24E-01	6.75E-02	3.27E-02

Time Bound: 1hr

Results: Probability of Evidence Linkage instances (UAI 2008 evaluation)

Problem	$\langle n, k, E, t^*, w \rangle$	Exact	or-	ao-	ao-	or-wc-	ao-wc-	ao-wc-
			tree-IS	tree-IS	graph-IS	tree-IS	tree-IS	graph-IS
			Δ	Δ	Δ	Δ	Δ	Δ
pedigree18.uai	$\langle 1184, 1, 0, 26, 72 \rangle$	4.19E-79	3.17E-02	3.44E-02	3.20E-03	4.30E-02	3.49E-04	3.02E-04
pedigree19.uai	$\langle 793, 2, 0, 23, 102 \rangle$	1.59E-60	1.32E-01	1.28E-01	5.41E-02	8.92E-02	1.79E-03	2.97E-03
pedigree1.uai	(334, 2, 0, 20, 27)	7.81E-15	2.18E-03	1.90E-03	1.73E-04	3.15E-05	7.61E-06	1.13E-05
pedigree20.uai	$\langle 437, 2, 0, 25, 33 \rangle$	2.34E-30	1.52E-01	1.56E-01	2.12E-03	6.93E-02	9.17E-04	1.18E-03
pedigree23.uai	$\langle 402, 1, 0, 26, 29 \rangle$	2.00E-40	2.62E-02	2.74E-02	2.90E-02	2.82E-02	2.88E-02	2.88E-02
pedigree37.uai	(1032, 1, 0, 25, 36)	2.63E-117	2.46E-02	3.50E-03	3.24E-03	1.45E-02	3.00E-03	3.01E-03
pedigree38.uai	(724, 1, 0, 18, 45)	5.64E-55	4.08E-02	1.40E-02	1.25E-02	1.69E-02	8.91E-03	8.79E-03
pedigree39.uai	(1272, 1, 0, 29, 42)	6.32E-103	8.67E-02	5.11E-02	1.72E-03	1.89E-02	2.31E-04	2.13E-04
pedigree42.uai	$\langle 448, 2, 0, 23, 50 \rangle$	1.73E-31	4.29E-03	1.94E-03	5.06E-04	1.11E-03	3.53E-05	3.17E-05
pedigree31.uai	$\langle 1183, 2, 0, 45, 118 \rangle$		1.09E-01	1.31E-01	4.15E-02	8.34E-02	0.00E+00	2.93E-04
pedigree34.uai	$\langle 1160, 1, 0, 59, 104 \rangle$		2.12E-01	1.47E-01	8.37E-02	8.09E-02	4.83E-04	0.00E+00
pedigree13.uai	$\langle 1077, 1, 0, 51, 98 \rangle$		3.93E-01	3.93E-01	5.66E-02	9.11E-02	1.51E-04	0.00E+00
pedigree41.uai	(1062, 2, 0, 52, 95)		1.12E-01	5.06E-02	8.23E-04	5.04E-02	0.00E+00	3.15E-04
pedigree44.uai	(811, 1, 0, 29, 64)		3.16E-02	3.08E-02	2.27E-03	1.90E-02	0.00E+00	4.63E-06
pedigree51.uai	$\langle 1152, 1, 0, 51, 106 \rangle$		9.22E-02	6.39E-02	2.26E-02	4.31E-02	9.35E-05	0.00E+00
pedigree7.uai	$\langle 1068, 1, 0, 56, 90 \rangle$		7.86E-02	9.98E-02	2.31E-02	4.61E-02	4.38E-04	0.00E+00
pedigree9.uai	$\langle 1118, 2, 0, 41, 80 \rangle$		3.29E-02	3.19E-02	0.00E+00	8.25E-02	9.74E-03	1.01E-02

Time Bound: 1hr

Log Relative error Error vs Time for pedigree19, num-vars= 793

Results: Solution counting Graph coloring instance

Problem	$\langle n,k,E,t^*,c\rangle$	Exact	or-	ao-	ao-	or-wc-	ao-wc-	ao-wc-
			tree-IS	tree-IS	graph-IS	tree-IS	tree-IS	graph-IS
			Δ	Δ	Δ	Δ	Δ	Δ
4-coloring1.uai	$\langle 400, 2, 0, 71, 309 \rangle$		3.82E-03	4.05E-03	4.51E-03	6.00E-03	2.35E-03	0.00E+00
4-coloring2.uai	$\langle 400, 2, 0, 95, 315 \rangle$		1.23E-02	9.54E-03	7.64E-03	3.38E-02	3.63E-02	0.00E+00
4-coloring3.uai	$\langle 800,2,0,144,617\rangle$		2.86E-03	4.58E-03	2.32E-03	2.41E-02	2.38E-02	0.00E+00
4-coloring4.uai	$\langle 800,2,0,191,620\rangle$		2.13E-02	5.06E-03	2.19E-02	1.79E-02	4.69E-03	0.00E+00
4-coloring5.uai	$\langle 1200, 2, 0, 304, 925 \rangle$		2.98E-02	2.81E-02	5.85E-02	5.70E-02	3.89E-02	0.00E+00
4-coloring6.uai	$\langle 1200, 2, 0, 338, 929 \rangle$		3.43E-02	2.72E-02	2.63E-03	3.17E-03	2.09E-03	0.00E+00

Time Bound: 1hr

Summary: AND/OR Importance sampling

- AND/OR sampling: A general scheme to exploit conditional independence in sampling
- Theoretical guarantees: lower sampling error than conventional sampling
- Variance reduction orthogonal to Rao-Blackwellised sampling.
- Better empirical performance than conventional sampling.