Sampling Techniques for Probabilistic and Deterministic Graphical models

Bozhena Bidyuk

Vibhav Gogate
Rina Dechter

Overview

1. Probabilistic Reasoning/Graphical models
2. Importance Sampling
3. Markov Chain Monte Carlo: Gibbs Sampling
4. Sampling in presence of Determinism
5. Rao-Blackwellisation
6. AND/OR importance sampling

Overview

1. Probabilistic Reasoning/Graphical models
2. Importance Sampling
3. Markov Chain Monte Carlo: Gibbs Sampling
4. Sampling in presence of Determinism
5. Cutset-based Variance Reduction
6. AND/OR importance sampling

Probabilistic Reasoning; Graphical models

- Graphical models:
- Bayesian network, constraint networks, mixed network
- Queries
- Exact algorithm
- using inference,
- search and hybrids
- Graph parameters:
- tree-width, cycle-cutset, w-cutset

Bayesian Networks (Pearl, 1988)

CPTs : $P\left(X_{i} \mid p a\left(X_{i}\right)\right)$

$P(S, C, B, X, D)=P(S) P(C \mid S) P(B \mid S) P(X \mid C, S) P(D \mid C, B$

Belief Updating:

P (lung cancer=yes | smoking=no, dyspnoea=yes) = ?
Probability of evidence:
P(smoking=no, dyspnoea=yes $)=$?

Queries

- Probability of evidence (or partition function)

$$
P(e)=\left.\sum_{X-\text { var }(e)} \prod_{i=1}^{n} P\left(x_{i} \mid p a_{i}\right)\right|_{e} \quad Z=\sum_{X} \prod_{i} \psi_{i}\left(C_{i}\right)
$$

- Posterior marginal (beliefs):

$$
P\left(x_{i} \mid e\right)=\frac{P\left(x_{i}, e\right)}{P(e)}=\frac{\left.\sum_{X-\operatorname{var}(e)-X_{i}} \prod_{j=1}^{n} P\left(x_{j} \mid p a_{j}\right)\right|_{e}}{\left.\sum_{X-\operatorname{var}(e)} \prod_{j=1}^{n} P\left(x_{j} \mid p a_{j}\right)\right|_{e}}
$$

- Most Probable Explanation

$$
\bar{x}^{\star}=\arg \max _{\bar{x}} P(\bar{x}, e)
$$

Constraint Networks

Map coloring

Variables: countries (A B C etc.)
Values: colors (red green blue)

Constraint graph

\mathbf{A}	\mathbf{B}
red	green
red	yellow
green	red
green	yellow
yellow	green
yellow	red

Task: find a solution
Count solutions, find a good one

Propositional Satisfiability

$$
\varphi=\{(\neg C),(A \vee B \vee C),(-A \vee B \vee E),(\neg B \vee C \vee D)\} .
$$

Mixed Networks: Mixing Belief and Constraints

Belief or Bayesian Networks

Constraint Networks

Variables: A, B, C, D, E, F
Domains : $D_{A}=D_{B}=D_{C}=D_{D}=D_{E}=D_{F}=\{0,1\}$
CPTS : $P(A), P(B \mid A), P(C \mid A), P(D \mid B, C)$

$$
P(E \mid A, B), P(F \mid A)
$$

Variables: A, B, C, D, E, F
Domains : $D_{A}=D_{B}=D_{C}=D_{D}=D_{E}=D_{F}=\{0,1\}$
Constraints : $R_{1}(A B C), R_{2}(A C F), R_{3}(B C D), R_{4}(A, E)$
Expresses the set of solutions: $\operatorname{sol}(R)$

Constraints could be specified externally or may occur as zeros in the Belief network

Same queries (e.g., weighted counts)

$$
M=\sum_{x \in \operatorname{sol}(R)} P_{B}(x)
$$

Belief Updating

Bucket Elimination
 Algorithm elim-bel (Dechter 1996)

bucket B :
bucket C :
bucket D :

Bucket Elimination

Query: $P(a \mid e=0) \propto P(a, e=0) \quad$ Elimination Order: $\mathrm{d}, \mathrm{e}, \mathrm{b}, \mathrm{c}$

$$
\begin{aligned}
P(a, e=0) & =\sum_{c, b, e=0, d} P(a) P(b \mid a) P(c \mid a) P(d \mid a, b) P(e \mid b, c) \\
& =P(a) \sum_{c} P(c \mid a) \sum_{b} P(b \mid a) \sum_{e=0} P(e \mid b, c) \sum_{d} P(d \mid a, b)
\end{aligned}
$$

$\begin{aligned} & \text { Messages } \\ & f_{D}(a, b)=\sum_{d} P(d \mid a, b) \\ & f_{E}(b, c)=P(e=0 \mid b, c) \\ & f_{B}(a, c)=\sum_{b} P(b \mid a) f_{D}(a, b) f_{E}(b, c) \\ & f_{C}(a)=\sum_{c} P(c \mid a) f_{B}(a, c) \\ & P(a, e=0)=p(A) f_{C}(a)\end{aligned}$

Time and space $\exp \left(w^{*}\right)$

Complexity of Elimination

$O\left(n \exp \left(w^{*}(d)\right)\right.$

$w^{*}(d)$ - the induced width of moral graph along ordering d
The effect of the ordering:

$$
w^{*}\left(d_{1}\right)=4
$$

$w^{*}\left(d_{2}\right)=2$

Cutset-Conditioning

Cycle cutset $=\{A, B, C\}$

Search Over the Cutset

Space: $\exp (w): w$ is a user-controled parameter Time: $\exp (w+c(w))$

Linkage Analysis

- 6 individuals
- Haplotype: $\{2,3\}$
- Genotype: \{6\}
- Unknown

Linkage Analysis: 6 People, 3 Markers

Applications

- Determinism: More Ubiquitous than you may think!
- Transportation Planning (Liao et al. 2004, Gogate et al. 2005)
- Predicting and Inferring Car Travel Activity of individuals
- Genetic Linkage Analysis (Fischelson and Geiger, 2002)
- associate functionality of genes to their location on chromosomes.
- Functional/Software Verification (Bergeron, 2000)
- Generating random test programs to check validity of hardware
- First Order Probabilistic models (Domingos et al. 2006, Milch et al. 2005)
- Citation matching

Inference vs Conditioning-Search

Inference

Exp(w*) time/space

Search
$\operatorname{Exp}(\mathrm{n})$ time O(n) space

Search+inference: Space: $\exp (w)$
Time: $\exp (w+c(w))$

Approximation

- Since inference, search and hybrids are too expensive when graph is dense; (high treewidth) then:
- Bounding inference:
- mini-bucket and mini-clustering
- Belief propagation
- Bounding search:
- Sampling
- Goal: an anytime scheme

Approximation

- Since inference, search and hybrids are too expensive when graph is dense; (high treewidth) then:
- Bounding inference:
- mini-bucket and mini-clustering
- Belief propagation
- Bounding search:
- Sampling
- Goal: an anytime scheme

Overview

1. Probabilistic Reasoning/Graphical models
2. Importance Sampling
3. Markov Chain Monte Carlo: Gibbs Sampling
4. Sampling in presence of Determinism
5. Rao-Blackwellisation
6. AND/OR importance sampling

Outline

- Definitions and Background on Statistics
- Theory of importance sampling
- Likelihood weighting
- State-of-the-art importance sampling techniques

A sample

- Given a set of variables $X=\left\{X_{1}, \ldots, X_{n}\right\}$, a sample, denoted by St^{t} is an instantiation of all variables:

$$
S^{t}=\left(x_{1}^{t}, x_{2}^{t}, \ldots, x_{n}^{t}\right)
$$

How to draw a sample ? Univariate distribution

- Example: Given random variable X having domain $\{0,1\}$ and a distribution $P(X)=(0.3$, 0.7).
- Task: Generate samples of X from P.
- How?
- draw random number $r \in[0,1]$
- If $(r<0.3)$ then set $X=0$
- Else set $X=1$

How to draw a sample? Multi-variate distribution

- Let $X=\left\{X_{1}, . ., X_{n}\right\}$ be a set of variables
- Express the distribution in product form

$$
P(X)=P\left(X_{1}\right) \times P\left(X_{2} \mid X_{1}\right) \times \ldots \times P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
$$

- Sample variables one by one from left to right, along the ordering dictated by the product form.
- Bayesian network literature: Logic sampling

Logic sampling (example)

$$
P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P\left(X_{1}\right) \times P\left(X_{2} \mid X_{1}\right) \times P\left(X_{3} \mid X_{1}\right) \times P\left(X_{4} \mid X_{2}, X_{3}\right)
$$

$P\left(X_{4} \mid X_{2}, X_{3}\right)$

No Evidence
// generate sample k

1. Sample x_{1} from $P\left(x_{1}\right)$
2. Sample x_{2} from $P\left(x_{2} \mid X_{1}=x_{1}\right)$
3. Sample x_{3} from $P\left(x_{3} \mid X_{1}=x_{1}\right)$
4. Sample x_{4} from $P\left(x_{4} \mid X_{2}=x_{2} X_{3}=x_{3}\right)$

Expected value and Variance

Expected value: Given a probability distribution $\mathrm{P}(\mathrm{X})$ and a function $g(X)$ defined over a set of variables $X=$ $\left\{X_{1}, X_{2}, \ldots X_{n}\right\}$, the expected value of g w.r.t. P is

$$
E_{P}[g(x)]=\sum_{x} g(x) P(x)
$$

Variance: The variance of g w.r.t. P is:

$$
\operatorname{Var}_{P}[g(x)]=\sum_{x}\left[g(x)-E_{P}[g(x)]\right]^{2} P(x)
$$

Monte Carlo Estimate

- Estimator:
- An estimator is a function of the samples.
- It produces an estimate of the unknown parameter of the sampling distribution.

Given i.i.d. samples $S^{1}, S^{2}, \ldots S^{T}$ drawn from P, the Monte carlo estimate of $\mathrm{E}_{P}[\mathrm{~g}(\mathrm{x})]$ is given by:

$$
\hat{g}=\frac{1}{T} \sum_{t=1}^{T} g\left(S^{t}\right)
$$

Example: Monte Carlo estimate

- Given:
- A distribution $P(X)=(0.3,0.7)$.
$\begin{aligned}-g(X) & =40 \text { if } X \text { equals } 0 \\ & =50 \text { if } X \text { equals } 1 .\end{aligned}$
- Estimate $\mathrm{E}_{\mathrm{p}}[\mathrm{g}(\mathrm{x})]=(40 \times 0.3+50 \times 0.7)=47$.
- Generate k samples from P: 0,1,1,1,0,1,1,0,1,0

$$
\begin{aligned}
\hat{g} & =\frac{40 \times \# \text { samples }(X=0)+50 \times \# \text { samples }(X=1)}{\# \text { samples }} \\
& =\frac{40 \times 4+50 \times 6}{10}=46
\end{aligned}
$$

Outline

- Definitions and Background on Statistics
- Theory of importance sampling
- Likelihood weighting
- State-of-the-art importance sampling techniques

Importance sampling: Main idea

- Transform the probabilistic inference problem into the problem of computing the expected value of a random variable w.r.t. to a distribution Q.
- Generate random samples from Q.
- Estimate the expected value from the generated samples.

Importance sampling for $\mathrm{P}(\mathrm{e})$

Let $Z=X \backslash E$,
Let $\mathrm{Q}(Z)$ be a (proposal) distribution, satisfying
$P(z, e)>0 \Rightarrow Q(z)>0$
Then, we can rewrite $\mathrm{P}(\mathrm{e})$ as :
$P(e)=\sum_{z} P(z, e)=\sum_{z} P(z, e) \frac{Q(z)}{Q(z)}=E_{Q}\left[\frac{P(z, e)}{Q(z)}\right]=E_{Q}[w(z)]$
Monte Carlo estimate :
$\hat{P}(e)=\frac{1}{T} \sum_{t=1}^{T} w\left(z^{t}\right)$, where $\mathrm{z}^{t} \leftarrow Q(Z)$

Properties of IS estimate of $\mathrm{P}(\mathrm{e})$

- Convergence: by law of large numbers

$$
\hat{P}(e)=\frac{1}{T} \sum_{i=1}^{T} w\left(z^{i}\right) \xrightarrow{\text { a.s. }} P(e) \text { for } \mathrm{T} \rightarrow \infty
$$

- Unbiased.

$$
E_{Q}[\hat{P}(e)]=P(e)
$$

- Variance:

$$
\operatorname{Var}_{Q}[\hat{P}(e)]=\operatorname{Var}_{Q}\left[\frac{1}{T} \sum_{i=1}^{N} w\left(z^{i}\right)\right]=\frac{\operatorname{Var}_{Q}[w(z)]}{T}
$$

Properties of IS estimate of $\mathrm{P}(\mathrm{e})$

- Mean Squared Error of the estimator

$$
\begin{aligned}
& \operatorname{MSE}_{Q}[\hat{P}(e)]=E_{Q}\left[(\hat{P}(e)-\boldsymbol{P}(e))^{2}\right] \\
& =\left(\boldsymbol{P}(e)-E_{Q}[\hat{P}(e)]\right)^{2}+\operatorname{Var}_{Q}[\hat{P}(e)] \\
& =\operatorname{Var}_{Q}[\hat{P}(e)] \quad \operatorname{Var}_{Q}[\hat{W}(x)] \quad \begin{array}{l}
\text { This quantity enclosed in the brackets is } \\
\text { zero because the expected value of the } \\
\text { estimator equals the expected value of } g(x)
\end{array}
\end{aligned}
$$

$$
=\frac{\operatorname{Var}_{Q}[w(x)]}{T}
$$

Estimating $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{e}\right)$

Let $\delta_{\mathrm{x}_{\mathrm{i}}}(\mathrm{z})$ be a dirac-delta function, which is 1 if z contains x_{i} and 0 otherwise.
$P\left(x_{i} \mid e\right)=\frac{P\left(x_{i}, e\right)}{P(e)}=\frac{\sum_{z} \delta_{x_{i}}(z) P(z, e)}{\sum_{z} P(z, e)}=\frac{E_{Q}\left[\frac{\delta_{x_{i}}(z) P(z, e)}{Q(z)}\right]}{E_{Q}\left[\frac{P(z, e)}{Q(z)}\right]}$
Idea : Estimate numerator and denominator by IS.
Ratio estimate : $\bar{P}\left(x_{i} \mid e\right)=\frac{\hat{P}\left(x_{i}, e\right)}{\hat{P}(e)}=\frac{\sum_{\mathrm{k}=1}^{\mathrm{T}} \delta_{x_{i}}\left(z^{k}\right) w\left(z^{k}, e\right)}{\sum_{\mathrm{k}=1}^{\mathrm{T}} w\left(z^{k}, e\right)}$
Estimate is biased: $\mathrm{E}\left[\bar{P}\left(x_{i} \mid e\right)\right] \neq P\left(x_{i} \mid e\right)$

Properties of the IS estimator for $P\left(X_{i} \mid e\right)$

- Convergence: By Weak law of large numbers
$\bar{P}\left(x_{i} \mid e\right) \rightarrow P\left(x_{i} \mid e\right)$ as $\mathrm{T} \rightarrow \infty$
- Asymptotically unbiased

$$
\lim _{T \rightarrow \infty} E_{P}\left[\bar{P}\left(x_{i} \mid e\right)\right]=P\left(x_{i} \mid e\right)
$$

- Variance
- Harder to analyze
- Liu suggests a measure called "Effective sample size"

Effective Sample size

$P\left(x_{i} \mid e\right)=\sum_{z} g_{x_{i}}(z) P(z \mid e)$
Given samples from $\mathrm{P}(\mathrm{z} \mid \mathrm{e})$, we can estimate $\mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mid \mathrm{e}\right)$ using :
$\hat{P}\left(x_{i} \mid e\right)=\frac{1}{T} \sum_{j=1}^{T} g_{x_{i}}\left(z^{t}\right)$
\rightarrow Ideal estimator

Define: $E S S(Q, T)=\frac{T}{1+\operatorname{var}_{Q}[w(z)]} \longrightarrow \begin{aligned} & \text { Measures how much the } \\ & \text { estimator deviates from the } \\ & \text { ideal one. }\end{aligned}$
$\frac{\operatorname{Var}_{P}\left[\hat{P}\left(x_{i} \mid e\right)\right]}{\operatorname{Var}_{Q}\left[\bar{P}\left(x_{i} \mid e\right)\right]} \approx \frac{T}{E S S(Q, T)}$
Thus T samples from P are worth $\operatorname{ESS}(\mathrm{Q}, \mathrm{T})$ samples from Q .
Therefore, the variance of the weights must be as small as possible.

Outline

- Definitions and Background on Statistics
- Theory of importance sampling
- Likelihood weighting
- State-of-the-art importance sampling techniques

Likelihood Weighting: Proposal Distribution

$Q(X \backslash E)=\prod_{X_{i} \in X \backslash E} P\left(X_{i} \mid p a_{i}, e\right)$
Example:
Given a Bayesian network: $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)=\mathrm{P}\left(\mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{2} \mid \mathrm{X}_{1}\right) \times \mathrm{P}\left(\mathrm{X}_{3} \mid \mathrm{X}_{1}, \mathrm{X}_{2}\right)$ and Evidence $\mathrm{X}_{2}=\mathrm{x}_{2}$.
$\mathrm{Q}\left(\mathrm{X}_{1}, \mathrm{X}_{3}\right)=P\left(X_{1}\right) \times P\left(X_{3} \mid X_{1}, X_{2}=x_{2}\right)$

Weights:
Given a sample : $x=\left(x_{1}, . ., x_{n}\right)$

$$
\begin{aligned}
w= & \frac{P(x, e)}{Q(x)}=\frac{\prod_{x_{i} \in X \backslash E} P\left(x_{i} \mid p a_{i}, e\right) \times \prod_{E_{j} \in E} P\left(e_{j} \mid p a_{j}\right)}{\prod_{x_{i} \in X \backslash E} P\left(x_{i} \mid p a_{i}, e\right)} \\
& =\prod_{E_{j} \in E} P\left(e_{j} \mid p a_{j}\right)
\end{aligned}
$$

Likelihood Weighting: Sampling

Sample in topological order over \mathbf{X} !

Clamp evidence, Sample $x_{i} \leftarrow P\left(X_{i} \mid p a_{i}\right), P\left(X_{i} \mid p a_{i}\right)$ is a look-up in CPT!

Outline

- Definitions and Background on Statistics
- Theory of importance sampling
- Likelihood weighting
- State-of-the-art importance sampling techniques

Proposal selection

- One should try to select a proposal that is as close as possible to the posterior distribution.

$$
\operatorname{Var}_{Q}[\hat{P}(e)]=\frac{\operatorname{Var}_{Q}[w(z)]}{T}=\frac{1}{N} \sum_{z \in Z}\left(\frac{P(z, e)}{Q(z)}-P(e)\right)^{2} Q(z)
$$

$\frac{P(z, e)}{Q(z)}-P(e)=0$, to have a zero - variance estimator
$\therefore \frac{P(z, e)}{P(e)}=Q(z)$
$\therefore Q(z)=P(z \mid e)$

Proposal Distributions used in Literature

- AIS-BN (Adaptive proposal)
- Cheng and Druzdzel, 2000
- Iterative Belief Propagation
- Changhe and Druzdzel, 2003
- Iterative Join Graph Propagation (IJGP) and variable ordering
- Gogate and Dechter, 2005

Perfect sampling using Bucket Elimination

- Algorithm:
- Run Bucket elimination on the problem along an ordering $0=\left(X_{N}, . ., X_{1}\right)$.
- Sample along the reverse ordering: ($X_{1}, . ., X_{N}$)
- At each variable X_{i}, recover the probability $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{i}-1}\right)$ by referring to the bucket.

Bucket elimination (BE)

Algorithm elim-bel (Dechter 1996)

Sampling from the output of BE

(Dechter 2002)

Set $\mathrm{A}=\mathrm{a}, \mathrm{D}=\mathrm{d}, \mathrm{C}=\mathrm{c}$ in the bucket
Sample $: \mathrm{B}=\mathrm{b} \leftarrow \mathrm{Q}(\mathrm{C} \mid \mathrm{a}, \mathrm{e}, \mathrm{d}) \propto P(B \mid a) P(d \mid B, a) P(e \mid b, c)$
bucket $\mathrm{B}: ~ \mathrm{P}(\mathrm{B} \mid \mathrm{A}) \quad \mathrm{P}(\mathrm{D} \mid \mathrm{B}, \mathrm{A}) \quad \mathrm{P}(\mathrm{e} \mid \mathrm{B}, \mathrm{C})$
bucket $\mathrm{C}: \mathrm{P}(\mathrm{C} \mid \mathrm{A}) \quad \boldsymbol{h}^{\boldsymbol{B}}(\boldsymbol{A}, \boldsymbol{D}, \boldsymbol{C}, \boldsymbol{e}) \begin{aligned} & \text { Set } \mathrm{A}=\mathrm{a}, \mathrm{D}=\mathrm{d} \text { in the bucket } \\ & \text { Sample }: \mathrm{C}=\mathrm{c} \leftarrow \mathrm{Q}(\mathrm{C} \mid \mathrm{a}, \mathrm{e}, \mathrm{d}) \propto \mathrm{h}^{\mathrm{B}}(\mathrm{a}, \mathrm{d}, \mathrm{C}, \mathrm{e})\end{aligned}$
bucket D: $\quad \boldsymbol{h}^{\boldsymbol{C}}(\boldsymbol{A}, \boldsymbol{D}, \boldsymbol{e})$
bucket E: $\quad \boldsymbol{h}^{\boldsymbol{D}}(\boldsymbol{A}, \boldsymbol{e})$
bucket A: $\mathrm{P}(\mathrm{A}) \quad \boldsymbol{h}^{E}(\boldsymbol{A})$

Set $\mathrm{A}=\mathrm{a}$ in the bucket Sample : $\mathrm{D}=\mathrm{d} \leftarrow \mathrm{Q}(\mathrm{D} \mid \mathrm{a}, \mathrm{e}) \propto \mathrm{h}^{\mathrm{C}}(\mathrm{a}, \mathrm{D}, \mathrm{e})$

Evidence bucket :ignore
$\mathbf{Q}(\mathbf{A}) \propto \mathbf{P}(\mathbf{A}) \times \mathbf{h}^{\mathrm{E}}(\mathbf{A})$
Sample $: \mathbf{A}=\mathbf{a} \leftarrow \mathbf{Q}(\mathbf{A})$

Mini-buckets: "local inference"

- Computation in a bucket is time and space exponential in the number of variables involved
- Therefore, partition functions in a bucket into "mini-buckets" on smaller number of variables
- Can control the size of each "mini-bucket", yielding polynomial complexity.

Mini-Bucket Elimination

Space and Time constraints: Maximum scope size of the new function generated should be bounded by 2

BE generates a function having scope size 3 . So it cannot be used.

Sampling from the output of MBE

Sampling is same as in BE-sampling except that now we construct Q from a randomly selected "minibucket"

IJGP-Sampling

 (Gogate and Dechter, 2005)- Iterative Join Graph Propagation (IJGP)
- A Generalized Belief Propagation scheme (Yedidia et al., 2002)
- IJGP yields better approximations of $P(X \mid E)$ than MBE
- (Dechter, Kask and Mateescu, 2002)
- Output of IJGP is same as mini-bucket "clusters"
- Currently the best performing IS scheme!

Adaptive Importance Sampling

Initial Proposal $=Q^{1}(Z)=Q\left(Z_{1}\right) \times Q\left(Z_{2} \mid p a\left(Z_{2}\right)\right) \times \ldots \times Q\left(Z_{n} \mid p a\left(Z_{n}\right)\right)$
$\hat{P}(E=e)=0$
For $\mathrm{i}=1$ to k do
Generate samples $\mathrm{z}^{1}, \ldots, \mathrm{z}^{\mathrm{N}}$ from Q^{k}

$$
\hat{\mathrm{P}}(\mathrm{E}=\mathrm{e})=\hat{P}(E=e)+\frac{1}{\mathrm{~N}} \sum_{j=1}^{N} w_{k}\left(z^{i}\right)
$$

Update $\mathrm{Q}^{\mathrm{k}+1}=Q^{k}+\eta(k)\left[Q^{k}-Q^{\prime}\right]$
End
Return $\frac{\hat{P}(E=e)}{\mathrm{k}}$

Adaptive Importance Sampling

- General case
- Given k proposal distributions
- Take N samples out of each distribution
- Approximate P(e)

$$
\hat{P}(e)=\frac{1}{k} \sum_{j=1}^{k}[\text { Avg }- \text { weight }-j t h-\text { proposal }]
$$

Estimating $Q^{\prime}(z)$

$Q^{\prime}(Z)=Q^{\prime}\left(Z_{1}\right) \times Q^{\prime}\left(Z_{2} \mid p a\left(Z_{2}\right)\right) \times \ldots \times Q^{\prime}\left(Z_{n} \mid p a\left(Z_{n}\right)\right)$ where each $\mathrm{Q}^{\prime}\left(\mathrm{Z}_{\mathrm{i}} \mid \mathrm{Z}_{1}, \ldots, \mathrm{Z}_{\mathrm{i}-1}\right)$ is estimated by importance sampling

Overview

1. Probabilistic Reasoning/Graphical models
2. Importance Sampling
3. Markov Chain Monte Carlo: Gibbs Sampling
4. Sampling in presence of Determinism
5. Rao-Blackwellisation
6. AND/OR importance sampling

Markov Chain

- A Markov chain is a discrete random process with the property that the next state depends only on the current state (Markov Property):

$$
P\left(x^{t} \mid x^{1}, x^{2}, \ldots, x^{t-1}\right)=P\left(x^{t} \mid x^{t-1}\right)
$$

- If $P\left(X^{t} \mid x^{t-1}\right)$ does not depend on t (time homogeneous) and state space is finite, then it is often expressed as a transition function (aka transition matrix) $\sum_{x} P(X=x)=1$

Example: Drunkard's Walk

- a random walk on the number line where, at each step, the position may change by +1 or -1 with equal probability

Example: Weather Model

$D(X)=\{$ rainy, sunny $\}$

Multi-Variable System

$$
X=\left\{X_{1}, X_{2}, X_{3}\right\}, D\left(X_{i}\right)=\text { discrete, finite }
$$

- state is an assignment of values to all the variables

Bayesian Network System

- Bayesian Network is a representation of the joint probability distribution over 2 or more variables

$$
X=\left\{X_{1}, X_{2}, X_{3}\right\}
$$

$$
x^{t}=\left\{x_{1}^{t}, x_{2}^{t}, x_{3}^{t}\right\}
$$

Stationary Distribution

Existence

- If the Markov chain is time-homogeneous, then the vector $\pi(\mathrm{X})$ is a stationary distribution (aka invariant or equilibrium distribution, aka "fixed point"), if its entries sum up to 1 and satisfy:

$$
\pi\left(x_{i}\right)=\sum_{x_{i} \in D(X)} \pi\left(x_{j}\right) P\left(x_{i} \mid x_{j}\right)
$$

- Finite state space Markov chain has a unique stationary distribution if and only if:
- The chain is irreducible
- All of its states are positive recurrent

Irreducible

- A state x is irreducible if under the transition rule one has nonzero probability of moving from x to any other state and then coming back in a finite number of steps
- If one state is irreducible, then all the states must be irreducible
(Liu, Ch. 12, pp. 249, Def. 12.1.1)

Recurrent

- A state x is recurrent if the chain returns to x with probability 1
- Let $M(x)$ be the expected number of steps to return to state x
- State x is positive recurrent if $\mathrm{M}(x)$ is finite The recurrent states in a finite state chain are positive recurrent .

Stationary Distribution Convergence

- Consider infinite Markov chain:

$$
P^{(n)}=P\left(x^{n} \mid x^{0}\right)=P^{0} P^{n}
$$

- If the chain is both irreducible and aperiodic, then:

$$
\pi=\lim _{n \rightarrow \infty} P^{(n)}
$$

- Initial state is not important in the limit "The most useful feature of a "good" Markov chain is its fast forgetfulness of its past..."
(Liu, Ch. 12.1)

Aperiodic

- Define $d(i)=$ g.c.d. $\{n>0 \mid$ it is possible to go from i to i in n steps\}. Here, g.c.d. means the greatest common divisor of the integers in the set. If $d(i)=1$ for $\forall i$, then chain is aperiodic
- Positive recurrent, aperiodic states are ergodic

Markov Chain Monte Carlo

- How do we estimate $P(X)$, e.g., $P(X \mid e)$?
- Generate samples that form Markov Chain with stationary distribution $\pi=P(X / e)$
- Estimate π from samples (observed states): visited states x^{0}, \ldots, x^{n} can be viewed as "samples" from distribution π

$$
\begin{aligned}
& \bar{\pi}(x)=\frac{1}{T} \sum_{t=1}^{T} \delta\left(x, x^{t}\right) \\
& \pi=\lim _{T \rightarrow \infty} \bar{\pi}(x)
\end{aligned}
$$

MCMC Summary

- Convergence is guaranteed in the limit
- Initial state is not important, but... typically, we throw away first K samples - "burn-in"
- Samples are dependent, not i.i.d.
- Convergence (mixing rate) may be slow
- The stronger correlation between states, the slower convergence!

Gibbs Sampling (Geman\&Geman,1984)

- Gibbs sampler is an algorithm to generate a sequence of samples from the joint probability distribution of two or more random variables
- Sample new variable value one variable at a time from the variable's conditional distribution:

$$
P\left(X_{i}\right)=P\left(X_{i} \mid x_{1}^{t}, \ldots, x_{i-1}^{t}, x_{i+1}^{t}, \ldots, x_{n}^{t}\right\}=P\left(X_{i} \mid x^{t} \backslash x_{i}\right)
$$

- Samples form a Markov chain with stationary distribution $P(X / e)$

Gibbs Sampling: Illustration

The process of Gibbs sampling can be understood as a random walk in the space of all instantiations of $X=x$ (remember drunkard's walk):

Ordered Gibbs Sampler

Generate sample $\mathrm{x}^{\mathrm{t+1}}$ from x^{t} :
Process

Variables
In Some Order

$$
\begin{aligned}
& X_{1}=x_{1}^{t+1} \leftarrow P\left(X_{1} \mid x_{2}^{t}, x_{3}^{t}, \ldots, x_{N}^{t}, e\right) \\
& X_{2}=x_{2}^{t+1} \leftarrow P\left(X_{2} \mid x_{1}^{t+1}, x_{3}^{t}, \ldots, x_{N}^{t}, e\right) \\
& \ldots \\
& X_{N}=x_{N}^{t+1} \leftarrow P\left(X_{N} \mid x_{1}^{t+1}, x_{2}^{t+1}, \ldots, x_{N-1}^{t+1}, e\right)
\end{aligned}
$$

In short, for $\mathrm{i}=1$ to N :

$$
X_{i}=x_{i}^{t+1} \leftarrow \text { sampled from } P\left(X_{i} \mid x^{t} \backslash x_{i}, e\right) \mid
$$

Transition Probabilities in BN

Given Markov blanket (parents, children, and their parents), X_{i} is independent of all other nodes

Markov blanket:
$\operatorname{markov}\left(X_{i}\right)=p a_{i} \cup c h_{i} \cup\left(\bigcup p a_{j}\right)$
$P\left(X_{i} \mid x^{t} \backslash x_{i}\right)=P\left(X_{i} \mid\right.$ markov $\left._{i}^{t}\right):$

$$
P\left(x_{i} \mid x^{t} \backslash x_{i}\right) \propto P\left(x_{i} \mid p a_{i}\right) \prod_{X_{j} \in c h_{i}} P\left(x_{j} \mid p a_{j}\right)
$$

Computation is linear in the size of Markov blanket!

Ordered Gibbs Sampling Algorithm (Pearl,1988)

Input: $X, E=e$
Output: T samples $\left\{x^{t}\right\}$
Fix evidence $E=e$, initialize x^{0} at random

1. For $\mathrm{t}=1$ to T (compute samples)
2. For $\mathrm{i}=1$ to N (loop through variables)
3. $\quad \mathrm{x}_{\mathrm{i}}^{\mathrm{t}+1} \leftarrow P\left(X_{i} \mid\right.$ markov $\left._{i}^{t}\right)$
4. End For
5. End For

Gibbs Sampling Example - BN

$$
X=\left\{X_{1}, X_{2}, \ldots, X_{9}\right\}, E=\left\{X_{9}\right\}
$$

$$
\begin{aligned}
& \mathrm{X}_{1}=\mathrm{X}_{1}{ }^{0} \\
& \mathrm{X}_{6}=\mathrm{X}_{6}{ }^{0} \\
& \mathrm{X}_{2}=\mathrm{x}_{2}{ }^{0} \\
& \mathrm{X}_{7}=\mathrm{x}_{7}{ }^{0} \\
& \mathrm{X}_{3}=\mathrm{x}_{3}{ }^{0} \\
& \mathrm{X}_{8}=\mathrm{x}_{8}{ }^{0} \\
& \mathrm{X}_{4}=\mathrm{x}_{4}{ }^{0} \\
& \mathrm{X}_{5}=\mathrm{X}_{5}{ }^{0}
\end{aligned}
$$

Gibbs Sampling Example - BN

$$
X=\left\{X_{1}, X_{2}, \ldots, X_{9}\right\}, E=\left\{X_{9}\right\}
$$

$$
\begin{aligned}
& x_{1}^{1} \leftarrow P\left(X_{1} \mid x_{2}^{0}, \ldots, x_{8}^{0}, x_{9}\right) \\
& x_{2}^{1} \leftarrow P\left(X_{2} \mid x_{1}^{1}, \ldots, x_{8}^{0}, x_{9}\right)
\end{aligned}
$$

Answering Queries $P\left(x_{i} \mid e\right)=$?

- Method 1: count \# of samples where $X_{i}=x_{i}$ (histogram estimator):

$$
\bar{P}\left(X_{i}=x_{i}\right)=\frac{1}{T} \sum_{t=1}^{T} \delta\left({\overleftarrow{x_{i}, x^{t}}}^{\text {Dirac delta } \mathrm{f}-\mathrm{n}}\right.
$$

- Method 2: average probability (mixture estimator):

$$
\bar{P}\left(X_{i}=x_{i}\right)=\frac{1}{T} \sum_{t=1}^{T} P\left(X_{i}=x_{i} \mid \operatorname{markov}_{i}^{t}\right)
$$

- Mixture estimator converges faster (consider estimates for the unobserved values of X_{i}; prove via Rao-Blackwell theorem)

Rao-Blackwell Theorem

Rao-Blackwell Theorem: Let random variable set X be composed of two groups of variables, R and L. Then, for the joint distribution $\pi(R, L)$ and function g, the following result applies

$$
\operatorname{Var}[E\{g(R) \mid L\} \leq \operatorname{Var}[g(R)]
$$

for a function of interest g, e.g., the mean or covariance (Casella\&Robert,1996, Liu et. al. 1995).

[^0]
Importance vs. Gibbs

Gibbs: $\quad x^{t} \leftarrow \hat{P}(X \mid e)$
$\hat{P}(X \mid e) \xrightarrow{T \rightarrow \infty} P(X \mid e)$

$$
\hat{g}(X)=\frac{1}{T} \sum_{t=1}^{T} g\left(x^{t}\right)
$$

Importance: $\quad X^{t} \leftarrow Q(X \mid e)$

$$
\bar{g}=\frac{1}{T} \sum_{t=1}^{T} \frac{g\left(x^{t}\right) P\left(x^{t}\right)}{Q\left(x^{t}\right)}
$$

Gibbs Sampling: Convergence

- Sample from $\bar{P}(X \mid e) \rightarrow P(X \mid e)$
- Converges iff chain is irreducible and ergodic
- Intuition - must be able to explore all states:
- if X_{i} and X_{j} are strongly correlated, $X_{i}=0 \leftrightarrow X_{j}=0$, then, we cannot explore states with $X_{i}=1$ and $X_{j}=1$
- All conditions are satisfied when all probabilities are positive
- Convergence rate can be characterized by the second eigen-value of transition matrix

Gibbs: Speeding Convergence

Reduce dependence between samples
(autocorrelation)

- Skip samples
- Randomize Variable Sampling Order
- Employ blocking (grouping)
- Multiple chains

Reduce variance (cover in the next section)

Blocking Gibbs Sampler

- Sample several variables together, as a block
- Example: Given three variables X, Y, Z, with domains of size 2 , group Υ and Z together to form a variable $\mathcal{W}=\{\mathscr{Y}, Z\}$ with domain size 4 . Then, given sample $\left(x^{t}, y^{t}, z^{t}\right)$, compute next sample:

$$
\begin{aligned}
& x^{t+1} \leftarrow P\left(X \mid y^{t}, z^{t}\right)=P\left(w^{t}\right) \\
& \left(y^{t+1}, z^{t+1}\right)=w^{t+1} \leftarrow P\left(Y, Z \mid x^{t+1}\right)
\end{aligned}
$$

+ Can improve convergence greatly when two variables are strongly correlated!
- Domain of the block variable grows exponentially with the \#variables in a block!

Gibbs: Multiple Chains

- Generate M chains of size K
- Each chain produces independent estimate P_{m} :

$$
\bar{P}_{m}\left(x_{i} \mid e\right)=\frac{1}{K} \sum_{t=1}^{K} P\left(x_{i} \mid x^{t} \backslash x_{i}\right)
$$

- Estimate $P\left(x_{i} \mid e\right)$ as average of $P_{m}\left(x_{i} \mid e\right)$:

$$
\hat{P}(\bullet)=\frac{1}{M} \sum_{i=1}^{M} P_{m}(\bullet)
$$

Treat P_{m} as independent random variables.

Gibbs Sampling Summary

- Markov Chain Monte Carlo method
(Gelfand and Smith, 1990, Smith and Roberts, 1993, Tierney, 1994)
- Samples are dependent, form Markov Chain
- Sample from $\bar{P}(X \mid e)$ which converges to $\bar{P}(X \mid e)$
- Guaranteed to converge when all $P>0$
- Methods to improve convergence:
- Blocking
- Rao-Blackwellised

Overview

1. Probabilistic Reasoning/Graphical models
2. Importance Sampling
3. Markov Chain Monte Carlo: Gibbs Sampling
4. Sampling in presence of Determinism
5. Rao-Blackwellisation
6. AND/OR importance sampling

outine

- Rejection problem
- Backtrack-free distribution
- Constructing it in practice
- SampleSearch
- Construct the backtrack-free distribution on the fly.
- Approximate estimators
- Experiments

Outline

- Rejection problem
- Backtrack-free distribution
- Constructing it in practice
- SampleSearch
- Construct the backtrack-free distribution on the fly.
- Approximate estimators
- Experiments

Rejection problem

$$
\hat{P}(e)=\frac{1}{N} \sum_{i=1}^{N} \frac{P\left(z^{i}, e\right)}{Q\left(z^{i}\right)}
$$

- Importance sampling requirement

$$
-P(z, e)>0 \rightarrow Q(z)>0
$$

- When $P(z, e)=0$ but $Q(z)>0$, the weight of the sample is zero and it is rejected.
- The probability of generating a rejected sample should be very small.
- Otherwise the estimate will be zero.

Rejection Problem

Constraints: $A \neq B A \neq C$

All Blue leaves correspond to solutions i.e. $g(x)>0$ All Red leaves correspond to non-solutions i.e. $g(x)=0$

Outline

- Rejection problem
- Backtrack-free distribution
- Constructing it in practice
- SampleSearch
- Construct the backtrack-free distribution on the fly.
- Approximate estimators
- Experiments

Backtrack-free distribution: A rejection-free

$Q^{F}($ branch $)=0$ if no distribution

All Blue leaves correspond to solutions i.e. $g(x)>0$ All Red leaves correspond to non-solutions i.e. $g(x)=0$

Generating samples from Q^{F}

Constraints: $A \neq B \quad A \neq C$

$Q^{F}($ branch $)=0$ if no solutions under it
Q^{F} (branch) αQ (branch) otherwise

- Invoke an oracle at each branch.
- Oracle returns True if there is a solution under a branch
- False, otherwise

Generating samples from Q^{F}

Constraints: $A \neq B A \neq C$

- Oracles

- Adaptive consistency as preprocessing step
- Constant time table lookup
- Exponential in the treewidth of the constraint portion.
- A complete CSP solver
- Need to run it at each assignment.

Outline

- Rejection problem
- Backtrack-free distribution
- Constructing it in practice
- SampleSearch
- Construct the backtrack-free distribution on the fly.
- Approximate estimators
- Experiments

Algorithm SampleSearch

Algorithm SampleSearch

Algorithm SampleSearch

Constraints: $A \neq B \quad A \neq C$

Algorithm SampleSearch

Constraints: $A \neq B A \neq C$

Constraint Violated

Generate more Samples

Generate more Samples

Constraints: $A \neq B A \neq C$

$$
\hat{P}(e)=\frac{1}{N} \sum_{j=1}^{N} \frac{P\left(z^{j}, e\right)}{Q\left(z^{j}\right)}
$$

Traces of SampleSearch

Constraints: $A \neq B \quad A \neq C$

SampleSearch: Sampling Distribution

- Problem: Due to Search, the samples are no longer i.i.d. from Q.

$$
\bar{P}(e)=\frac{1}{N} \sum_{j=1}^{N} \frac{P\left(z^{j}, e\right)}{Q\left(z^{j}\right)}, \quad E_{Q}[\bar{P}(e)] \neq P(e)
$$

- Thm: SampleSearch generates i.i.d. samples from the backtrack-free distribution

$$
\hat{P}_{F}(e)=\frac{1}{N} \sum_{j=1}^{N} \frac{P\left(z^{j}, e\right)}{Q^{F}\left(z^{j}\right)}, \quad E_{Q^{F}}\left[\hat{P}_{F}(e)\right]=P(e)
$$

The Sampling distribution Q^{F} of SampleSearch
 Constraints: $A \neq B A \neq C$
 $$
\hat{P}(e)=\frac{1}{N} \sum_{j=1}^{N} \frac{P\left(z^{j}, e\right)}{Q\left(z^{j}\right)}
$$

> What is probability of generating $A=0 ?$ $Q^{F}(A=0)=0.8$
> Why? SampleSearch is systematic

> What is probability of generating $(A=0, B=1) ?$ $Q^{F}(B=1 \mid A=0)=1$

Why? SampleSearch is systematic
What is probability of generating $(A=0, B=0) ?$ Simple: $Q^{F}(B=0 \mid A=0)=0$

All samples generated by SampleSearch are solutions

Backtrack-free distribution

Outline

- Rejection problem
- Backtrack-free distribution
- Constructing it in practice
- SampleSearch
- Construct the backtrack-free distribution on the fly.
- Approximate estimators
- Experiments

Asymptotic approximations of Q^{F}

- IF Hole THEN
$-U^{F}=\mathbf{Q}$ (i.e. there is a solution at the other branch)
- ${ }^{\mathrm{F}}=0$ (i.e. no solution at the other branch)

Approximations:

Convergence in the limit

- Store all possible traces

Approximations:

Convergence in the limit

- From the combined sample tree, update U and L. IF Hole THEN $U_{N}=\mathbf{Q}$ and $L_{N}=0$
$\lim _{N \rightarrow \infty} E\left[\frac{P(z, e)}{U_{N}^{F}(z)}\right]=\lim _{N \rightarrow \infty} E\left[\frac{P(z, e)}{L_{N}^{F}(z)}\right]=P(e)$
Asymptotic ally unbiased
Bounding : $U_{N}^{F}(z) \leq Q^{F}(z) \leq L_{N}^{F}(z)$
$\bar{P}_{F}^{U}(e) \geq \hat{P}_{F}(e) \geq \bar{P}_{F}^{L}(e)$

Upper and Lower Approximations

- Asymptotically unbiased.
- Upper and lower bound on the unbiased sample mean
- Linear time and space overhead
- Bias versus variance tradeoff
- Bias = difference between the upper and lower approximation.

Improving Naive SampleSeach

- Better Search Strategy
- Can use any state-of-the-art CSP/SAT solver e.g. minisat (Een and Sorrenson 2006)
- All theorems and result hold
- Better Importance Function
- Use output of generalized belief propagation to compute the initial importance function Q (Gogate and Dechter, 2005)

Experiments

- Tasks
- Weighted Counting
- Marginals
- Benchmarks
- Satisfiability problems (counting solutions)
- Linkage networks
- Relational instances (First order probabilistic networks)
- Grid networks
- Logistics planning instances
- Algorithms
- SampleSearch/UB, SampleSearch/LB
- SampleCount (Gomes et al. 2007, SAT)
- ApproxCount (Wei and Selman, 2007, SAT)
- RELSAT (Bayardo and Peshoueshk, 2000, SAT)
- Edge Deletion Belief Propagation (Choi and Darwiche, 2006)
- Iterative Join Graph Propagation (Dechter et al., 2002)
- Variable Elimination and Conditioning (VEC)
- EPIS (Changhe and Druzdzel, 2006)

Results: Solution Counts Langford instances

Problem	$\langle n, k, c, w\rangle$	Exact	Sample Count	Approx Count	REL SAT	SS LLB	SS /UB
lang12	$\langle 576,2,13584,383\rangle$	$2.16 \mathrm{E}+5$	$1.93 \mathrm{E}+05$	$2.95 \mathrm{E}+04$	$2.16 \mathrm{E}+05$	$2.16 \mathrm{E}+05$	$2.16 \mathrm{E}+05$
lang16	$\langle 1024,2,32320,639\rangle$	$6.53 \mathrm{E}+08$	$5.97 \mathrm{E}+08$	$8.22 \mathrm{E}+06$	$6.28 \mathrm{E}+06$	$6.51 \mathrm{E}+08$	$6.99 \mathrm{E}+08$
lang19	$\langle 1444,2,54226,927\rangle$	$5.13 \mathrm{E}+11$	$9.73 \mathrm{E}+10$	$6.87 \mathrm{E}+08$	$8.52 \mathrm{E}+05$	$6.38 \mathrm{E}+11$	$7.31 \mathrm{E}+11$
lang20	$\langle 1600,2,63280,1023\rangle$	$5.27 \mathrm{E}+12$	$1.13 \mathrm{E}+11$	$3.99 \mathrm{E}+09$	$8.55 \mathrm{E}+04$	$2.83 \mathrm{E}+12$	$3.45 \mathrm{E}+12$
lang23	$\langle 2116,2,96370,1407\rangle$	$7.60 \mathrm{E}+15$	$7.53 \mathrm{E}+14$	$3.70 \mathrm{E}+12$	X	$4.17 \mathrm{E}+15$	$4.19 \mathrm{E}+15$
lang24	$\langle 2304,2,109536,1535\rangle$	$9.37 \mathrm{E}+16$	$1.17 \mathrm{E}+13$	$4.15 \mathrm{E}+11$	X	$8.74 \mathrm{E}+15$	$1.40 \mathrm{E}+16$
lang27	$\langle 2916,2,156114,1919\rangle$		$4.38 \mathrm{E}+16$	$1.32 \mathrm{E}+14$	X	$2.41 \mathrm{E}+19$	$2.65 \mathrm{E}+19$

Time Bound: 10 hrs

Solution Counts vs Time for lang24.cnf

Exact	ApproxCount $\cdots \cdots \times \cdots$	SS/UB $\cdots \cdots$	
SampleCount $\cdots+\cdots$	SS/LB	$\cdots-\boldsymbol{\square}-\cdots$	

Results: Probability of Evidence Linkage instances (UAI 2006 evaluation)

Problem	$\langle n, k, e, w\rangle$	Exact	VEC	EDBP	SS/LB	SS/UB
BN_69	$\langle 777,7,78,47\rangle$	$5.28 \mathrm{E}-054$	$1.93 \mathrm{E}-61$	$2.39 \mathrm{E}-57$	3.00E-55	$3.00 \mathrm{E}-55$
BN_70	$\langle 2315,5,159,87\rangle$	$2.00 \mathrm{E}-71$	$7.99 \mathrm{E}-82$	$6.00 \mathrm{E}-79$	$\mathbf{1 . 2 1 E - 7 3}$	$1.21 \mathrm{E}-73$
BN_71	$\langle 1740,6,202,70\rangle$	$5.12 \mathrm{E}-111$	$7.05 \mathrm{E}-115$	$1.01 \mathrm{E}-114$	$\mathbf{1 . 2 8 E}-111$	$1.28 \mathrm{E}-111$
BN_72	$\langle 2155,6,252,86\rangle$	$4.21 \mathrm{E}-150$	$1.32 \mathrm{E}-153$	$9.21 \mathrm{E}-155$	$\mathbf{4 . 7 3 \mathrm { E } - 1 5 0}$	$4.73 \mathrm{E}-150$
BN_73	$\langle 2140,5,216,101\rangle$	$2.26 \mathrm{E}-113$	$6.00 \mathrm{E}-127$	$2.24 \mathrm{E}-118$	$2.00 \mathrm{E}-115$	$2.00 \mathrm{E}-115$
BN_74	$\langle 749,6,66,45\rangle$	$3.75 \mathrm{E}-45$	3.30E-48	$5.84 \mathrm{E}-48$	$\mathbf{2 . 1 3 \mathrm { E } - 4 6}$	$2.13 \mathrm{E}-46$
BN_75	$\langle 1820,5,155,92\rangle$	$5.88 \mathrm{E}-91$	5.83E-97	3.10E-96	$\mathbf{2 . 1 9 \mathrm { E } - 9 1}$	$2.19 \mathrm{E}-91$
BN_76	$\langle 2155,7,169,64\rangle$	$4.93 \mathrm{E}-110$	$1.00 \mathrm{E}-126$	$3.86 \mathrm{E}-114$	$\mathbf{1 . 9 5 E}-111$	$1.95 \mathrm{E}-111$

Time Bound: $\mathbf{3}$ hrs

Results: Probability of Evidence

 Linkage instances (UAI 2008 evaluation)| Problem | $\langle n, k, e, w\rangle$ | Exact | SS/LB | SS/UB | VEC | EDBP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pedigree 18 | <1184, 1, 0, 26 ${ }^{\text {b }}$ | 7.18E-79 | 7.39E-79 | 7.39E-79 | 7.18E-79* | 7.18E-79* |
| pedigreel | $\langle 334,2,0,20\rangle$ | $7.81 \mathrm{E}-15$ | $7.81 \mathrm{E}-15$ | $7.81 \mathrm{E}-15$ | 7.81E-15 | $7.81 \mathrm{E}-1{ }^{*}$ |
| pedigree20 | $\langle 437,2,0,25\rangle$ | $2.34 \mathrm{E}-30$ | 2.31E-30 | $2.31 \mathrm{E}-30$ | 2.34E-30* | $6.19 \mathrm{E}-31$ |
| pedigree23 | $\langle 402,1,0,26\rangle$ | $2.78 \mathrm{E}-39$ | 2.76E-39 | 2.76E-39 | 2.78E-39* | $1.52 \mathrm{E}-39$ |
| pedigree25 | 〈1289, 1, 0, 38> | $1.69 \mathrm{E}-116$ | 1.69E-116 | 1.69E-116 | 1.69E-116* | 1.69E-116* |
| pedigree 30 | $\langle 1289,1,0,27\rangle$ | $1.84 \mathrm{E}-84$ | $1.90 \mathrm{E}-84$ | $1.90 \mathrm{E}-84$ | 1.85E-84* | 1.85E-84* |
| pedigree37 | <1032, 1, 0, 25> | $2.63 \mathrm{E}-117$ | 1.18E-117 | 1.18E-117 | 2.63E-117* | $5.69 \mathrm{E}-124$ |
| pedigree38 | $\langle 724,1,0,18\rangle$ | 5.64E-55 | 3.80E-55 | 3.80E-55 | 5.65E-55* | $8.41 \mathrm{E}-56$ |
| pedigree39 | $\langle 1272,1,0,29\rangle$ | $6.32 \mathrm{E}-103$ | $6.29 \mathrm{E}-103$ | $6.29 \mathrm{E}-103$ | 6.32E-103* | 6.32E-103* |
| pedigree 42 | $\langle 448,2,0,23\rangle$ | $1.73 \mathrm{E}-31$ | $1.73 \mathrm{E}-31$ | $1.73 \mathrm{E}-31$ | 1.73E-31* | $8.91 \mathrm{E}-32$ |
| pedigree19 | $\langle 793,2,0,23\rangle$ | | 6.76E-60 | 6.76E-60 | $1.597 \mathrm{E}-60$ | $3.35 \mathrm{E}-60$ |
| pedigree31 | <1183, 2, 0, 45> | | 2.08E-70 | 2.08E-70 | $1.67 \mathrm{E}-76$ | $1.34 \mathrm{E}-70$ |
| pedigree34 | $\langle 1160,1,0,59\rangle$ | | 3.84E-65 | 3.84E-65 | $2.58 \mathrm{E}-76$ | $4.30 \mathrm{E}-65$ |
| pedigree 13 | <1077, 1, 0, 51 \rangle | | 7.03E-32 | 7.03E-32 | $2.17 \mathrm{E}-37$ | $6.53 \mathrm{E}-32$ |
| pedigree40 | 〈1030, 2, 0, 49 > | | $1.25 \mathrm{E}-88$ | $1.25 \mathrm{E}-88$ | $2.45 \mathrm{E}-91$ | $7.02 \mathrm{E}-17$ |
| pedigree41 | <1062, 2, 0, 52> | | 4.36E-77 | 4.36E-77 | $4.33 \mathrm{E}-81$ | $1.09 \mathrm{E}-10$ |
| pedigree44 | $\langle 811,1,0,29\rangle$ | | 3.39E-64 | 3.39E-64 | $2.23 \mathrm{E}-64$ | 7.69E-66 |
| pedigree51 | <1152, 1, 0, 51 \rangle | | 2.47E-74 | 2.47E-74 | $5.56 \mathrm{E}-85$ | 6.16E-76 |
| pedigree7 | <1068, 1, 0, 56 \rangle | | 1.33E-65 | 1.33E-65 | $1.66 \mathrm{E}-72$ | $2.93 \mathrm{E}-66$ |
| pedigree9 | $\langle 1118,2,0,41\rangle$ | | 2.93E-79 | $2.93 \mathrm{E}-79$ | $8.00 \mathrm{E}-82$ | $3.13 \mathrm{E}-89$ |

Time Bound: 3 hrs

Probability of Evidence vs Time for BN_76, num-vars= 2155

Results on Marginals

- Evaluation Criteria

$$
\begin{aligned}
& \text { Exact }: P\left(x_{i}\right) \quad \text { Approximate }: A\left(x_{i}\right) \\
& \text { Hellinger dis } \tan c e=\frac{\sum_{i=1}^{n} \frac{1}{2} \sum_{x_{i} \in D_{i}}\left(\sqrt{P\left(x_{i}\right)}-\sqrt{A\left(x_{i}\right)}\right)^{2}}{n}
\end{aligned}
$$

- Always bounded between 0 and 1
- Lower Bounds the KL distance
- When probabilities close to zero are present KL distance may tend to infinity.

Results: Posterior Marginals

Linkage instances (UAI 2006 evaluation)

Problem	$\langle n, K, e, w\rangle$	SampleSearch	IJGP	EPIS	EDBP
BN_69	$\langle 777,7,78,47\rangle$	$\mathbf{9 . 4 E - 0 4}$	$3.2 \mathrm{E}-02$	1	$8.0 \mathrm{E}-02$
BN_70	$\langle 2315,5,159,87\rangle$	$\mathbf{2 . 6 E - 0 3}$	$3.3 \mathrm{E}-02$	1	$9.6 \mathrm{E}-02$
BN_71	$\langle 1740,6,202,70\rangle$	$\mathbf{5 . 6 E - 0 3}$	$1.9 \mathrm{E}-02$	1	$2.5 \mathrm{E}-02$
BN_72	$\langle 2155,6,252,86\rangle$	$\mathbf{3 . 6 E - 0 3}$	$7.2 \mathrm{E}-03$	1	$1.3 \mathrm{E}-02$
BN_73	$\langle 2140,5,216,101\rangle$	$\mathbf{2 . 1 E - 0 2}$	$2.8 \mathrm{E}-02$	1	$6.1 \mathrm{E}-02$
BN_74	$\langle 749,6,66,45\rangle$	$6.9 \mathrm{E}-04$	$\mathbf{4 . 3 E - 0 6}$	1	$4.3 \mathrm{E}-02$
BN_75	$\langle 1820,5,155,92\rangle$	$\mathbf{8 . 0 E - 0 3}$	6.2E-02	1	$9.3 \mathrm{E}-02$
BN_76	$\langle 2155,7,169,64\rangle$	$\mathbf{1 . 8 E - 0 2}$	2.6E-02	1	$2.7 \mathrm{E}-02$

Time Bound: 3 hrs
Distance measure: Hellinger distance

Approximation Error vs Time for BN_70, num-vars= 2315

$$
\begin{gathered}
\hline \text { SampleSearch } \\
\text { IJGP } \ldots+\boldsymbol{+}
\end{gathered} \begin{aligned}
& \text { EPIS } \\
& \hline
\end{aligned}
$$

Summary: SampleSearch

- Manages rejection problem while sampling
- Systematic backtracking search
- Sampling Distribution of SampleSearch is the backtrack-free distribution Q^{F}
- Expensive to compute
- Approximation of Q^{F} based on storing all traces that yields an asymptotically unbiased estimator
- Linear time and space overhead
- Bound the sample mean from above and below
- Empirically, when a substantial number of zero probabilities are present, SampleSearch based schemes dominate their pure sampling counter-parts and Generalized Belief Propagation.

Overview

1. Probabilistic Reasoning/Graphical models
2. Importance Sampling
3. Markov Chain Monte Carlo: Gibbs Sampling
4. Sampling in presence of Determinism
5. Rao-Blackwellisation
6. AND/OR importance sampling

Sampling: Performance

- Gibbs sampling
- Reduce dependence between samples
- Importance sampling
- Reduce variance
- Achieve both by sampling a subset of variables and integrating out the rest (reduce dimensionality), aka Rao-Blackwellisation
- Exploit graph structure to manage the extra cost

Smaller Subset State-Space

- Smaller state-space is easier to cover

$$
D(X)=64
$$

$$
D(X)=16
$$

Smoother Distribution

$\mathbf{P}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$
$\square 0-0.1 \square 0.1-0.2 \square 0.2-0.26$

$\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$
$\square 0-0.1 \square 0.1-0.2 \quad$ 0.2-0.26

Speeding Up Convergence

- Mean Squared Error of the estimator:

$$
\operatorname{MSE}_{Q}[\bar{P}]=B I A S^{2}+\operatorname{Var}_{Q}[\bar{P}]
$$

- In case of unbiased estimator, $\mathrm{BIAS}=0$

$$
\operatorname{MSE}_{Q}[\hat{P}]=\operatorname{Var}_{Q}[\hat{P}]=\left(E_{Q}[\hat{P}]^{2}-E_{Q}[P]^{2}\right)
$$

- Reduce variance \Rightarrow speed up convergence !

Rao-Blackwellisation

$$
\begin{aligned}
& X=R \bigcup L \\
& \hat{g}(x)=\frac{1}{T}\left\{h\left(x^{1}\right)+\cdots+h\left(x^{T}\right)\right\} \\
& \tilde{g}(x)=\frac{1}{T}\left\{E\left[h(x) \mid l^{1}\right]+\cdots+E\left[h(x) \mid l^{T}\right]\right\} \\
& \operatorname{Var}\{g(x)\}=\operatorname{Var}\{E[g(x) \mid l]\}+E\{\operatorname{var}[g(x) \mid l]\} \\
& \operatorname{Var}\{g(x)\} \geq \operatorname{Var}\{E[g(x) \mid l]\} \\
& \operatorname{Var}\{\hat{g}(x)\}=\frac{\operatorname{Var}\{h(x)\}}{T} \geq \frac{\operatorname{Var}\{E[h(x) \mid l]\}}{T}=\operatorname{Var}\{\tilde{g}(x)\}
\end{aligned}
$$

Liu, Ch.2.3

Rao-Blackwellisation

"Carry out analytical computation as much as possible" - Liu

- X=RUL
- Importance Sampling:

$$
\operatorname{Var}_{Q}\left\{\frac{P(R, L)}{Q(R, L)}\right\} \geq \operatorname{Var}_{Q}\left\{\frac{P(R)}{Q(R)}\right\} \quad \text { Liu, Ch.2.5.5 }
$$

- Gibbs Sampling:
- autocovariances are lower (less correlation between samples)
- if X_{i} and X_{j} are strongly correlated, $X_{i}=0 \leftrightarrow X_{j}=0$, only include one fo them into a sampling set

Blocking Gibbs Sampler vs. Collapsed

- Standard Gibbs:

$$
\begin{equation*}
P(x \mid y, z), P(y \mid x, z), P(z \mid x, y) \tag{1}
\end{equation*}
$$

Faster
Convergence

- Blocking:

$$
\begin{equation*}
P(x \mid y, z), P(y, z \mid x) \tag{2}
\end{equation*}
$$

- Collapsed:

$$
\begin{equation*}
P(x \mid y), P(y \mid x) \tag{3}
\end{equation*}
$$

Collapsed Gibbs Sampling

Generating Samples

Generate sample $\mathrm{c}^{\mathrm{t}+1}$ from c^{t} :

$$
\begin{aligned}
& C_{1}=c_{1}^{t+1} \leftarrow P\left(c_{1} \mid c_{2}^{t}, c_{3}^{t}, \ldots, c_{K}^{t}, e\right) \\
& C_{2}=c_{2}^{t+1} \leftarrow P\left(c_{2} \mid c_{1}^{t+1}, c_{3}^{t}, \ldots, c_{K}^{t}, e\right) \\
& \ldots \\
& C_{K}=c_{K}^{t+1} \leftarrow P\left(c_{K} \mid c_{1}^{t+1}, c_{2}^{t+1}, \ldots, c_{K-1}^{t+1}, e\right)
\end{aligned}
$$

In short, for $\mathrm{i}=1$ to K :

$$
C_{i}=c_{i}^{t+1} \leftarrow \text { sampled from } P\left(c_{i} \mid c^{t} \backslash c_{i}, e\right)
$$

Collapsed Gibbs Sampler

Input: $C \subset X, E=e$
Output: T samples $\left\{c^{t}\right\}$
Fix evidence $E=e$, initialize c^{0} at random

1. For $\mathrm{t}=1$ to T (compute samples)
2. For $\mathrm{i}=1$ to N (loop through variables)
3. $\quad c_{i}^{t+1} \leftarrow P\left(C_{i}\left|c^{t}\right| c_{i}\right)$
4. End For
5. End For

Calculation Time

- Computing $P\left(c_{i} \mid c^{t} \backslash c_{j}, e\right)$ is more expensive (requires inference)
- Trading \#samples for smaller variance:
- generate more samples with higher covariance
- generate fewer samples with lower covariance
- Must control the time spent computing sampling probabilities in order to be timeeffective!

Exploiting Graph Properties

Recall... computation time is exponential in the adjusted induced width of a graph

- w-cutset is a subset of variable s.t. when they are observed, induced width of the graph is w
- when sampled variables form a w-cutset, inference is $\exp (w)$ (e.g., using Bucket Tree Elimination)
- cycle-cutset is a special case of w-cutset Sampling w-cutset \Rightarrow w-cutset sampling!

What If $\mathrm{C}=$ Cycle-Cutset ?

$$
c^{0}=\left\{x_{2}^{0}, x_{5}^{0}\right\}, E=\left\{X_{9}\right\}
$$

$\mathrm{P}\left(\mathrm{x}_{2}, \mathrm{x}_{5}, \mathrm{x}_{9}\right)$ - computation complexity is $\mathrm{O}(\mathrm{N})$

Computing Transition Probabilities

Compute joint probabilities:

$$
\begin{aligned}
& B E: P\left(x_{2}=0, x_{3}, x_{9}\right) \\
& B E: P\left(x_{2}=1, x_{3}, x_{9}\right)
\end{aligned}
$$

Normalize:

$$
\begin{aligned}
& \alpha=P\left(x_{2}=0, x_{3}, x_{9}\right)+P\left(x_{2}=1, x_{3}, x_{9}\right) \\
& P\left(x_{2}=0 \mid x_{3}\right)=\alpha P\left(x_{2}=0, x_{3}, x_{9}\right) \\
& P\left(x_{2}=1 \mid x_{3}\right)=\alpha P\left(x_{2}=1, x_{3}, x_{9}\right)
\end{aligned}
$$

Cutset Sampling-Answering Queries

- Query: $\forall c_{i} \in C, P\left(c_{i} \mid e\right)=$? same as Gibbs:

$$
\hat{P}\left(c_{i} \mid e\right)=\frac{1}{T} \sum_{t=1}^{T} P\left(c_{i} \mid c^{t} \backslash c_{i}, e\right)
$$

computed while generating sample t using bucket tree elimination

- Query: $\forall \mathrm{x}_{\mathrm{i}} \in \mathrm{X} \backslash \mathrm{C}, \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mid \mathrm{e}\right)=$?

$$
\bar{P}\left(x_{i} \mid e\right)=\frac{1}{T} \sum_{t=1}^{T} P\left(x_{i} \mid c^{t}, e\right)
$$

Cutset Sampling vs. Outset Conditioning

- Cutset Conditioning

$$
P\left(x_{i} \mid e\right)=\sum_{c \in D(C)} P\left(x_{i} \mid c, e\right) \times P(c \mid e)
$$

- Outset Sampling

$$
\begin{aligned}
& \bar{P}\left(x_{i} \mid e\right)=\frac{1}{T} \sum_{t=1}^{T} P\left(x_{i} \mid c^{t}, e\right) \\
& =\sum_{c \in D(C)} P\left(x_{i} \mid c, e\right) \times \frac{\text { count }(c)}{T} \\
& =\sum_{c \in D(C)} P\left(x_{i} \mid c, e\right) \times{ }^{(c \mid e)}
\end{aligned}
$$

Cutset Sampling Example

 Estimating $P\left(x_{2} \mid e\right)$ for sampling node X_{2} :$$
x_{2}^{1} \leftarrow P\left(x_{2} \mid x_{5}^{0}, x_{9}\right) \text { Sample } 1
$$

$$
x_{2}^{2} \leftarrow P\left(x_{2} \mid x_{5}^{1}, x_{9}\right) \text { Sample 2 }
$$

$$
x_{2}^{3} \leftarrow P\left(x_{2} \mid x_{5}^{2}, x_{9}\right)^{\text {Sample } 3}
$$

$$
\bar{P}\left(x_{2} \mid x_{9}\right)=\frac{1}{3}\left[\begin{array}{l}
P\left(x_{2} \mid x_{5}^{0}, x_{9}\right) \\
+P\left(x_{2} \mid x_{5}^{1}, x_{9}\right) \\
+P\left(x_{2} \mid x_{5}^{2}, x_{9}\right)
\end{array}\right]
$$

Cutset Sampling Example

Estimating $P\left(x_{3} \mid e\right)$ for non-sampled node X_{3} :

$$
\begin{aligned}
& c^{1}=\left\{x_{2}^{1}, x_{5}^{1}\right\} \Rightarrow P\left(x_{3} \mid x_{2}^{1}, x_{5}^{1}, x_{9}\right) \\
& c^{2}=\left\{x_{2}^{2}, x_{5}^{2}\right\} \Rightarrow P\left(x_{3} \mid x_{2}^{2}, x_{5}^{2}, x_{9}\right) \\
& c^{3}=\left\{x_{2}^{3}, x_{5}^{3}\right\} \Rightarrow P\left(x_{3} \mid x_{2}^{3}, x_{5}^{3}, x_{9}\right)
\end{aligned}
$$

$$
P\left(x_{3} \mid x_{9}\right)=\frac{1}{3}\left[\begin{array}{l}
P\left(x_{3} \mid x_{2}^{1}, x_{5}^{1}, x_{9}\right) \\
+P\left(x_{3} \mid x_{2}^{2}, x_{5}^{2}, x_{9}\right) \\
+P\left(x_{3} \mid x_{2}^{3}, x_{5}^{3}, x_{9}\right)
\end{array}\right]
$$

CPCS54 Test Results

MSE vs. \#samples (left) and time (right)
Ergodic, $|X|=54, D\left(X_{i}\right)=2,|C|=15,|E|=3$
Exact Time $=30$ sec using Cutset Conditioning

CPCS179 Test Results

MSE vs. \#samples (left) and time (right) Non-Ergodic (1 deterministic CPT entry) $|X|=179,|C|=8,2<=D\left(X_{i}\right)<=4,|E|=35$
Exact Time $=122$ sec using Cutset Conditioning

CPCS360b Test Results

MSE vs. \#samples (left) and time (right)
Ergodic, $|X|=360, D\left(X_{i}\right)=2,|C|=21,|E|=36$
Exact Time $>60 \mathrm{~min}$ using Cutset Conditioning
Exact Values obtained via Bucket Elimination

Random Networks

MSE vs. \#samples (left) and time (right)
$|X|=100, D\left(X_{i}\right)=2,|C|=13,|E|=15-20$
Exact Time $=30 \mathrm{sec}$ using Cutset Conditioning

Coding Networks

Cutset Transforms Non-Ergodic Chain to Ergodic

MSE vs. time (right)
Non-Ergodic, $|X|=100, D\left(X_{i}\right)=2,|C|=13-16,|E|=50$
Sample Ergodic Subspace $\mathrm{U}=\left\{\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots \mathrm{U}_{\mathrm{k}}\right\}$
Exact Time $=50 \mathrm{sec}$ using Cutset Conditioning

Non-Ergodic Hailfinder

MSE vs. \#samples (left) and time (right)
Non-Ergodic, $|X|=56,|C|=5,2<=D\left(X_{i}\right)<=11,|E|=0$
Exact Time $=2$ sec using Loop-Cutset Conditioning

CPCS360b - MSE

MSE vs. Time
Ergodic, $|X|=360,|C|=26, D\left(X_{i}\right)=2$
Exact Time $=50 \mathrm{~min}$ using BTE

Cutset Importance Sampling

(Gogate \& Dechter, 2005) and (Bidyuk \& Dechter, 2006)

- Apply Importance Sampling over cutset C

$$
\hat{P}(e)=\frac{1}{T} \sum_{t=1}^{T} \frac{P\left(c^{t}, e\right)}{Q\left(c^{t}\right)}=\frac{1}{T} \sum_{t=1}^{T} w^{t}
$$

where $P\left(c^{t}, e\right)$ is computed using Bucket Elimination

$$
\begin{aligned}
& \bar{P}\left(c_{i} \mid e\right)=\alpha \frac{1}{T} \sum_{t=1}^{T} \delta\left(c_{i}, c^{t}\right) w^{t} \\
& \bar{P}\left(x_{i} \mid e\right)=\alpha \frac{1}{T} \sum_{t=1}^{T} P\left(x_{i} \mid c^{t}, e\right) w^{t}
\end{aligned}
$$

Likelihood Cutset Weighting (LCS)

- Z=Topological Order\{C,E\}
- Generating sample t+1:

For $Z_{i} \in Z$ do :

$$
\begin{aligned}
& \text { If } Z_{i} \in E \\
& \qquad z_{i}^{t+1}=z_{i}, z_{i} \in e
\end{aligned}
$$

Else

$$
z_{i}^{t+1} \leftarrow P\left(Z_{i} \mid z_{1}^{t+1}, \ldots, z_{i-1}^{t+1}\right)
$$

End If

- computed while generating sample t
using bucket tree elimination
- can be memoized for some number of instances K
(based on memory available

End For

$$
K L[P(C \mid e), Q(C)] \leq K L[P(X \mid e), Q(X)]
$$

Pathfinder 1

Pathfinder 2

Link

Summary

Importance Sampling

- i.i.d. samples
- Unbiased estimator
- Generates samples fast
- Samples from Q
- Reject samples with zero-weight
- Improves on cutset

Gibbs Sampling

- Dependent samples
- Biased estimator
- Generates samples slower
- Samples from $\bar{P}(X \mid e)$
- Does not converge in presence of constraints
- Improves on cutset

CPCS360b

LW - likelihood weighting
LCS - likelihood weighting on a cutset

CPCS422b

LW - likelihood weighting
LCS - likelihood weighting on a cutset

Coding Networks

LW - likelihood weighting
LCS - likelihood weighting on a cutset

Overview

1. Probabilistic Reasoning/Graphical models
2. Importance Sampling
3. Markov Chain Monte Carlo: Gibbs Sampling
4. Sampling in presence of Determinism
5. Rao-Blackwellisation
6. AND/OR importance sampling

Motivation

Expected value of the number on the face of a die:

$$
\frac{1+2+3+4+5+6}{6}=3.5
$$

What is the expected value of the product of the numbers on the face of " k " dice?
$(3.5)^{k}$

Monte Carlo estimate

- Perform the following experiment N times.
- Toss all the k dice.
- Record the product of the numbers on the top face of each die.
- Report the average over the N runs.
$\hat{Z}=\frac{1}{N} \sum_{i=1}^{N} \prod_{j=1}^{k}$ (the number on the face of the $" \mathrm{j}^{\mathrm{th}}$ "dice in the $\mathrm{N}^{\text {th }}$ run)

How the sample average converges?

10 dice. Exact Answer is (3.5) ${ }^{10}$

But This is Really Dumb?

- The dice are independent.
- A better Monte Carlo estimate

1. Perform the experiment N times
2. For each dice record the average
3. Take a product of the averages
$\hat{Z}_{\text {new }}=\prod_{j=1}^{k} \frac{1}{N} \sum_{i=1}^{N}$ (the number on the face of the " $\mathrm{j}^{\text {th }}$ " dice in the $\mathrm{N}^{\text {th }}$ run)

- Conventional estimate: Averages of products.
$\hat{Z}=\frac{1}{N} \sum_{i=1}^{N} \prod_{j=1}^{k}$ (the number on the face of the " j " "dice in the $\mathrm{N}^{\text {th }}$ run)

How the sample Average Converges

Moral of the story

- Make use of (conditional) independence to get better results
- Used for exact inference extensively
- Bucket Elimination (Dechter, 1996)
- Junction tree (Lauritzen and Speigelhalter, 1988)
- Value Elimination (Bacchus et al. 2004)
- Recursive Conditioning (Darwiche, 2001)
- BTD (Jegou et al., 2002)
- AND/OR search (Dechter and Mateescu, 2007)
- How to use it for sampling?
- AND/OR Importance sampling

Background: AND/OR search space

Problem

AND/OR sampling: Example

AND/OR Importance Sampling (General Idea)

- Decompose Expectation $P(d, f)=\sum_{a, b, c} P(a) P(c \mid a) P(b \mid a) P(d \mid b) P(f \mid c)$
$Q(A, B, C)=Q(A) Q(B \mid A) Q(C \mid A)$
Pseudo-tree

$$
\begin{aligned}
& P(d, f)=\sum_{a, b, c} \frac{P(a) P(c \mid a) P(b \mid a) P(d \mid b) P(f \mid c)}{Q(a) Q(b \mid a) Q(c \mid a)} Q(a) Q(b \mid a) Q(c \mid a) \\
& \quad=E_{Q}\left[\frac{P(a) P(c \mid a) P(b \mid a) P(d \mid b) P(f \mid c)}{Q(a) Q(b \mid a) Q(c \mid a)}\right]
\end{aligned}
$$

AND/OR Importance Sampling
 (General Idea)

Pseudo-tree

- Decompose Expectation

AND/OR Importance Sampling

(General Idea)

- Compute all expectations separately
- How?
- Record all samples
(B)

Pseudo-tree

- For each sample that has $A=a$
- Estimate the conditional expectations separately using the generated samples
- Combine the results

AND/OR Importance Sampling

Pseudo-tree

Sample \#	A	B	C
1	0	1	0
2	0	2	1
3	1	1	1
4	1	2	0

Estimate of $E\left[\left.\frac{P(b \mid A=0) P(d \mid b)}{Q(b \mid A=0)} \right\rvert\, A=0\right]$
$=$ Average Weight of samples of B having $A=0$
$=\frac{\mathrm{w}(\mathrm{B}=1, \mathrm{~A}=0)+\mathrm{w}(\mathrm{B}=2, A=0)}{2}$

AND/OR Importance Sampling

All AND nodes: Separate Components. Take Product Operator: Product
All OR nodes: Conditional Expectations given the assignment above it

Operator: Weighted Average

Algorithm AND/OR Importance Sampling

1. Construct a pseudo-tree.
2. Construct a proposal distribution along the pseudo-tree
3. Generate samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ from Q along O.
4. Build a AND/OR sample tree for the samples $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{N}}$ along the ordering O.
5. FOR all leaf nodes i of $A N D-O R$ tree do
6. IF AND-node $\mathbf{v}(\mathrm{i})=1 \mathrm{ELSE} \mathbf{v}(\mathrm{i})=\mathbf{0}$
7. FOR every node n from leaves to the root do
8. IF AND-node v(n)=product of children
9. IF OR-node $v(n)=A v e r a g e ~ o f ~ c h i l d r e n ~$
10. Return v(root-node)

\# samples in AND/OR vs Conventional

- 8 Samples in AND/OR space versus 4 samples in importance sampling
- Example: $A=0, B=2, C=0$ is not generated but still considered in the AND/OR space

Why AND/OR Importance Sampling

- AND/OR estimates have smaller variance.
- Variance Reduction
- Easy to Prove for case of complete independence (Goodman, 1960)

$$
\begin{array}{ll}
V[\overline{x y}]=\frac{V[x] E[y]^{2}}{N}+\frac{V[y] E[x]^{2}}{N}+\frac{V[x] V[y]}{N}, \text { not independent } & \begin{array}{l}
\text { Note the } \\
\text { squared } \\
\text { term. }
\end{array} \\
V[\bar{x} \bar{y}]=\frac{V[x] E[y]^{2}}{N}+\frac{V[y] E[x]^{2}}{N}+\frac{V[x] V[y]}{N^{2}}, \text { independent } &
\end{array}
$$

- Complicated to prove for general conditional independence case (See Vibhav Gogate's thesis)!

Combining AND/OR sampling and w-cutset sampling

$$
\operatorname{Var}_{Q}[\hat{P}(e)]=\operatorname{Var}_{Q}\left[\frac{1}{N} \sum_{i=1}^{N} w\left(z^{i}\right)\right]=\frac{\operatorname{Var}_{Q}[w(z)]}{N}
$$

- Reduce the variance of weights
- Rao-Blackwellised w-cutset sampling (Bidyuk and Dechter, 2007)
- Increase the number of samples; kind of
- AND/OR Tree and Graph sampling (Gogate and Dechter, 2008)
- Combine the two

Algorithm AND/OR w-cutset sampling

Given an integer constant w

1. Partition the set of variables into K and R, such that the treewidth of R is bounded by w.
2. AND/OR sampling on K
3. Construct a pseudo-tree of K and compute $Q(K)$ consistent with K
4. Generate samples from $Q(K)$ and store them on an AND/OR tree
5. Rao-Blackwellisation (Exact inference) at each leaf
6. For each leaf node of the tree compute $Z(R \mid g)$ where g is the assignment from the leaf to the root.
7. Value computation: Recursively from the leaves to the root
8. At each AND node compute product of values at children
9. At each OR node compute a weighted average over the values at children
10. Return the value of the root node

AND/OR w-cutset sampling:

Step 1: Partition the set of variables

Practical constraint: Can only perform exact inference if the treewidth is bounded by 1.

Graphical model

AND/OR w-cutset sampling:

Step 2: AND/OR sampling over $\{A, B, C\}$

Pseudo-tree
Graphical model

AND/OR w-cutset sampling:
Step 2: AND/OR sampling over $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$

Pseudo-tree

Samples: ($C=0, A=0, B=1$), $(C=0, A=1, B=1)$,
($C=1, A=0, B=0),(C=1, A=1, B=0)$

AND/OR w-cutset sampling:

Step 3: Exact inference at each leaf

AND/OR w-cutset sampling: Step 4: Value computation

Properties and Improvements

- Basic underlying scheme for sampling remains the same
- The only thing that changes is what you estimate from the samples
- Can be combined with any state-of-the-art importance sampling technique
- Graph vs Tree sampling
- Take full advantage of the conditional independence properties uncovered from the primal graph

AND/OR w-cutset sampling Advantages and Disadvantages

- Advantages
- Variance Reduction
- Relatively fewer calls to the Rao-Blackwellisation step due to efficient caching (Lazy Rao-Blackwellisation)
- Dynamic Rao-Blackwellisation when context-specific or logical dependencies are present
- Particularly suitable for Markov logic networks (Richardson and Domingos, 2006).
- Disadvantages
- Increases time and space complexity and therefore fewer samples may be generated.

Take away Figure:

Variance Hierarchy and Complexity

Experiments

- Benchmarks
- Linkage analysis
- Graph coloring
- Algorithms
- OR tree sampling
- AND/OR tree sampling
- AND/OR graph sampling
- w-cutset versions of the three schemes above

Results: Probability of Evidence Linkage instances (UAI 2006 evaluation)

Problem	$\left\langle n, k, E, t^{*}, c\right\rangle$	Exact	or- tree-IS an	a0- tree-IS Δ	a0- graph-IS Δ	or-wc- tree-IS Δ	a0-wc- tree-IS Δ	a0-wc- graph-IS Δ
BN_69.uai	$\langle 777,7,78,47,59\rangle$	$5.28 \mathrm{E}-54$	$2.26 \mathrm{E}-02$	$2.46 \mathrm{E}-02$	$2.43 \mathrm{E}-02$	$2.42 \mathrm{E}-02$	$2.34 \mathrm{E}-02$	$4.22 \mathrm{E}-03$
BN_70.uai	$\langle 2315,5,159,87,98\rangle$	$2.00 \mathrm{E}-71$	$6.32 \mathrm{E}-02$	$7.25 \mathrm{E}-02$	$5.12 \mathrm{E}-02$	$8.18 \mathrm{E}-02$	$5.36 \mathrm{E}-02$	$2.62 \mathrm{E}-02$
BN_71.uai	$\langle 1740,6,202,70,139\rangle$	$5.12 \mathrm{E}-111$	$6.74 \mathrm{E}-02$	$5.51 \mathrm{E}-02$	$2.35 \mathrm{E}-02$	$8.58 \mathrm{E}-02$	$9.46 \mathrm{E}-03$	$1.21 \mathrm{E}-02$
BN_72.uai	$\langle 2155,6,252,86,88\rangle$	$4.21 \mathrm{E}-150$	$3.19 \mathrm{E}-02$	$4.61 \mathrm{E}-02$	$2.46 \mathrm{E}-03$	$6.12 \mathrm{E}-02$	$1.41 \mathrm{E}-03$	$2.63 \mathrm{E}-03$
BN_73.uai	$\langle 2140,5,216,101,149\rangle$	$2.26 \mathrm{E}-113$	$1.18 \mathrm{E}-01$	$1.12 \mathrm{E}-01$	$4.55 \mathrm{E}-02$	$1.58 \mathrm{E}-01$	$3.54 \mathrm{E}-02$	$3.95 \mathrm{E}-02$
BN_74.uai	$\langle 749,6,66,45,72\rangle$	$3.75 \mathrm{E}-45$	$5.34 \mathrm{E}-02$	$4.31 \mathrm{E}-02$	$2.87 \mathrm{E}-02$	$8.08 \mathrm{E}-02$	$2.83 \mathrm{E}-02$	$2.76 \mathrm{E}-02$
BN_75.uai	$\langle 1820,5,155,92,131\rangle$	$5.88 \mathrm{E}-91$	$4.47 \mathrm{E}-02$	$8.15 \mathrm{E}-02$	$4.73 \mathrm{E}-02$	$7.28 \mathrm{E}-02$	$4.20 \mathrm{E}-02$	$7.60 \mathrm{E}-03$
BN_76.uai	$\langle 2155,7,169,64,239\rangle$	$4.93 \mathrm{E}-110$	$1.07 \mathrm{E}-01$	$1.39 \mathrm{E}-01$	$6.95 \mathrm{E}-02$	$1.13 \mathrm{E}-01$	$5.03 \mathrm{E}-02$	$2.26 \mathrm{E}-02$
BN_77.uai	$\langle 1020,9,135,22,97\rangle$	$6.88 \mathrm{E}-79$	$1.06 \mathrm{E}-01$	$9.38 \mathrm{E}-02$	$8.26 \mathrm{E}-02$	$1.24 \mathrm{E}-01$	$6.75 \mathrm{E}-02$	$3.27 \mathrm{E}-02$

Time Bound: 1hr

Log Relative error Error vs Time for BN_76, num-vars= 2155

IS	ao-graph-IS ...***..	ao-wc-tree-IS
ao-tree-IS \quad--X--.		ao-wc-graph-IS ... ${ }^{\text {(0) }}$

Results: Probability of Evidence

 Linkage instances (UAI 2008 evaluation)| Problem | $\left\langle n, k, E, t^{*}, w\right\rangle$ | Exact | $\begin{gathered} \text { or- } \\ \text { tree-IS } \end{gathered}$ Δ | $\begin{gathered} \text { ao- } \\ \text { tree-IS } \end{gathered}$ Δ | $\begin{gathered} \text { ao- } \\ \text { graph-IS } \\ \Delta \end{gathered}$ | $\begin{aligned} & \text { or-wc- } \\ & \text { tree-IS } \end{aligned}$ Δ | ao-wc-tree-IS Δ | $\begin{array}{\|c} \hline \text { ao-wc- } \\ \text { graph-IS } \\ \Delta \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pedigree18.uai | $\langle 1184,1,0,26,72\rangle$ | 4.19E-79 | $3.17 \mathrm{E}-02$ | 3.44E-02 | 3.20E-03 | 4.30E-02 | $3.49 \mathrm{E}-04$ | 3.02E-04 |
| pedigree19.uai | $\langle 793,2,0,23,102\rangle$ | $1.59 \mathrm{E}-60$ | $1.32 \mathrm{E}-01$ | $1.28 \mathrm{E}-01$ | $5.41 \mathrm{E}-02$ | 8.92E-02 | $1.79 \mathrm{E}-03$ | $2.97 \mathrm{E}-03$ |
| pedigree 1.uai | $\langle 334,2,0,20,27\rangle$ | $7.81 \mathrm{E}-15$ | $2.18 \mathrm{E}-03$ | $1.90 \mathrm{E}-03$ | $1.73 \mathrm{E}-04$ | $3.15 \mathrm{E}-05$ | $7.61 \mathrm{E}-06$ | $1.13 \mathrm{E}-05$ |
| pedigree20.uai | $\langle 437,2,0,25,33\rangle$ | $2.34 \mathrm{E}-30$ | $1.52 \mathrm{E}-01$ | $1.56 \mathrm{E}-01$ | 2.12E-03 | $6.93 \mathrm{E}-02$ | $9.17 \mathrm{E}-04$ | $1.18 \mathrm{E}-03$ |
| pedigree23.uai | $\langle 402,1,0,26,29\rangle$ | $2.00 \mathrm{E}-40$ | $2.62 \mathrm{E}-02$ | $2.74 \mathrm{E}-02$ | $2.90 \mathrm{E}-02$ | $2.82 \mathrm{E}-02$ | $2.88 \mathrm{E}-02$ | $2.88 \mathrm{E}-02$ |
| pedigree37.uai | $\langle 1032,1,0,25,36\rangle$ | $2.63 \mathrm{E}-117$ | $2.46 \mathrm{E}-02$ | $3.50 \mathrm{E}-03$ | 3.24E-03 | $1.45 \mathrm{E}-02$ | $3.00 \mathrm{E}-03$ | $3.01 \mathrm{E}-03$ |
| pedigree38.uai | $\langle 724,1,0,18,45\rangle$ | $5.64 \mathrm{E}-55$ | $4.08 \mathrm{E}-02$ | $1.40 \mathrm{E}-02$ | $1.25 \mathrm{E}-02$ | $1.69 \mathrm{E}-02$ | $8.91 \mathrm{E}-03$ | 8.79E-03 |
| pedigree39.uai | $\langle 1272,1,0,29,42\rangle$ | $6.32 \mathrm{E}-103$ | $8.67 \mathrm{E}-02$ | $5.11 \mathrm{E}-02$ | $1.72 \mathrm{E}-03$ | $1.89 \mathrm{E}-02$ | $2.31 \mathrm{E}-04$ | $2.13 \mathrm{E}-04$ |
| pedigree42.uai | $\langle 448,2,0,23,50\rangle$ | $1.73 \mathrm{E}-31$ | $4.29 \mathrm{E}-03$ | $1.94 \mathrm{E}-03$ | 5.06E-04 | $1.11 \mathrm{E}-03$ | $3.53 \mathrm{E}-05$ | $3.17 \mathrm{E}-05$ |
| pedigree31.uai | $\langle 1183,2,0,45,118\rangle$ | | $1.09 \mathrm{E}-01$ | $1.31 \mathrm{E}-01$ | $4.15 \mathrm{E}-02$ | $8.34 \mathrm{E}-02$ | $0.00 \mathrm{E}+00$ | $2.93 \mathrm{E}-04$ |
| pedigree34.uai | $\langle 1160,1,0,59,104\rangle$ | | $2.12 \mathrm{E}-01$ | $1.47 \mathrm{E}-01$ | $8.37 \mathrm{E}-02$ | $8.09 \mathrm{E}-02$ | $4.83 \mathrm{E}-04$ | 0.00E+00 |
| pedigree13.uai | $\langle 1077,1,0,51,98\rangle$ | | $3.93 \mathrm{E}-01$ | $3.93 \mathrm{E}-01$ | 5.66E-02 | $9.11 \mathrm{E}-02$ | $1.51 \mathrm{E}-04$ | 0.00E+00 |
| pedigree41.uai | $\langle 1062,2,0,52,95\rangle$ | | $1.12 \mathrm{E}-01$ | $5.06 \mathrm{E}-02$ | 8.23E-04 | $5.04 \mathrm{E}-02$ | $0.00 \mathrm{E}+00$ | $3.15 \mathrm{E}-04$ |
| pedigree44.uai | $\langle 811,1,0,29,64\rangle$ | | $3.16 \mathrm{E}-02$ | $3.08 \mathrm{E}-02$ | $2.27 \mathrm{E}-03$ | $1.90 \mathrm{E}-02$ | $0.00 \mathrm{E}+00$ | $4.63 \mathrm{E}-06$ |
| pedigree51.uai | $\langle 1152,1,0,51,106\rangle$ | | $9.22 \mathrm{E}-02$ | $6.39 \mathrm{E}-02$ | $2.26 \mathrm{E}-02$ | $4.31 \mathrm{E}-02$ | $9.35 \mathrm{E}-05$ | $0.00 \mathrm{E}+00$ |
| pedigree7.uai | $\langle 1068,1,0,56,90\rangle$ | | $7.86 \mathrm{E}-02$ | $9.98 \mathrm{E}-02$ | 2.31E-02 | $4.61 \mathrm{E}-02$ | $4.38 \mathrm{E}-04$ | $0.00 \mathrm{E}+00$ |
| pedigree9.uai | $\langle 1118,2,0,41,80\rangle$ | | $3.29 \mathrm{E}-02$ | 3.19E-02 | $0.00 \mathrm{E}+00$ | $8.25 \mathrm{E}-02$ | $9.74 \mathrm{E}-03$ | $1.01 \mathrm{E}-02$ |

Time Bound: 1hr

Log Relative error Error vs Time for pedigree19, num-vars= 793

	ao-graph-IS 米...	ao-wc-tree-IS ----
ao-tree-IS $\cdots-\times$--		ao-wc-graph-IS

Results：Solution counting Graph coloring instance

Problem	$\left\langle n, k, E, t^{*}, c\right\rangle$	Exact	$\begin{gathered} \text { or- } \\ \text { tree-IS } \\ \Delta \end{gathered}$	$\begin{gathered} \text { a0- } \\ \text { tree-IS } \\ \Delta \end{gathered}$	$\begin{gathered} \text { a0- } \\ \text { graph-IS } \\ \Delta \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { or-wc- } \\ \text { tree-IS } \\ \Delta \end{gathered}$	$\begin{gathered} \hline \text { ao-wc- } \\ \text { tree-IS } \\ \Delta \end{gathered}$	$\begin{gathered} \hline \text { ao-wc- } \\ \text { graph-IS } \end{gathered}$ Δ
4－coloring1．uai	〈400，2，0，71，309＞		3．82E－03	4．05E－03	4．51E－03	6．00E－03	2．35E－03	0．00E＋00
4－coloring2．uai	〈400，2，0，95，315 ${ }^{\text {a }}$		$1.23 \mathrm{E}-02$	9．54E－03	7．64E－03	$3.38 \mathrm{E}-02$	$3.63 \mathrm{E}-02$	0．00E＋00
4－coloring3．uai	〈800，2，0，144，617）		2．86E－03	4．58E－03	2．32E－03	2．41E－02	2．38E－02	0．00E＋00
4－coloring4．uai	〈800，2，0，191，620 \rangle		$2.13 \mathrm{E}-02$	5．06E－03	2．19E－02	1．79E－02	4．69E－03	0．00E＋00
4－coloring5．uai	［1200，2，0，304，925）		2．98E－02	2．81E－02	5．85E－02	5．70E－02	3．89E－02	0．00E＋00
4－coloring6．uai	〈1200，2，0，338，929＞		$3.43 \mathrm{E}-02$	2．72E－02	$2.63 \mathrm{E}-03$	3．17E－03	2．09E－03	0．00E＋00

Time Bound：1hr

Summary: AND/OR Importance sampling

- AND/OR sampling: A general scheme to exploit conditional independence in sampling
- Theoretical guarantees: lower sampling error than conventional sampling
- Variance reduction orthogonal to RaoBlackwellised sampling.
- Better empirical performance than conventional sampling.

[^0]: - theorem makes a weak promise, but works well in practice!
 - improvement depends the choice of R and L

