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Abstract
We consider the following activity recognition task:
given a video, infer the set of activities being per-
formed in the video and assign each frame to an
activity. Although this task can be solved accurately
using existing deep learning techniques, their use
is problematic in interactive settings. In particular,
deep learning models are black boxes: it is difficult
to understand how and why the system assigned a
particular activity to a frame. This reduces the users’
trust in the system, especially in the case of end-
users who need to use the system on a regular basis.
We address this problem by feeding the output of
our proposed deep learning model to a tractable,
interpretable probabilistic graphical model called
dynamic cutset networks and then performing joint
inference over the two. The key benefit of our pro-
posed approach is that deep learning helps achieve
high accuracy while cutset networks because of their
poly-time probabilistic reasoning capabilities make
the system explainable. We demonstrate the efficacy
of our approach using conventional evaluation mea-
sures such as the Jaccard Index and Hamming Loss
as well as a preliminary human subjects study.

1 Introduction
Activity recognition is an important task in video content anal-
ysis as it forms a basis for comprehending and semantically
understanding the video itself. For instance, when a person
is shown a random video clip without any prior information
about its type or content, he/she typically uses activity recog-
nition to help aid his/her understanding of the video. If the
person is shown a cooking video, for example, he/she might
notice certain activities such as eggs being taken out of a re-
frigerator, being beaten, and then being scrambled on a frying
pan. These activities help the viewer conclude that the video is
about “making scrambled eggs.” If, on the other hand, a person
in the video takes an egg out of a refrigerator, throws that egg
at another person, and then laughs, then the observer would
conclude that the video is about a “prank between friends.”

In this paper, we focus on the following activity recognition
task: given a video and a predefined set of activities (including
‘None’), assign an activity to each frame of the video. Recent

advances in machine learning, specifically, deep learning, can
be leveraged to accurately solve this task, assuming that ample
labeled (video) data is available for training. Despite high
accuracy, a hallmark of many deep learning techniques, the
learned algorithms/models are not easily “interpretable” by
developers and end-users. In particular, most deep learning
methods return a black box solution from which it is difficult to
ascertain the reasoning behind the provided answers. This lack
of interpretability is often undesirable, especially for solving
interactive human-machine tasks (cf. Kulesza et al. [2015])
where the user seeks to solve a task or make decisions with
the aid of a machine learning (ML) system. In such cases, the
users need to trust the predictions of the system and be able
to easily determine when the ML system is (typically) correct
and when it is not. To facilitate this, the system should be such
that both its functioning and the reasoning behind its actions
are clear to the users, i.e., the system should be explainable.

The purpose of this paper is to describe a model for activity
recognition that is interpretable, accurate, and explainable and
to show that it helps improve the users’ trust and understanding
of the system. Our model has two layers. The top layer, with
which a user interacts, is a tractable, interpretable probabilistic
graphical model (cf. [Koller and Friedman, 2009]), specifically
a cutset network [Rahman et al., 2014]. Unlike conventional
graphical models such as Bayesian and Markov networks in
which probabilistic inference is NP-hard in general and inac-
curate in practice, cutset networks are desirable in that they
admit accurate linear-time inference and often have the same
generalization performance as Bayesian and Markov networks
[Rahman et al., 2014; Rooshenas and Lowd, 2014; Liang et al.,
2017; Di Mauro et al., 2015a]. The bottom layer of our model
is a deep neural network that yields accurate predictions, which
are fed into the cutset network layer. A possible interpretation
of this model is that the deep learning layer provides noisy sen-
sory inputs to the cutset network layer, which in turn removes
the noise and provides explainability. The latter is possible in
a cutset network but not in a neural network because the cutset
network is a tractable model in that it can yield poly-time ex-
planations by performing (abductive) probabilistic inference
over the learned network. To model temporal aspects in video,
we further refine this model, propose a novel temporal proba-
bilistic modeling framework called dynamic cutset networks,
and show that it improves the estimation accuracy.

We experimentally demonstrate the efficacy of our approach



by building an interactive visual interface and an ML system
based on dynamic cutset networks for activity recognition
for the Textually Annotated Cooking Scenes (TaCOS) dataset
[Regneri et al., 2013]. The purpose of building the visual in-
terface and ML system is two-fold. First, we want to show
that we can create a working prototype for an explainable AI
system that not only performs accurate activity recognition
in videos but can also generate human understandable expla-
nations. Second, we use the resulting system as the basis for
human subjects studies of how different types of explanations
affect users’ trust and understanding of ML models.

2 Related Work
This effort is closely related to the work of Rohrbach et al.
[2014]; Donahue et al. [2015] on generating a semantic repre-
sentation from videos at an activity level using deep learning ar-
chitectures. Instead of generating sentences in natural language
however, we assign a number of pre-defined labels divided into
categories. Related efforts have considered the task of dense
captioning [Krishna et al., 2017], i.e., generating summaries
of texts from particular segments. Song et al. [2016] attempted
to create captioning methods that require minimum supervi-
sion on the TaCOS dataset. Duan et al. [2018] attempted to
combine caption generation and sentence localization to feed
off of each other to create a weakly supervised training model.
These works focus on creating text summaries for video seg-
ments, and as is typical of deep learning approaches, they are
essentially black boxes. Our approach, on the other hand, aims
to create a semantic representation for activities in each frame
that can be used to both answer queries easily as well as gener-
ate explanations (via probabilistic inference) that justify these
answers.

There have also been a number of studies on how trust in-
fluences interactions between humans and automated systems,
e.g., [Muir, 1994], [Muir and Moray, 1996], [Lee and See,
2004], and [Hoff and Bashir, 2015]. These studies examine
factors that might affect the trust of the user in the system, such
as showing the past performance of the system and making
the working of the system more understandable [Lee and See,
2004]. Hoffman [2017] provides a more detailed taxonomy of
such factors and explains how trust is context-specific and dy-
namic. In other words, trust might vary with respect to specific
contexts of automation and must also be maintained over time.
Our aim is to be able to control and measure user trust with
respect to these systems in order to better understand what
kind of explanations influence the trust variable.

Our work on feeding the output of deep neural networks to
graphical models (cutset networks in our case) is related to
a recent line of works which combine graphical models and
neural networks (cf. Johnson et al. [2016]). Unlike these works
which perform joint learning, the main idea in our work is to
treat the output of the neural network as a noisy but highly
accurate sensor and then use the graphical model to reduce the
noise and provide (common-sense) reasoning capabilities.

3 Activity Recognition with Explanations
The objective of our proposed system is two-fold: (a) perform
accurate activity recognition in videos and (b) compile knowl-

edge acquired while learning to recognize activities into an
explanatory model. The latter can then be used to explain why
a particular activity was assigned to a frame by the system.

3.1 Activity Recognition Task
We define an activity as a triple (action, object, location). The
action component forms the core part of the activity. These are
usually verbs such as wash, cut, slice, open, etc. The object
component denotes the entities over which the activity is per-
formed. These are generally nouns such as apples, refrigerator,
cutting board, knife, etc. Finally, the location component tells
us where the activity is taking place. These are generally loca-
tion nouns such as kitchen, bathroom, counter top, sink, etc.
but can also overlap with the nouns we use as objects. For ex-
ample, when we “kick open a door,” the activity is “kick” and
the object is “door,” but the same entity might play a different
semantic role in a different activity such as if a baby “draws a
picture on the door.” Here “draw” is the activity, “picture” is
the object, and “door” is the location.

For the purposes of our initial system, we make the follow-
ing simplifying assumptions. First, we train our system on a
closed-domain. In this study, we use cooking videos. Second,
we assume that only one major activity is taking place per
frame (minor activities are ignored). Finally, the action must
always be present, while the object and the location are op-
tional. For reflexive actions, such as “walking,” the object is
“None.” In future, we plan on making activities more complex
so that we can pose more interesting queries on them.

Users interact with our system by posing so-called selection
questions: “Did a particular activity defined by the triple (ac-
tion, object, location) happen in the video?” where object and
location can be “None,” but action is not allowed to be “None.”
Examples of selection questions include: (1) “Did the per-
son slice an orange on the counter?” where slice, orange, and
counter denote the action, object, and location respectively; (2)
“Did the person take out grapes from the refrigerator?” where
take out, grapes, and refrigerator denote the action, object, and
location respectively; (3) ”Did the person open the refriger-
ator?” where open and refrigerator denote action and object
respectively and location is None.

3.2 Explanations
We want the system to generates three types of explanations:

1. Video Explanations: When the system answers “yes,”
we want the system to highlight segments (possibly more
than one) of the video where the activity happened. For
“no” answers, we want the system to highlight segments
where a related activity happened, e.g., carrots were cut
in the video but not oranges. If no related activity is found
in case of a “no answer,” we want the system to output
the most likely activity in the video.

2. Ranked (action, object, location) Triples: We want the
system to display top-k predicted activity triples in the
video that are relevant to the query.

3. Most Probable Entities: We want the system to display
the most probable actions, objects and locations (along
with their likelihood) that are relevant to the query.



Figure 1: High-level Architecture and Data Processing Pipeline. Our
system has two layers: a video classification layer based on deep
learning whose output is fed to an explanation layer which is based
on cutset networks [Rahman et al., 2014], a tractable interpretable
probabilistic model. During the learning phase, the classification
layer uses the video and the ground truth (labels) as input and learns
a mapping from frames to object, action and location. During the
learning phase, the explanation layer uses the labels predicted by the
classification layer and ground truth as input and learns a mapping
from predicted labels to the ground truth. During the query phase, the
system answers questions by performing marginal and MAP inference
over the cutset network (in the explanation layer).

4 System Description
Fig. 1 shows a high-level overview of the components of the
system and the processing pipeline. We evaluated and tai-
lored the system to the Textually Annotated Cooking Scenes
(TaCOS) dataset. Each frame in each video in the dataset is
labeled with an action, object, location triple. The dataset has
28 labels (our vocabulary) which includes 12 actions, 7 ob-
jects, 8 locations and a special label called ‘Nothing’. Roughly
speaking, the system can be categorized into the following two
layers: (a) video classification layer which takes as input video
frames and a vocabulary file and assigns a set of labels from
the vocabulary to each frame; and (b) explanation layer which
takes the predicted labels from the video classification layer as
input, corrects them using a probabilistic model, and outputs
(potentially more accurate) labels and explanations.

4.1 Video Classification Layer
For this layer, we used GoogLeNet [Szegedy, 2014], a 22-layer
neural network that is pre-trained on the ImageNet dataset
[Russakovsky et al., 2015]. It uses a key component called the
Inception Module (for details, please refer to [Szegedy et al.,
2015]) that creatively uses convolutions of size 1×1 to increase
the representation power of the network without increasing
the number of parameters. Moreover these 1×1 convolutions
use the rectified linear units to circumvent the omnipresent
vanishing gradient problems of neural networks as well as
avoid the introduction of sparse activations in the hidden layers
of the network. Another advantage of GoogLeNet is that its
design helps us to abstract features at various scales using
different patch sizes for the filters (1×1, 3×3 and 5×5) and
then aggregate these features so that the next layer can abstract
still higher representation from different scales simultaneously.

To tailor GoogLeNet to our video dataset which has 28
labels, we replaced the topmost softmax layer in GoogLeNet
with a fully-connected layer with 28 nodes that use sigmoid
cross-entropy loss. The latter is used because it is a standard
loss function for solving multi-label classification problems;
note that we are solving a multi-label classification task since
each frame can have multiple objects and locations. We used
the backpropagation algorithm with stochastic gradient descent
(SGD) and Adaptive Moment Estimation (Adam) optimizers
to further train the pre-trained model on the TaCOS dataset
and found that Adam yields the best performance.

4.2 Explanation Layer
In this section, we present dynamic conditional cutset networks
(DCCNs), a new tractable temporal probabilistic representation.
We will use DCCNs in the explanation layer to: (a) correct
errors in the labels predicted by the GoogLeNet at each frame;
(b) model the dynamics as well as persistence (activities don’t
change rapidly between frames) in the video; and (c) provide
explanations via abductive poly-time probabilistic inference.

Conditional Cutset Networks
Tractable probabilistic models (TPMs) [Bach and Jordan, 2002;
Lowd and Domingos, 2008; Darwiche, 2000] are probabilis-
tic models which admit poly-time posterior marginal infer-
ence (MAR)—the task of computing marginal probability
distribution over each variable given evidence which is de-
fined as an assignment of values to a subset of variables—and
maximum-a-posteriori (MAP) inference—the task of comput-
ing the most likely assignment to all non-evidence variables
given evidence. Examples of popular TPMs include cutset net-
works [Rahman et al., 2014], arithmetic circuits [Darwiche,
2000], sum-product networks [Poon and Domingos, 2011] and
probabilistic sentential decision diagrams [Bekker et al., 2015].
Although, TPMs are less expressive than intractable (latent)
probabilistic models and as a result have slightly poor general-
ization performance as compared to the latter, their accuracy
at test time is often much higher than intractable models. This
is because tractable models use exact inference at prediction
time while one has to use inaccurate approximate inference
algorithms in intractable models.

Cutset networks [Rahman et al., 2014] are TPMs which rep-
resent multidimensional joint probability distributions using
a rooted (directed) OR tree with tree Bayesian networks at
each leaf node of the OR tree. Each OR node in the OR tree is
labeled with a variable and just like in decision trees represents
conditioning over the variable. Unlike decision trees however,
the arcs in the OR tree are labeled with conditional probabil-
ity of the variable taking the corresponding value given an
assignment of values from the root node to the OR node. Tree
Bayesian networks at each leaf l represent the conditional dis-
tribution P (Y |path(l)) where path(l) denotes the assignment
from the root to l and Y is the subset of variables not assigned
in path(l). MAR and MAP inference over cutset networks can
be performed in linear time in the size of the network using
cutset conditioning [Pearl, 1988; Dechter and Mateescu, 2007].
However, unlike conventional cutset conditioning algorithms,
cutset networks take advantage of context-specific indepen-
dence, dynamic variable orders and determinism. As a result,
cutset networks can compactly represent and perform tractable
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Figure 2: (a) A cutset network over 5 variables {X1, . . . , X5}. OR nodes are denoted by circles.X1 is the root node of the OR tree. Left and right
arcs emanating from an OR node labeled by Xi indicate conditioning over true and false values of Xi respectively. Arcs emanating from OR
nodes are labeled with conditional probabilities. For example, the arc labeled with 0.481 denotes the conditional probability P (X3 = 1|X1 = 1).
The leaf nodes of the OR tree are tree Bayesian networks. (b) A conditional cutset network (CCN) representing P (X1, . . . , X5|Y ). Arcs
emanating from OR nodes are labeled with (calibrated) classifier functions. For example, the arc from the OR node X1 to the OR node X3 is
labeled with a logistic regression classifier σ1(y). Given Y = y, the CCN yields a cutset network having the same structure as the one given in
(a) except that the parameters will be computed using σ1(y) and σ2(y). (c) 2-slice dynamic conditional cutset network. The CCN at time slice
t represents P (Xt|Yt) while the CCN at time slice t+ 1 represents P (Xt+1|Yt+1,Xt).

inference in probability distributions that admit high treewidth
probabilistic graphical models [Di Mauro et al., 2015a,b; Rah-
man and Gogate, 2016].

Recently, [Anonymous, 2019] proposed a new framework
called conditional cutset networks (CCNs) that extends the cut-
set networks framework to compactly represent and perform
efficient reasoning over conditional probability distributions,
namely distributions of the form P (X|Y ) where X and Y
are sets of variables. The main idea in CCNs is to replace all
conditional probability distributions P (X|path(n)) at each
OR node as well as those attached to each variable X in each
tree Bayesian network in the cutset network with a calibrated
probabilistic classifier [Niculescu-Mizil and Caruana, 2005].
The latter takes an assignment y to Y and path(n) as in-
put and outputs a conditional probability distribution over X ,
namely P (X|Y = y, path(n)) by using only polynomial (in
|Y |) number of parameters. For example, when we use lo-
gistic regression, we have P (X = 1|Y = y, path(n)) =
σ(w0 +

∑
yi∈y wiyi) where wi’s are the weights (parameters)

and σ denotes the sigmoid function. We learn the parameters
of the calibrated classifier (e.g., logistic regression) using a
subset of the data that is consistent with path(n). CCNs are
conditionally tractable in that given an assignment Y = y,
each (probabilistic) classifier yields a probability distribution
over the (class) variable X and thus given Y = y, a CCN
yields a (tractable) cutset network. (see Fig. 2 for an example).

We learn the structure of CCNs using a conventional cutset
networks top-down induction algorithm. This algorithm has
two recursive steps. In the base case, if very few examples,
remain the algorithm uses the Chow-Liu algorithm [Chow and
Liu, 1968] to yield a tree Bayesian network. Otherwise, it
heuristically selects a variable to condition on, computes the
conditional probability distribution over the variable using the
given dataset, and then recurses on the true and false value
assignment to the variable. After the structure is learned from
data, we learn a classifier at each OR node and each variable at
each Bayesian network in the CN using popular classification
algorithms such as logistic regression, random forests, and

neural networks and pick the best using cross validation.
To use CCNs in our framework, we feed the output of

GoogLeNet to the CCN. More formally, let Y denote the
set of output nodes of GoogLeNet and X denote the set of
true labels at a frame. We use the CCN to model P (X|Y ) and
learn its structure and parameters using a dataset constructed
as follows. Each frame in each video is a training example
and is composed of true labels (X) and labels predicted by
GoogleNet (Y ) with the pixels in the frame as input. At test
time, at each frame, we instantiate all the classifiers in the CCN
using the predicted labels to yield a cutset network and then
perform inference over the cutset network to yield the final
set of labels. In other words, the CCN treats the output of the
neural network as a noisy sensor (see Fig. 2(a)) and computes
a conditional joint probability distribution over the true labels
given the predicted (noisy) labels.

Dynamic Conditional Cutset Networks
An issue with CCNs is that they are static and do not explicitly
model temporal aspects of video. For instance, we can use per-
sistence, namely objects do not change their position rapidly
between subsequent frames to correct prediction errors at a
frame by using data from neighboring frames. To address this
issue, we propose a novel framework called dynamic condi-
tional cutset networks (DCCNs). Formally, let a video consist
of n frames, let Xi and Yi be the set of true labels and pre-
dicted labels (evidence) at frame i. Then, the DCCN represents
the following probability distribution:

P (x1:n|y1:n) = P (x1|y1)

n∏
i=2

P (xi|y1:i,x1:i−1), (1)

where the notation x1:n (similarly y1:n) denotes an assignment
of values to all true (predicted) labels in frames 1 to n. We will
use the notation X1:n to denote the set

⋃n
i=1 Xi.

The representation given in Eq. (1) is not compact as n
increases. To circumvent this issue, we use two standard as-
sumptions widely used in temporal or dynamic probabilistic
models—the 1-Markov and stationarity assumptions [Rabiner,



1989]. Specifically, we assume that each frame is condition-
ally independent of all frames before it given the previous
frame (1-Markov) and all conditional distributions are identi-
cal (stationarity). With these assumptions, we can represent
P (x1:n|y1:n) using

P (x1:n|y1:n) = P (x1|y1)

n∏
i=2

P (xi|yi,xi−1), (2)

where P (X1|Y1) and P (Xi|Yi,Xi−1) are conditional cutset
networks and P (Xi|Yi,Xi−1) is the same for all i.

We learn DCCNs using the following approach. The prior
model P (X1|Y1) is the same as the CCN described in the
previous section. To learn the structure and parameters of
P (Xi|Yi,Xi−1), we construct the dataset as follows. Each
frame in each video is a training example and is composed of
true labels at frame i (Xi), true labels at frame i− 1 (Xi−1)
and labels predicted by GoogleNet at frame i (Yi) using the
pixels in the frame as input.

Inference over DCCNs can be performed using sequential
sampling approaches such as particle filtering and smooth-
ing [Doucet et al., 2000]. Here, we generate k assignments
(x

(1)
1 , . . . ,x

(k)
1 ) uniformly at random from P (X1|y1), then

for each assignment x(i)
1 we sample one assignment from

P (X2|y2,x
(i)
1 ), and so on. At the end of the sampling pro-

cess, we will have k particles from P (X1:n|y1:n). The main
virtue of DCCNs is that unlike widely used temporal mod-
els such as dynamic Bayesian networks [Murphy, 2002], the
particles in DCCNs are generated from the posterior distribu-
tion P (xi|yi,xi−1) at each frame. As a result, issues such as
particle degeneracy—particles vanish because their weights be-
come too low as i increases—that typical sequential sampling
algorithms suffer from will be less severe in DCCNs.

The three explanation types (see section 3.2) can be com-
puted by performing MAP and MAR inference in CCNs and
DCCNs. To compute video explanations, we use an ontology
that models relationships between activities and objects (e.g.,
‘chef’s knife’ is related to ‘kitchen knife’, ‘slice’ is related to
‘cut’, etc.) and display video segments in which the marginal
probability of the queried activity or activities related to it (re-
call that activity is a (action, object, location) triple) is larger
than a threshold. Ranked triples over each segment in video ex-
planations are computed by performing k-best MAP inference.
Again, the key advantage of CCNs and DCCNs is that k-best
MAP inference is linear in k and the number of parameters at
each frame. Most probable entities in each highlighted segment
are derived as follows. We compute the marginal probability
of each entity in each highlighted segment given evidence (via
MAR inference) and display the top k most likely ones ac-
cording to the marginal probability. Note that these inferences
are not possible on GoogLeNet or recurrent deep architec-
tures (cf. Donahue et al. [2015]) unless we treat the labels as
independent entities.

4.3 User Interface
The prototype system uses an interactive visual interface that
allows users to load videos, ask queries, and review the model
output along with explanations. The goal for the interface de-
sign was to limit the amount of model information presented to

Figure 3: The interactive visual interface allows users to load videos
and ask queries. The interface shows the ML system’s answer along
with explanatory elements for the output. The most relevant portions
of the video play time are shown by colored bars beneath the video,
and the right side shows detected video components and combinations
of components relevant to the video and query.

the user in order to avoid overwhelming users with information.
For this reason, the system uses simple visual representations
in the form of graphical annotations, textual component lists,
and simple bar charts. Figure 3 shows the interface.

The interface includes a video player that allows users to
watch the selected video to help review and analyze the sys-
tem’s answers to the queries. When a query is submitted, the
video player highlights the most relevant segments of the video
through visual annotations added under the video play bar
(shown as orange and purple bars under the video in Fig. 3).
The video player will also automatically jump to the appro-
priate segment to help users see the video frames most im-
portant for determining the output. In addition, the right side
of the interface summarizes the detected video components
(action, objects, and locations) for the query as well as de-
tected combinations of components. To help users to quickly
judge component scores, graphical bars are shown underneath
detected components to visually represent the values of the
component scores. Users can select different video segments
to view the corresponding component scores and combinations
from different portions of the video.

5 Experiments
In order to evaluate our system, we designed two experiments
using the TACoS video dataset and annotations. We performed
a model evaluation to measure how successful the system is at
recognizing activities, and we performed a user study to assess
system trust and utility.

5.1 Model (Machine Learning) Evaluation
We selected 60313 frames for training and 9355 frames for
testing distributed over 17 videos. For each set, we selected
a set of ground labels and used the video classification layer
to generate the predicted labels. We performed exact infer-
ence over CCNs and used particle filtering with 100 particles
for inference in DCCNs. We performed the following abla-
tion study: (1) Our system in which the explanation layer is
removed (GoogLeNet); (2) Our system which uses (static) con-
ditional cutset networks in the explanation layer (CCNs); and
(3) the full system (dynamic CCNs).

Table 1 outlines the accuracy scores for correct activity
recognition according to various evaluation metrics. Since pre-



Metric GoogLeNet CCNs Dynamic CCNs
K-1 0.9335 0.9677 0.9687
K-2 0.8557 0.8998 0.9197
K-3 0.7918 0.7962 0.8168

Jaccard Index 0.8608 0.8559 0.8674
Hamming Loss 0.1392 0.1286 0.1160

Table 1: Accuracy for Activity Recognition on Test Videos. Bold
results indicate the best performing model.

dicting each activity correctly is a multilabel classification task,
we use K-Group measures to calculate the overall percentage
of instances where K labels out of the total number of labels
were predicted correctly. We report K-1, K-2, and K-3 since
each activity comprises of action, object and location. In ad-
dition, we also use standard measures such as the Hamming
Loss and the Jaccard Index. We observe that dynamic CCNs
are more accurate than CCNs and GoogLeNet.

5.2 Human Subjects Evaluation
We conducted a human-subjects study to evaluate the overall
effectiveness of the system for machine-assisted activity recog-
nition. The study was implemented as an online experiment
in order to be able to crowdsource the study using Amazon
Mechanical Turk (AMT). The study consisted of 80 novice
participants with self-reported “low” machine learning knowl-
edge. We arranged a between-subjects study to compare two
conditions: (1) No explanations (namely after removing the
three explanation types from our visual interface given in Fig.
3); and (2) With explanations (i.e., the full interface). For both
groups, the system provided ML answer for given queries.

Participants were tasked with the review of cooking videos
from the TaCOS data set, and they had to answer a set of
queries about where certain activities or objects were present
in each video clip. The study measured participants’ abilities
to accurately answer each query in a repeated number of trials
using the explainable ML system. All participants used the
system with the same set of instructions, though specifics of the
system and instructions were customized based on the assigned
experimental condition (i.e., explanation or no explanation).

For experimental control, the user interface was modified
to present a sequence of given queries and videos rather than
allow user choice of queries. The participant task was to deter-
mine the correct answer to the query as quickly and correctly
as possible. For this exercise, we wanted to assess whether par-
ticipants would be able to rely on the explanations to improve
their understanding of the system, which in turn will enable
them to answer more accurately. However, the highest base
accuracy of the model would not work for this purpose because
response accuracy would be too high if participants always
agreed with the model output, whereas a lower accuracy would
be more useful for evaluating human understanding of the ex-
planation interface. For this reason, we selected a controlled
subset of queries to allow all participants to experience the
system with a simulated 80% accuracy.

Each participant conducted the task with a total of 20
queries—5 queries for each of 4 videos. The video clips ranged
in length from 1.5 to 6 minutes. For the condition with expla-
nations, the interface showed the full interface with the video

Metric No Exp. Correct Exp.
Accuracy 86.88%± 7.4% 90.26% ± 6.03%
Speed (sec) 986.25± 561.35 517.42± 198.1
Agreement 74.38% ± 7.78% 78.95%± 4.95%

Table 2: Performance of novice users with and without explanations
on the activity recognition task. We measured the accuracy of the
participants on the task, the speed at which they completed the task,
and the fraction of instances on which their answer agreed with the
system’s answer. Bold results indicate significantly higher score.

player, the segments of the video used to determine the answer,
component scores, and detected combination of components.
Users were allowed to click on the segments to jump to that
portion of the video. For each segment, users would see differ-
ent component scores and detected combination of components
in the corresponding section.

For the condition with no explanations, the interface still
included the video player but without highlighted segments
for queries. However, none of the explanatory interface ele-
ments were included for the no-explanation condition. In both
conditions, the system provided the ML answer for each query.

After the participants submitted their answers, the system
provided feedback by telling the participant the correct answer
to the query. This was done to further help users develop a
better mental model of the system over time. To do this, we
froze their responses after answering in order to keep them
from changing it when shown correct answer.

Overall, the results demonstrate that the system with ex-
planations significantly improved task performance, based on
both speed and accuracy, for the activity recognition task (see
Table 2). Users who were given the system with explanations
were significantly more accurate and completed the task sig-
nificantly faster than those who were given no explanations.
In addition, we measured participants’ response agreement—
the percentage of participant responses that matched the ML
output over all queries. Participants who used the system with
explanations demonstrated greater agreement with the system’s
prediction. These results, combined with the fact that partici-
pants in the explanation condition were able to complete the
task more quickly, suggest that participants developed a higher
level of trust in the system than the group with no explanations.

6 Conclusion
We proposed a method of generating explanations for activity
recognition in video that combines the discriminative power of
deep neural networks with tractable models. Our experimental
results suggest that this approach can yield a highly accurate
prediction system, and our initial user study implies that quality
explanations are key to building trust in ML systems.

As a part of our future work, we plan on improving upon our
current system by (1) adding support for more vocabulary in
the video classification layer, (2) adding support for complex
models and automatic query conversion from natural language
in the explanation layer, and (3) adding support for a larger
variety of complex queries, e.g., temporal queries. We expect
that adding these features will increase the trust of the users
in the system as the range of activities, the precision of the
explanations, and the variety of queries will all increase.
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