STRAR Laboratory of Adva on Software Technology

Requirements-based Test Generation

for

Functional Testing

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas

ewong@utdallas.edu
http://www.utdallas.edu/~ewong

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 1

Speaker Biographical Sketch

* Professor & Director of International Outreach
Department of Computer Science
University of Texas at Dallas

* Guest Researcher
Computer Security Division
National Institute of Standards and Technology (NIS

* Vice President, IEEE Reliability Society
» Secretary, ACM SIGAPP (Special Interest Group opliggl Computing)

* Principal Investigator, NSF TUES (Transforming Urgtaduate Education in
Science, Technology, Engineering and MathematiosjeBt
— Incorporating Software Testing into Multiple Computer Science and Software
Engineering Undergraduate Courses

* Founder & Steering Committee co-Chair for the SEREference
(IEEE International Conference on Software Security and Reliability)
(http://paris.utdallas.edu/serel13)

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 2

Two Techniques for Test Generation

Essentiablack-box techniques for

e Equivalence Class partitioning © _
generating tests fdunctional

* Boundary value analysis

testing
— —
Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 3
— —
Functional Testing
— —

* Testing a program/sub-program to determimether it functions as
planned

* A black-box based testing against the operational (i.e., functional)
requirements.

* Testing theadvertised features for correct operation
* Verifying a program for itsonformance to all functional specifications

¢ Entailing the following tasks
— Test generation
— Test execution
— Test assessment

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 4

Equivalence Class Partitioning

E{amflé | (1)

* Consider an application that takes an integer @stin

* Let us suppose that the only legal values aredrrahge [1..100]

* Which input value(s) will you use to test this dpation?

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 6

Example | (2)

* The set of input values can be divided into

—A set ofexpected, or legal, inputs (E) containing all integers in the
range [1..100]

— A set ofunexpected, or illegal, inputs (U) containing the remaining
integers

All integers

— —
Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 7

E{amflé | (3)

* Assume that the application is required to proedisgalues in the range
[1..50] in accordance with requiremdRitand those in the range
[51..100] according to requiremeRry.

— Eis divided into two regions depending on the expadtehavior.

* Also assume that all invalid inputs less than 1tardee treated in one
way while all greater than 100 are to be treatéfe mintly.
— This leads to a subdivision bfinto two categories.

All integers

[51..100]

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 8

Example | (4)

® How many input values should we use for testin
Yy inp g

the application

o — —
Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 9
— —
Equivalence Partitioning
—

* Test selection usingyuivalence partitioning allows a tester to
divide the input domain inta relatively small number of sub-

domains.

* The sub-domains anésjoint.

* Each subset is known as @quivalence class.

* The four subsets shown in (a) constitute a pantitibthe input
domainwhile the subsetsin (b) are not.

(a) ()

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 10

Quiz

* What if there is more than one input variable

o — —
Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 11
o —

Unidimensional Partitioning

* One way to partition the input domain is to consiale input
variable at a time. Thus each input variable leads to a partition of
the input domain.

* We refer to this style of partitioning asidimensional
equivalence partitioning or simplyidimensional partitioning.

* This type of partitioning is commonly used.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 12

Multidimensional Partitioning

* Another way is to consider the input domain | assth product of
theinput variables and define a relation on I. This procedure
createsone partition consisting of several equivalence classes.

* We refer to this method asultidimensional equivalence
partitioning or simplymultidimensional partitioning.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 13

Example |1 (1)

* Consider an application that requires two integputsx andy.

Each of these inputs is expected to lie in theofoilhg ranges: 8
x<7 and 5y<9.

* How many pairs ofx, y) should we use to test this applicat’ign

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 14

Example || (2)

* Using Unidimensional Partitioning

El:x<3 E2: Xx<7 E3:x>7 «— yignored.

E4:y<5 E5: y<9 E6:y>9 «—— Xignored.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 15
Example |1 (3)
* Using Multidimensional Partitioning
E1:x<3,y<5 E2:x<3, Ey<9 E3:x<3,y>9
E4: &x<7,y<5 E5: &x<7, xys9 BB Ixs7,y>9
E7:x>7,y<5 E8:x>7, Xy<9 E9:x>7,y>9
Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 16

Example |1 (4)

¥ ¥
£6
9 g
5 E5
El E2' E3 5%
S BB, % L P 5
I E4
(a) bl
¥
£3 B ES
! 2
H-a g x
£l [ST =

(o]

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 17

Equivalence Classes based on Program Output (1)

* In some cases the equivalence classebasel on the output generated
by the program.

* For example, suppose that a program outputs ageinte

* It is worth asking: “Does the program ever genesa®® What are the
maximum and minimum possible values of the output?”

* These two questions lead to two the following eglénce classes based
on outputs:

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 18

Equivalence Classes based on Program Output (2)

* E1: Output value vis 0

* E2: Output value v is the maximum possible
* E3: Output value v is the minimum possible
* E4: All other output values

* Based on theutput equivalence classes one may now derive equivalence
classedor the inputs. Thus each of the four classes given above might
lead to one equivalence class consisting of inputs.

More examples.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 19

Equivalence Classes for varialilbs?ange

Equivalence Classes Example
Constraints Classes
One class with values| speed {50}, {75},

insidethe range and | (J[60..90] {92}
two with values
outside the range.

area: float {{-1.0},

arez0.0 {15.52}}
age: int {{-1}, {56},
{03}

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 20

Equivalence Classes for variables . String

Equivalence Classes| Example
Constraints Classes

At least one firsthame: | {{ €}, {Sue},

containing allegal string {Loooong

strings and one all Name}}

illegal strings based

on any constraints.
Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 21
Equivalence Classes for variables . Enumeration

Equivalence Classes Example
Constraints Classes

Each value in aeparate | autocolor:{red, |{{red,} {blue},
class blue, green} {green}}

X:boolean {{true}, {false}}

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 22

Equivalence Classes for varialilbs7mzy

Equivalence Classes Example
Constraints Classes
One class containing allint [] aName = | {[]}, {[-10, 201},
legal arrays, one new int[3]; {[-9, 0, 12, 15]}
containing theempty
array, and one
containing darger than
expected array.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 23

Equivalence Classes for Compomﬁata Type (1)_

* Arrays in Java and structures in C++/C, emapound types. Such input
types may arise while testing components of aniegidn such as a
function or an object.

* While generating equivalence classes for such smurte mustonsider
legal and illegal values for each component of the structure.

* The next two examples illustrate the derivatiomrgdivalence classes for
an input variable that has a compound type.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 24

Equivalence Classes for Compound Data Type (2)

e struct transcript
{
string fName; Il First name
string IName; /I Last name
string studentID /1 9 digits
string cTitle [200]; // Course titles
char grades [200]; // Letter grades correspantbrcourse titles

}

* Derive equivalence classes for each component of R and combine them!

— —
Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 25
—

Equivalence Classes for Compound Data Type (3)

 Consider a procedulin a payroll processing system that takes an
employee record as input and computes the weeldyysd&or simplicity,
assume that the employee record consists of thenfiolg items with
their respective types and constraints:

ID: int; 10 is 3-digits long from 001 to 999,

name: string; name is 20 characters long; each character belongs to the set of
26 letters and a space character.

rate; float; rate varies from $5 to $10 per hour; rates are in multiples of a
quarter.

hoursWorked: int; hoursWorked varies from 0 to 80.

* Calculate the size of the input domain

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 26

Systematic Procedure for Equivalence Partitioning

* 1. Identify the input domain: Read the requirements carefully and identify
all input and output variables, their types, and @onditions associated
with their use.

* 2. Equivalence classing: Partition the set of values of each variable into
digoint subsets

* 3. Combine equivalence classes: This step is usually omitted and the
equivalence classes defined for each variableliaestly used to select
test cases. However, by not combining the equica&efasses, one
misses the opportunity to generate useful tests.

* 4. ldentify infeasible equivalence classes: An infeasible equivalence class
is one that contains a combinationimgfut data that cannot be generated
during test. Such an equivalence class might arise due ta@eneasons.

— —
Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 27

C— —

-p — —

* Consider thatvordcount method takes a wond and a filenamé as
input and returns the number of occurrences of the text contained in
the file named. An exception is raised if there is no file witamef.
Using the partitioning method described in the fmes example, we
obtain the following equivalence classes.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 28

Eycamf&z 11 (2)

f

Equivalence class w

E, non-null exists, not empty

E, non-null does not exist

E; non-null exists, empty

E, null exists, not empty

Es null does not exist

E null exists, empty

L E—

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 29

E{amflé 11 (3)

* The number of equivalence classes without any kadgé of the
program code i&, whereas the number of equivalence classes on the

previous slide i$.

* An experienced tester will likely derive the sixudgalence classes
given above, and perhaps more, even before theis@lilable

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 30

Quiz

* How many equivalence classes do we need fowtndcount program?

— —
Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 31
—

GUI Design and Equivalence Classes (D

* While designing equivalence classes for programsdhtain input
exclusivelyfrom a keyboardone mustccount for the possibility of
errorsin data entry.

* Example: An application places a constraint onmui variablex such
that it can assume integral values in the range Bowever, testing must
account for the possibility that a user may inadvertently enter a value for
x that is out of range.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 32

GUI Design and Equivalence Classes (2)

* Suppose that all data entry to the applicationdsavGUI front end.
Suppose also that tl&J| offers exactly five correct choices to the user
for x.

¢ In such a situation it isnpossible to test the application with a value of
that is out of rangeHence only the correct values»olvill be input. See
figures on the next slide.

— —
Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 33
—

GUI Design and Equivalence Classes (3

Input domain Input domain Input domain

Correct

values

Application ‘ Core Application l ‘ Core Application
{a) (b} {c}

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 34

Program Behavior and Equivalence Classes

* The equivalence classes are created assumindnehptdgranbehaves
the same on all elements (i.e., testswithin a class.

* This assumption allows the testerstbect exactly one test case from each
equivalence class to test the program.

* |s this assumption corre’t?t

f?

* If yes, why «

* If no, how to improve the test 52

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 35

Boundary Value Analysis

Errors at the Boundaries

* Experience indicates that programmers make misiak@ocessing
valuesat and near the boundaries of equivalence classes.

* For example, suppose that methdds required to compute a functidén
whenx < 0 is true and functiofy otherwise. Also assume thg{0) # f,(0)

* However,M has an error due to which it computefor x <0 andf,
otherwise.

* Obviously,this fault can be revealed whhis tested against= 0, but
not if the input test set is, for example, {-4,drived using equivalence
partitioning.

* |n this example, the value=0, lies at the boundary of the equivalence
classex<0 andx>0.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 37

Equivalence Partitioning & Boundary Value Analysis

* While equivalence partitioning selects tests froitiin equivalence
classes, boundary value analysis focuses on testsd near the
boundaries of equivalence classes.

— Boundary value analysis a test selection technique that targets fanlts i
applications at the boundaries of equivalence efass

* Certainly, tests derived using either of the twchtéques mayverlap.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 38

Boundary Value Analysis . Procedures

* Partition the input domaiasingunidimensional partitioningAlternately,
a single partition of an input domain can be creaiging
multidimensional partitioningWe will generate several sub-domains in
this step.

* |dentify the boundariefor each partition. Boundaries may also be
identified using special relationships among thmuts.

* Select test datsuch that each boundary value occurs in at leastast

input.
— —
Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 39
—

BYVA Example . Step 1 — Create Equivalence Classes

* Assuming that a program takes two variables astimpyglemust be in
the range 99..999 anpliantityin the range 1..100

— Equivalence classes for code
o EL:values less than 99
o E2:values in the range
o E3:values greater than 999

— Equivalence classes for quantity
o E4:values lessthan 1
o E5:values in the range
o E6: values greater than 100

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 40

BVA Example . Step 2 — Identify Boundaries

e Boundaries are indicated with an x.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 41

BVA Example . Step 3 — Construct Test Set

* Test selection based on the boundary value andbdiique requires
that tests must include, for each variable, valiesnd around the
boundary

T={ t;: (code=98, quantity=

t,: (code=99, quantity=1), lllegal values otode and
t;: (code=100, quantity=2), quantity included
t,: (code=998, quantity=99),

t;: (code=999, quantity=100)
ts: (code=1000, quantity=101)
}

* Quiz: unidimensional partitioning versus multidinsemal partitioning

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 42

Equivalence Class Partitioning
Versus
Statement Coverage

Example: Identify the Type of a Triangle (1)

* A programP takes an input of three integexs andc, and returns the
type of the triangle corresponding to three siddergtha, b, andc,
respectively.

* Quiz:
—How to generate a test set basedequivalence Class Partitioning
to achieve the highest statement coverage possible?

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 44

Example: Identify the Type of a Englé (2)

read (a, b, ¢);
class = scalene;
fa=b|lb=a
class = isosceles;
ifa'a =b*b + c'c
class = right;
fa=b&&b=c
class = equilateral,
case class of
right Tarea=bc/2;
equilateral : area = a*a * sqrt{3)/4;
otherwise : s = (a+b+c)/2;
area = sqrt(s*(s-a)*(s-b)*(s-c));
end;
write(class, area);

Question:

What is the statement coverage of your test set?

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 45

Boundary Value Analysis
Versus
Decision Coverage

Complement between BVA and Decision Coverage

* Test cases generated based on Boundary Value Asatysrove decision
coverage.

* Similarly, test cases that achieve high decisiorecage also cover some
boundary values.

* Examples
—1f(x<0){....}
O BVA: {x,=0;%,=1;%=-1}
0 Togetherx;, X, andx, give 100% decision coverage.

—If(y==3){.....}
o {y, = 3 andy, = a value different from 3} gives 100% decision emge.
o At least one of the boundary value (y = 3) is ceder

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 47

