
111

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas

ewong@utdallas.edu
http://www.utdallas.edu/~ewong

Requirements-based Test Generation

for

Functional Testing

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

2

Speaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical Sketch

� Professor & Director of International Outreach
Department of Computer Science
University of Texas at Dallas

� Guest Researcher
Computer Security Division
National Institute of Standards and Technology (NIST)

� Vice President, IEEE Reliability Society

� Secretary, ACM SIGAPP (Special Interest Group on Applied Computing)

� Principal Investigator, NSF TUES (Transforming Undergraduate Education in
Science, Technology, Engineering and Mathematics) Project
– Incorporating Software Testing into Multiple Computer Science and Software

Engineering Undergraduate Courses

� Founder & Steering Committee co-Chair for the SERE conference
(IEEE International Conference on Software Security and Reliability)
(http://paris.utdallas.edu/sere13)

2Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

3

Two Techniques for Test GenerationTwo Techniques for Test GenerationTwo Techniques for Test GenerationTwo Techniques for Test Generation

� Equivalence Class partitioning

� Boundary value analysis

Essentialblack-box techniques for
generating tests forfunctional
testing

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

4

Functional TestingFunctional TestingFunctional TestingFunctional Testing

� Testing a program/sub-program to determine whether it functions as
planned

� A black-box based testing against the operational (i.e., functional)
requirements.

� Testing the advertised features for correct operation

� Verifying a program for its conformance to all functional specifications

� Entailing the following tasks
– Test generation

– Test execution

– Test assessment

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

5

Equivalence Class Partitioning

6

Example Example Example Example I (1)

� Consider an application that takes an integer as input

� Let us suppose that the only legal values are in the range [1..100]

� Which input value(s) will you use to test this application?

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

7

�The set of input values can be divided into
– A set of expected, or legal, inputs (E) containing all integers in the

range [1..100]

– A set of unexpected, or illegal, inputs (U) containing the remaining
integers

All integers

E: [1..100]

U: Other integers

Example Example Example Example I (2)

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

8

� Assume that the application is required to process all values in the range
[1..50] in accordance with requirement R1 and those in the range
[51..100] according to requirement R2.
– E is divided into two regions depending on the expected behavior.

� Also assume that all invalid inputs less than 1 are to be treated in one
way while all greater than 100 are to be treated differently.
– This leads to a subdivision of U into two categories.

All integers

[51..100]

[1..50]

<1

>100

Example Example Example Example I (3)

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

9

�How many input values should we use for testing

the application ?

Example Example Example Example I (4)

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

10

Equivalence PartitioningEquivalence PartitioningEquivalence PartitioningEquivalence Partitioning

� Test selection using equivalence partitioning allows a tester to
divide the input domain into a relatively small number of sub-
domains.

� The sub-domains are disjoint.

� Each subset is known as an equivalence class.

� The four subsets shown in (a) constitute a partition of the input
domain while the subsets in (b) are not.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

11

QuizQuizQuizQuiz

�What if there is more than one input variable?

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

12

Unidimensional PartitioningUnidimensional PartitioningUnidimensional PartitioningUnidimensional Partitioning

� One way to partition the input domain is to consider one input
variable at a time. Thus each input variable leads to a partition of
the input domain.

� We refer to this style of partitioning as unidimensional
equivalence partitioning or simply unidimensional partitioning.

� This type of partitioning is commonly used.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

13

Multidimensional PartitioningMultidimensional PartitioningMultidimensional PartitioningMultidimensional Partitioning

� Another way is to consider the input domain I as the set product of
the input variables and define a relation on I. This procedure
creates one partition consisting of several equivalence classes.

� We refer to this method as multidimensional equivalence
partitioning or simply multidimensional partitioning.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

14

Example Example Example Example II (1)

� Consider an application that requires two integer inputs x and y.
Each of these inputs is expected to lie in the following ranges: 3≤
x≤7 and 5≤y≤9.

� How many pairs of (x, y) should we use to test this application?

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

15

� Using Unidimensional Partitioning

y ignored.E1: x<3 E2: 3≤x≤7 E3: x>7

E4: y<5 E5: 5≤y≤9 E6: y>9 x ignored.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Example Example Example Example II (2)

16

� Using Multidimensional Partitioning

E1: x<3, y<5 E2: x<3, 5≤y≤9 E3: x<3, y>9

E4: 3≤x≤7, y<5 E5: 3≤x≤7, 5≤y≤9 E6: 3≤x≤7, y>9

E7: x>7, y<5 E8: x>7, 5≤y≤9 E9: x>7, y>9

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Example Example Example Example II (3)

17Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Example Example Example Example II (4)

18

� In some cases the equivalence classes are based on the output generated
by the program.

� For example, suppose that a program outputs an integer.

� It is worth asking: “Does the program ever generate a 0? What are the
maximum and minimum possible values of the output?”

� These two questions lead to two the following equivalence classes based
on outputs:

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Equivalence Classes based on Program Output Equivalence Classes based on Program Output Equivalence Classes based on Program Output Equivalence Classes based on Program Output (1)

19

� E1: Output value v is 0

� E2: Output value v is the maximum possible

� E3: Output value v is the minimum possible

� E4: All other output values

� Based on the output equivalence classes one may now derive equivalence
classes for the inputs. Thus each of the four classes given above might
lead to one equivalence class consisting of inputs.

More examplesMore examplesMore examplesMore examples

Equivalence Classes based on Program Output Equivalence Classes based on Program Output Equivalence Classes based on Program Output Equivalence Classes based on Program Output (2)

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

20

Equivalence Classes for variables Equivalence Classes for variables Equivalence Classes for variables Equivalence Classes for variables : RangeRangeRangeRange

Equivalence Classes Example

One class with values
inside the range and
two with values
outside the range.

speed
∈[60..90]

{50}, {75},
{92}

area: float
area≥0.0

{{-1.0},
{15.52}}

age: int {{-1}, {56},
{0}}

Constraints Classes

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

21

Equivalence Classes for variables Equivalence Classes for variables Equivalence Classes for variables Equivalence Classes for variables : StringStringStringString

Equivalence Classes Example

At least one
containing all legal
strings and one all
illegal strings based
on any constraints.

firstname:
string

{{ ε}, {Sue},
{Loooong
Name}}

Constraints Classes

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

22

Equivalence Classes for variables Equivalence Classes for variables Equivalence Classes for variables Equivalence Classes for variables : EnumerationEnumerationEnumerationEnumeration

Equivalence Classes Example

Each value in a separate
class

autocolor:{red,
blue, green}

{{red,} {blue},
{green}}

X:boolean {{true}, {false}}

Constraints Classes

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

23

Equivalence Classes for variables Equivalence Classes for variables Equivalence Classes for variables Equivalence Classes for variables : ArrayArrayArrayArray

Equivalence Classes Example

One class containing all
legal arrays, one
containing the empty
array, and one
containing a larger than
expected array.

int [] aName =
new int[3];

{[]}, {[-10, 20]},
{[-9, 0, 12, 15]}

Constraints Classes

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

24

� Arrays in Java and structures in C++/C, are compound types. Such input
types may arise while testing components of an application such as a
function or an object.

� While generating equivalence classes for such inputs, one must consider
legal and illegal values for each component of the structure.

� The next two examples illustrate the derivation of equivalence classes for
an input variable that has a compound type.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Equivalence Classes for Compound Data Type Equivalence Classes for Compound Data Type Equivalence Classes for Compound Data Type Equivalence Classes for Compound Data Type (1)

25

� struct transcript
{

string fName; // First name
string lName; // Last name
string studentID // 9 digits
string cTitle [200]; // Course titles
char grades [200]; // Letter grades corresponding to course titles

}

� Derive equivalence classes for each component of R and combine them!

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Equivalence Classes for Compound Data Type Equivalence Classes for Compound Data Type Equivalence Classes for Compound Data Type Equivalence Classes for Compound Data Type (2)

26

� Consider a procedure P in a payroll processing system that takes an
employee record as input and computes the weekly salary. For simplicity,
assume that the employee record consists of the following items with
their respective types and constraints:

� Calculate the size of the input domain

Equivalence Classes for Compound Data Type Equivalence Classes for Compound Data Type Equivalence Classes for Compound Data Type Equivalence Classes for Compound Data Type (3)

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

27

Systematic Procedure for Equivalence PartitioningSystematic Procedure for Equivalence PartitioningSystematic Procedure for Equivalence PartitioningSystematic Procedure for Equivalence Partitioning

� 1. Identify the input domain: Read the requirements carefully and identify
all input and output variables, their types, and any conditions associated
with their use.

� 2. Equivalence classing: Partition the set of values of each variable into
disjoint subsets

� 3. Combine equivalence classes: This step is usually omitted and the
equivalence classes defined for each variable are directly used to select
test cases. However, by not combining the equivalence classes, one
misses the opportunity to generate useful tests.

� 4. Identify infeasible equivalence classes: An infeasible equivalence class
is one that contains a combination of input data that cannot be generated
during test. Such an equivalence class might arise due to several reasons.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

28

Example Example Example Example III (1)

� Consider that wordcount method takes a word w and a filenamef as
input and returns the number of occurrences of w in the text contained in
the file named f. An exception is raised if there is no file with name f.
Using the partitioning method described in the previous example, we
obtain the following equivalence classes.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

29

Equivalence class w f

E1 non-null exists, not empty

E2 non-null does not exist

E3 non-null exists, empty

E4 null exists, not empty

E5 null does not exist

E6 null exists, empty

Example Example Example Example III (2)

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

30

� The number of equivalence classes without any knowledge of the
program code is 2, whereas the number of equivalence classes on the
previous slide is 6.

� An experienced tester will likely derive the six equivalence classes
given above, and perhaps more, even before the code is available

Example Example Example Example III (3)

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

31

QuizQuizQuizQuiz

� How many equivalence classes do we need for the wordcount program?

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

32

GUI Design and Equivalence Classes GUI Design and Equivalence Classes GUI Design and Equivalence Classes GUI Design and Equivalence Classes (1)
� While designing equivalence classes for programs that obtain input

exclusively from a keyboard, one must account for the possibility of
errors in data entry.

� Example: An application places a constraint on an input variablex such
that it can assume integral values in the range 3..7. However, testing must
account for the possibility that a user may inadvertently enter a value for
x that is out of range.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

33

� Suppose that all data entry to the application is via a GUI front end.
Suppose also that the GUI offers exactly five correct choices to the user
for x.

� In such a situation it is impossible to test the application with a value of x
that is out of range. Hence only the correct values of x will be input. See
figures on the next slide.

GUI Design and Equivalence Classes GUI Design and Equivalence Classes GUI Design and Equivalence Classes GUI Design and Equivalence Classes (2)

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

34

GUI Design and Equivalence Classes GUI Design and Equivalence Classes GUI Design and Equivalence Classes GUI Design and Equivalence Classes (3)

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

35

Program Behavior and Equivalence ClassesProgram Behavior and Equivalence ClassesProgram Behavior and Equivalence ClassesProgram Behavior and Equivalence Classes

� The equivalence classes are created assuming that the program behaves
the same on all elements (i.e., tests) within a class.

� This assumption allows the tester to select exactly one test case from each
equivalence class to test the program.

� Is this assumption correct?

� If yes, why?

� If no, how to improve the test set?

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

36

Boundary Value Analysis

37

Errors at the BoundariesErrors at the BoundariesErrors at the BoundariesErrors at the Boundaries

� Experience indicates that programmers make mistakes in processing
values at and near the boundaries of equivalence classes.

� For example, suppose that method M is required to compute a function f1
when x ≤ 0 is true and function f2 otherwise. Also assume that f1(0) ≠ f2(0)

� However, M has an error due to which it computes f1 for x <0 and f2
otherwise.

� Obviously, this fault can be revealed when M is tested against x = 0, but
not if the input test set is, for example, {-4, 7} derived using equivalence
partitioning.

� In this example, the value x=0, lies at the boundary of the equivalence
classes x≤0 and x>0.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

38

Equivalence Partitioning & Boundary Value AnalysisEquivalence Partitioning & Boundary Value AnalysisEquivalence Partitioning & Boundary Value AnalysisEquivalence Partitioning & Boundary Value Analysis

� While equivalence partitioning selects tests from within equivalence
classes, boundary value analysis focuses on tests at and near the
boundaries of equivalence classes.

– Boundary value analysisis a test selection technique that targets faults in
applications at the boundaries of equivalence classes.

� Certainly, tests derived using either of the two techniques may overlap.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

39

Boundary Value Analysis Boundary Value Analysis Boundary Value Analysis Boundary Value Analysis : ProceduresProceduresProceduresProcedures

� Partition the input domainusing unidimensional partitioning. Alternately,
a single partition of an input domain can be created using
multidimensional partitioning. We will generate several sub-domains in
this step.

� Identify the boundariesfor each partition. Boundaries may also be
identified using special relationships among the inputs.

� Select test datasuch that each boundary value occurs in at least one test
input.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

40

BVA Example BVA Example BVA Example BVA Example : Step Step Step Step 1 –––– Create Equivalence ClassesCreate Equivalence ClassesCreate Equivalence ClassesCreate Equivalence Classes

� Assuming that a program takes two variables as input: codemust be in
the range 99..999 and quantityin the range 1..100

– Equivalence classes for code
� E1: values less than 99

� E2: values in the range

� E3: values greater than 999

– Equivalence classes for quantity
� E4: values less than 1

� E5: values in the range

� E6: values greater than 100

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

41

BVA Example BVA Example BVA Example BVA Example : Step Step Step Step 2 –––– Identify BoundariesIdentify BoundariesIdentify BoundariesIdentify Boundaries

� Boundaries are indicated with an x.

E2

98 100 998 1000

99 999
E1 E3

x x* * * *

E5

0 2 99 101

1 100
E4 E6

x x* * *
*

*
*

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

42

BVA Example BVA Example BVA Example BVA Example : Step Step Step Step 3 –––– Construct Test SetConstruct Test SetConstruct Test SetConstruct Test Set

� Test selection based on the boundary value analysis technique requires
that tests must include, for each variable, values at and around the
boundary.

� Quiz: unidimensional partitioning versus multidimensional partitioning

T={ t1: (code=98, quantity=0),
t2: (code=99, quantity=1),
t3: (code=100, quantity=2),
t4: (code=998, quantity=99),
t5: (code=999, quantity=100),
t6: (code=1000, quantity=101)

}

Illegal values of code and
quantity included

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

43

Equivalence Class Partitioning

versus

Statement Coverage

44

Example: Identify the Type of a Triangle Example: Identify the Type of a Triangle Example: Identify the Type of a Triangle Example: Identify the Type of a Triangle (1)

� A program P takes an input of three integers a, b and c, and returns the
type of the triangle corresponding to three sides of length a, b, and c,
respectively.

� Quiz:

– How to generate a test set based on Equivalence Class Partitioning
to achieve the highest statement coverage possible?

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

45

Question:

What is the statement coverage of your test set?

Example: Identify the Type of a Triangle Example: Identify the Type of a Triangle Example: Identify the Type of a Triangle Example: Identify the Type of a Triangle (2)

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

46

Boundary Value Analysis

Versus

Decision Coverage

47

Complement between BVA and Decision CoverageComplement between BVA and Decision CoverageComplement between BVA and Decision CoverageComplement between BVA and Decision Coverage

� Test cases generated based on Boundary Value Analysis improve decision
coverage.

� Similarly, test cases that achieve high decision coverage also cover some
boundary values.

� Examples
– If (x ≤ 0) {…..}

� BVA: { x1 = 0; x2 = 1; x3 = –1}

� Together, x1, x2 and x3 give 100% decision coverage.

– If (y = = 3) {…..}

� { y1 = 3 and y2 = a value different from 3} gives 100% decision coverage.

� At least one of the boundary value (y = 3) is covered.

Requirements-based Test Generation for Functional Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

