STAR Lahoratory.of Advar on Software Technology

Requirements-based Test Generation

for

Predicate Testing

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas

ewong@utdallas.edu
http://www.utdallas.edu/~ewong

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 1

Speaker Biographical SRetch

* Professor & Director of International Outreach
Department of Computer Science
University of Texas at Dallas

* Guest Researcher
Computer Security Division
National Institute of Standards and Technology (NIS

* Vice President, IEEE Reliability Society
e Secretary, ACM SIGAPP (Special Interest Group oplAgal Computing)

* Principal Investigator, NSF TUES (Transforming Urgtaduate Education in
Science, Technology, Engineering and MathematiocggeEt
— Incorporating Software Testing into Multiple Comgugcience and Software
Engineering Undergraduate Courses

* Founder & Steering Committee co-Chair for the SEREference
(IEEE International Conference on Software Secuartg Reliability
(http://paris.utdallas.edu/serel3)

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 2

Learning Objectives

 Equivalence Class partitioninjg Essentiablack-boxtechniques

: for generating tests for
* Boundary value analysis functional testing

* Test generation from predicates

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 3

Three Techniques

* BOR
* BRO
* BRE

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 4

Test Generation from Predicates (1

* We will now examine three techniques
— BOR (Boolean Operator)
— BRO (Boolean and Relational Operator), and
— BRE (Boolean Relational Expression)
for generating test cases that are guaranteeeltsmt certain faults in the

coding of conditions

* The conditions from which test cases are generateldtmige from
requirements or might be embedded in the prograe tested.

e Conditions guard actions
— For example,

If conditionthenaction

IS a typical format of many functional requirements

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 5

Test Generation from Predicates (2)

* A condition is represented formally apmedicate also known as a
Boolean expressionFor example, consider the requirement

“If the printer is ONandhas papethensend document to printer

This statement consists otanditionpart and amctionpart.

* The following predicate represents the condition phthe statement
p,: (printerstatus= ON) U (printertray != empty

T — ——
Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 6

Predicates

* Relational operators (relodk, <, >,2, =, #}
= and = = are equivalent

* Boolean operators (bod}), [, [J, xor} also known as
{not, AND, OR, XOR}

* Relational expressiowr, relop e, (e.g.,a+b<c)
e, ande, are expressions whose values
can be compared usimglop

» Simple predicateA boolean variable or a relational expression
(e.g.,x<0)

* Compound predicatdoin one or more simple predicates using
(e.g.,gender= = “female”Jage> 65)

C—
Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 7

Boolean Expressions (1)

* Boolean expressiomne or mord3oolean variablegined bybop.

— Example: &b [0!c) wherea, b, andc are also known agerals.

* Negationis also denoted by placing a bar over a Booleanesspon.
such as ing [Jb)

* \We also writeab for a [1b anda + b for a [1b when there is no confusion.

e Singular Boolean expressioWhen each literal appearsly once
— Example: a0b O!c)

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 8

Boolean Expressions (2)

e Disjunctive normal form (DNF)Sum of product terms:

e.g., g + (rs) + (ac).

e Conjunctive normal form (CNFProduct of sums:

e.g., p+ag)r+s)(a+o).

* Any Boolean expression in DNF can be converted tecarivalent
CNF and vice versa.

—e.g.,, CNF: p+ IN(p + 9)(g+ 'r)(g+ 9) is equivalent to
DNF: (pq+ !'rs)

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 9

Boolean Expressions (3)

* Mutually singular Boolean expressiore ande, are mutually singular
when theydo not share any literal

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 10

Boolean Expressions: Syntax Tree Representation

» Abstract syntax tree (AST) foa@ b) <cl!p

* Internal nodes are labeled by boolean and relatiopedators

Root node (AND-node)

s®
.*
.
.s®
.*

*
.
s
llllllllllllllll

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 11

Fault Model for Predicate Testing

* What kind of faults are we targeting when testingtiercorrect
Implementation of predicates?

* Suppose that the specification of a software modagaires that an
action be performed when the conditi¢a< b) [I(c > d) Leis true.

* Herea, b, ¢, andd are integer variables amds a Boolean variable.

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 12

Boolean Operator Faults

e Correct predicate:a(<b) O(c>d) Ue

(a<b) (c>d) Ue Incorrect Boolean operator
(a<b)d!(c>d) Je Incorrect negation operator
(a<b)(c>d) e Incorrect Boolean operators
(a<b)O(c>d) Ux Incorrect Boolean variable

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 13

Relational Operator Faults

e Correct predicate:a(<b) O(c>d) Ue

(a==Db)(c>d) e Incorrect relational operator
(a==Db)U(c<sd)de Two relational operator faults
(a==Db)O(c>d) e Incorrect relational and Boolean operators

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 14

Missing or Extra Boolean Variable Faults

» Correct predicatea [1b

» Missing Boolean variable faukk

e Extra Boolean variable faulk (1b [c

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 15

Goal of Predicate Testing (1)

* Given a correct predicap, the goal of predicate testing is to generate a
test sefl such that there ist least one test casel T for whichp. and its
faulty versionp, evaluate talifferenttruth values (i.e p. = true and
p; = false or vice versa)

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 16

Goal of Predicate Testing (2)

* As an example, suppose tipata<b+c andp:a>b+c
Consider a test sét= {t,, t,} where
t:<a=0,b=0,c=0>andt;:<a=0,b=1,c=1>

* The fault inp, is not revealedby t, as bothp, andp, evaluate to false
when evaluated against

* However, the faults revealedy t, asp. evaluates to true argito false
when evaluated against

C—
Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 17

Predicate Constraints: BR symbols

» Consider the following Boolean-Relational set of BRabyls:
—~BR={t, f, <, =, >}

* A BR symbolis a constrainton a Boolean variable or a relational
expression

* For example, consider the predicktea < b and the constraint “ > ",
— A test case thatatisfieghis constraint foE must causé& to evaluate to false.

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 18

Infeasible Constraints

A constraintC is considereahfeasiblefor predicatep, if there exists no
input values for the variables mthat satisfyC.

* For example, the constrainftrue) is infeasible for the predicate
(a>b) d(b>d)ifitis known thatd > a

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 19

Predicate Constraints

* Letp, denote a predicate with n > 0, Jandl] operators

* A predicate constrainC for predicatep, is a sequence ofn¢ 1) BR
symbols, one for each Boolean variable or relatierplession ip,.

When clear from context, we refer to “predicatestoaint” as simply
constraint.

* Test case satisfiesC for predicatep, if each component of patisfies the
corresponding constraint in C when evaluated against t

— ConstraintC for predicatep, guides the development of a test casefdr.e.,
it offers hints on what the values of the variables shoulébb@, to satisfy G

—
Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

20

Predicate Constraints: Example

e Consider the predicafe:|[b| O [(r <s) O [(u=v) and a constrair€: (t, =, >)

* The following test casgatisfiesC for p,
<b=true,r=1,s=1,u=1,v=0>

* The following test caseoes nosatisfyC for p,
<b=true,r=1,s=2,u=1,v=2>

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 21

True and False Constraints

* p.(C) denotes the value of predicatesvaluated using a test case that
satisfiesC

 Cis referred to astrue constrainiwwhenp,(C) is true and &lse
constraintotherwise

* A set of constraintSis partitioned into subse&& andS', respectively,
such that for eac@ in St, p.(C) =true, and for anyC in S', p,(C) =false

¢S=S!0S

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 22

Predicate Testing: Criteria

* Given a predicatp,, we want to generate a test $euch that

— Tis minimal and

— T guarantees the detection of the fa(@@rrespond teome fault modgl
in the implementation g,

* We will discuss three such criteria named
— BOR (Boolean Operator),
— BRO (Boolean and Relational Operator), and
— BRE (Boolean Relational Expression)

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 23

Predicate Testing: BOR Testing Criterion

* A test sefl that satisfies th8OR testing criteriorfior a compound

predicatep, guarantees the detectionsofigle or multiple Boolean
operator faultan the implementation g,

 Tis referred to as a BOR-adequate test set and soesatiniten ad ;5

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 24

Predicate Testing: BRO Testing Criterion

* A test sefl that satisfies th8RO testing criteriorfior a compound

predicatep, guarantees the detectionsofigle Boolean operator and
relational operator faultsn the implementation g,

 Tis referred to as a BRO-adequate test set and soesetiniten ad gz,

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 25

Predicate Testing: BRE Testing Criterion

* A test sefl that satisfies th8RE testing criteriofior a compound
predicatep, guarantees the detectionsofigle Boolean operator

relational expressiorand arithmetic expression faultsthe
implementation op,

* Tis referred to as a BRE-adequate test set and soesetunitten a9 ;.

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 26

Predicate Testing: Guaranteeing Fault Detection
e Let T,, xJ{BOR, BRO, BRE}, be a test set derived from precdkqat
Let p; be another predicate obtained frppby injecting single
(or multiple) faultsof one of three kinds
— Boolean operator fault
— relational operator fault, and
— arithmetic expression fault

T, IS said to guarantee the detection of faults: iifor somet [J T,
(D) # P (V)

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 27

Guaranteeing Fault Detection: Example

*Letp =jla<Bblic>d

e Constraint ses={(t, 1), (t,), (f, t)} «=— Given to you at this mome+t

e Let Tgor = {1, 1), t3} is @ BOR adequattest set that satisfi€s

t:<a=1,b=2,c=1,d=0 > satisfiest(t)
(i,e.,a<Dbis true ancc < dis also true)

t:<a=1,b=2,c=1,d=2 > satisfiest(f)

ty <a=1,b=0,c=1,d= 0 > satisfiesf(t)

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 28

Guaranteeing Fault Detection: In Class Exercise (1)

* Inject single or multiple Boolean operator faults in

p-a<blc>d

andshow that T guarantees the detection of each.fault

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 29

Guaranteeing Fault Detection: In Class Exercise (2)

* The following table listp, and a total of 7 faulty predicates obtained by
inserting single and multiple Boolean operator faults

e Each predicate is evaluated against the three tes iteke

— Each faulty predicate evaluates to a value diffefrem that ofp, for at least
one test case in

o Rredlente i i RGeS e
a<bac>d true false false
Single Boglean operator fault
1 a<bve>d true true true
2 a<bAa=-c>d false true false
3 -a<bArc>d false false true

Multiple Boclean operator faults

4 a<bv-c>d true true false |
5 ~a<bve>d true false true

6 -a<bAr-c>d false false false
7 —-a<bv=-c>d true true true

C—
Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 30

Guaranteeing Fault Detection: In Class Exercise (3)

* Can we delete any of these three test casésaind still guarantee
the detection of all the Boolean operator faults?

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 31

Guaranteeing Fault Detection: In Class Exercise (4)

* Suppose we removg thenthe faulty predicatd in the previous
table cannot be distinguished frgmby tests, andt; BRO

* In fact, if we remové, from T, thenT is no longer BOR adequate
because the constrainif() is not satisfied

* We can verify that if any column in the previouslé¢ais removed,
at least one of the faulty predicates will be leftisinguishable
by the tests in the remaining two columns

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 32

Cross &I Onto Product

* Thecross producof two setsA andB is defined as

AxB={(a b)|aldAandb B}

e Theonto producbf two setsA andB is defined as

for finite setsA andB, A [1 B is a minimal set of pairsi(v)

such that {¢, v) |[u A, v I B, and each element éfappears
at least once asand each element &appears once a$

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 33

Set Products: Example (1)
e LetA={t, =, >} andB = {f, <}

AxB={(t,1) <), =1 (= <), =D, > 9}
AOB={(f), (= <), >, <}
* Any other possibilities foA [1 B?

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 34

Set Products: Example (2)

e LetA={t, =, >} andB = {f, <}

* Any other possibilities foA [1 B?

AOB={(t, <), (=1), (>, <)} € second possibility
AOB=A(t,f), (= <), (>)} € third possibility
AOB={(t, <), (= <), (>f)} € fourth possibility

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 35

Algorithm for Generation of BOR Constraint Sets (1)

* We will use the following notation:

p, is a predicate

AST (p,) is its abstract syntax tree

N;, N,, refer to various nodes in the ASY)(

S, is the constraint set for nodlein the syntax tree fqp,

S\! is the true constraint set for noNen the syntax tree fqg,
S\’ is the false constraint set for nodeén the syntax tree fqu,

S=SOS

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 36

Algorithm for Generation of BOR Constraint Sets (2)

Procedure for generating a minimal BOR-constraint
set from an abstract syntax tree of a predicate p,

Input: An abstract syntax tree for predicate denoted by
AST(p,)| pr contains only singular expressions. |
Output: BOR-constraint set for p, attached to the root node of

AST(p,).

Procedure: BOR-CSET

Step '1 Label|each leaf node|N of AST(p,) with its constraint set
S(N). For each leaf Sy = {¢, f}

Step 2 Visit each nonleaf node in AST(p,) in a|bottom up manner.
Let N; and N, denote the direct descendants of node W, if N
is an AND or an OR-node. If N is a NOT-node, then N, is
its direct descendant. Sy, and Sy, are the BOR-constraint sets
for nodes Ny and N, respectively. For each nonleaf node N,
compute Sy as follows: '

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 37

Algorithm for Generation of BOR Constraint Sets (3)

2.1 Nisan OR-node:

= 5 o5
¢ = (85 x (£21) U ((£) x 85)
where f€S; and £€ S,

2.2 Nisan AND-node:

5 = (55, x () U (6} x 8%,)

where G € Sy and § € S,
2.3 N is NOT-node:

£
Sy = S
S’f = SH;

Step 3 The constraint set for the root of AST(p,) is the desired BOR-
constraint set for p,.

End of Procedure BOR-CSET

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 38

Generation of BOR Constraint Set (1)

* We want to generafg;rforp,:a<blc>d

e First, generate syntax treemf

[]

N

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 39

Generation of the BOR Constraint Set (2)

e Second, label each leaf node with the constraif(ef(f)}

* We label the nodes &%, N,, and so on for convenience.

N
By
N, /\Nz

a<b c>d

S.,= {0,)} S,= (), ()

* Notice that N, andN, are direct descendentsdf which is an
AND-node

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 40

Generation of the BOR Constraint Set (3)

e Third, compute the constraint set for the next higiogle in the syntax
tree in this case\,

e For an AND node, the formulae used are the following

S\, =[O 1), (& 1)}
SNst - SNlt : SNzt = {0} D (D)) = {(t, v} False constraint

N; O
Svf = (8 (DDA xS,)| /\Nz
i} } } a<b c>d
{(D} x{(OH O {()} x{(D}) €0, O} (0, (M

={(f, 9} O {(t. N}
={(1, 0, (t. D}

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 41

Generation of Tgop - -

e As per our objective, we have computed the BOR caimstset for the
root node of théAST(p,). We can now generate a test set using the BOR
constraint set associated with the root node.

N, contains a sequence of three constraints and hence
we get a minimal test set consisting of three test
cases. Here is one possible test set.

Toor = {t1, Ty 3} SN3 ={(t,0), (f,), (t, f)}

N; O

a<b c>d

(9, O} {(D), O}

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 42

Another Example for Tg,, (1)

* Generate the BOR-constraint sets for the predicate
(a+b)<cUlpd(r>9

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 43

Another Example for Ty, (2)

e The abstract syntax tree fa £ b) <c||!p|C(r > s)

SB: - g g Ef f gi
= t, t,
St =A{(t, N} Ne =

¥ =009 —_
/ r>SN5 St ={t}
/\ s ={0
N S =D

a+b<c | S ={t}

st =11 |
S' ={f} D N, St ={t}
Sf ={f}

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 44

Generation of BRO Constraint Set

* Recall that a test set adequate with respect to a &R&traint set for
predicatep, guarantees the detectionadf combinations of single
Boolean operator and relational operator faults

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 45

BRO (Constraint Set

* The BRO constraint s&for relational expressiog relop g
S=1{>), (5), (9}

* The separation dinto itstrue (S andfalse(S") components depends in

relop
relop: >St = {(>)} S'={(=), (<)}
relop:>S'={(>), =)} S'={(9)}
relop: =S'={(=)} S'={(<), >)}
relop: <S'={(<)} S'={(=), >)}

relop:<S'={(<), ()} S'={()}

* Note:t, denotes an element 8f
f, denotes an element 8f

T ——— o— —
Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 46

Algorithm for Generation of BRO Constraint Sets

Procedure for generating a minimal BRO-constraint
set from abstract syntax tree of a predicate p,.

Input : An abstract syntax trec for predicate p, denoted by AS57(p,).
p» contains only singular expressions.

Output © BRO-congiraint set for p, attached to the root node of
AST(p.).

Procedure; BRC~CSET

Step 1 Label each leaf node N of AST{p,) with its constraint set
S(N). For each leaf node that represents a Boolean variable,
Sy = {t, £}. For each leaf node that is a relational expres-
sion, Sy={(>), (=), (<) }.

Step 2 Visit each nonleaf node in AST(p;) in a bottom up manuer.
Let Ny and N, denote the direct descendants of node W, if

N is an AND- or an OR-node, If N is a NOT-node, then N
is its direct descendant. Sy, and Sy, are the BRC-constraint
sets for nodes N, and N,, respectively. For each nonleaf node
N, compute Sy as per Steps 2.1, 2.2, and 2.3 in Procedure
BRO-CSET.

Step 3 The constraint set for the root of 4ST{p,) is the desired BRO-
constraint set for p,.

End of Procedure BRO-CSRET

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 47

BRO Constraint Set: Example (1)

°p:(@+b<c)UlpU(r>s9)
e Step 1: Construct the AST for the given predicate

Ng

kv

N/\

at+tb<c

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 48

BRO Constraint Set: Example (2)

e Step 2: Label each leaf node with its constrainBset

D/

|\|1 N3 True constraint {>}
atb<c !

r>s N

False constraint {<, =}

True constraint {<} |
p N

False constraint {>, = _
True constraint

False constraintf}

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 49

BRO Constraint Set: Example (3)

e Step 2: Traverse the tree and compute constraifdrseach internal
node

Shy, = S, = {(N}
Sy, = S, = {0}
Sty, = St 0 Suf = {9} O{(D} = {(<, 0}

Sy, = (S, * {(t)D) O {(t)} x S'y)
= (>, =)} < {U(O) T AR} *{(DY
= {9, (=0} O{(<, 1)
= {9, (=1, (<.t}

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 50

BRO Constraint Set: Example (4) -

True constraint {(<f)}

N
False constraint {(X,), (=,1), (<, 1)} v6

AW N
r>Ss
/\ False constramtt{ True constraint {>}

a + b<c False constraint {<, =}
True constraint {<}

False constraint {>, =} IO N; _
True constraint

False constraintf}

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 51

BRO Constraint Set: Example (D)

* Next compute the constraint set for the root nolis (§ an OR-node)

S —Sf DSf
= {0), (— . (<.} 0{E), ()}
=, f,2), (=2, 9, (<.t)}

Sty, = Sy, *{(fu)D) O ((fy)} * Sy
= (& 0 %@ 0G0 x?(>)})
= {(< £, 2} O{> 1, >)}
= {(<, f,2), (>f, >)}

o — C—
Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 52

BRO Constraint Set: Example (6)

Constraint set fop,: (a+b<c)UlpU(r>y9)
True constraint {(<f, =), (>,f, >)})
False constraint {(X, =), (=1, <), (<,t, =)} Ng

W

True constraint {(<f)} \ /\

False constraint {(>f), (=,f), (<, 1)} K ~ SN5
N, / N True constraint {>}

3
a+tb<c ! False constraint {<, =}

True constraint {<} |
p N2
True constraint

False constraint {>, =}

False constraintf}

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 53

BRO Constraint Set: In-Class Exercise

 Given the constraint set foy: (a+ b <c) U!lp U(r > s), construcil gz,

{(>’ f’ :)’ (:’f’ <)’ (<’t’ :)’ (<’f’ :)’ (>’f’ >)}

a+b<c|p|r>s Test case
t) > f = <a=lb=1c=1p=1—false,r=1,s=1>
ts = f < <a=1,b=0,c=1,p=—~false,r=1,5s=2>
t3 < t = <a=1l,b=1l,c=3,p=true,r=1,s=1>
ta < f = <a=0,b=2¢=3,p=1false,r=0,s=0>
ts > f > <a=1b=1,¢c=0,p=false,r=2,5s=0>

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 54

Generating the BRE Constraint Set (1)

* We now show how to generate BRE constraints thdttie#éest cases
which guarantee the detection of a single occurrehce
Boolean operatqrrelation operator arithmetic expressiqror
combinatiorfault in a predicate

* The BRE constraint set forBoolean variablaemains(t, f} as with the
BOR and BRO constraint sets

* The BRE constraint set forralational expressiors {(+¢), (=), (-£)}
wheres> 0

C—
Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 55

Generating the BRE Constraint Set (2)

* The BRE constraint s&for a relational expressian relop g is
separated into subsedsandS' based on the following relations

Constraint Satisfying condition
+e O<e;—e < +e
—e —e<e—e <0

* Based on the conditions listed above, we can nowaepthe BRE
constraintSinto its true and false components as follows

relop :> S'={(+ €}} St= {(=),(—€)}
relop:> S'={(+ €),(=)} Si={(-€]
relop := S'={(=)]) Sf= {(+€), (—e)}
relop:< Sf={(—e)} Sf={ (=), (4+e)}
relop:< S'={(—e€), (=)} S'={(+€))

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 56

Algorithm for Generation of BRE Constraint Sets (1)

* The procedure to generate a minimal BRE-constrains semilar to that
for BRO and BORThe only difference lies in the construction of the
constraint sets for the leaves

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 57

Algorithm for Generation of BRE Constraint Sets (2)

Procedure for generating a minimal BRE-constraint
set from an abstract syntax tree of a predicatep,.

Input: An abstract syntax tree for predicate p., denoted by
AST(p,) . p- contains only singular expressions.
Output: BRE-constraint set for p, attached to the root node of
AST(p,).

Procedure: BRE-CSET

Step 1 Label each leaf node N of AST (p,) with its constraint set
S (N). For each leaf node that represents a Boolean variable,
Sy = {t, £}. For each leaf node that is a relational expres-
sion, Sy={ (+e), (=), (~e) }.

Step 2 Visit each nonleaf node in AST (p,) in a bottom up manner.
Let &) and N, denote the direct descendants of node N, if
is an AND-or an OR-node. If N is a NOT-node, then Nj is
its direct descendant. Sy, and Sy, are the BRE-constraint sets
for nodes N; and N5, respectively. For each nonleaf node N,
compute Sy as in Steps 2.1, 2.2, and 2.3 in Procedure BOR-
CSET.

Step 3 The constraint set for the root of AST(p,) is the desired BRE-
constraint set for p,.

End of Procedure BRE-CSET

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 58

BRE Constraint Set: Example (1)

* Generate the constraint set for the predipat@a + b <c) Ulp O(r >)

Nm/\ Ns
N

r>s
Nl
a+b<c !N3
N,
P

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 59

BRE Constraint Set: Example (2)

BRE constraint setl (e, £.2), (=, £, -¢), (-e, £, =), (&, £, =), (e, £, +6))
N, v
N, » {(-e,f), (+&f), (=), (-e t)} s
e @
N, (a+b)<c N; - {5, ®} (@
0@, |
: {®), (O}
BRO constraint set
G L= (519, (s 1,2), (<, £, =), 611, >))
@)
N, p
{®, O}

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 60

BRE Constraint Set: Example (3)

* A sample test seflf,o) that satisfies the BRE constraiiits- 1)

a+b<c|p|lr>s Test case
t) +€ f = <a=1b=1le=1p=1false,r=1s=1>
ta = f —€ <a=1b=0,c=1,p=—false,r=1,5s=2>
ts —€ t = <a=1l,b=1l,c=3,p=true,r=1,5=1>
ts —€ f = <a=0,b=2¢c=3,p=1—false,r=0,5=0>
ts +€ f +€ <a=1lb=1c=1p=1{false,r=15=0>4

* A sample test seflf,) that satisfies the BRO constraints

a+b<clp|r>s Test case
t > f = <aea=lb=1lc=1,p="false,r=1,5=1>
t = f < c:a=1,b:i},c=1,p=falsa,r:1,s=2}:
ts < t = <a=lb=1lec=3,p=true,r=1,5=1>
tq < f = <a=0,b=2¢c=3,p=1false,r=0,5=0>
ts > f > <a=1b=1,¢=0,p=1false,r=2,s=0>
T _ T |

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 61

Singular Boolean Expressions

* Boolean expressiomne or more Boolean variables joiredbop
— Example & (b J!c), wherea, b, andc are also known dgerals

 Singular Boolean expressidiWhen each literal appears only once
— Example &€0b[1!c)

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 62

Mutually Singular Boolean Expressions

* Mutually singular:Boolean expressiore ande, are mutually singular
when theydo not share any literal

* Expressiore is considereé singular component of iEand only ife is
singularand ismutually singulamwith each of the other elementskif

* Expressiore is considereé non-singular component of iEand only if
it is non-singularand ismutually singulamwith each of the remaining
elements oE

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 63

BOR Constraints for Non-Singular Expressions

e Test generation procedures described so far asrfgular predicates

Recall that a singular predicate contains amlg occurrence of each
variable

* We will now learn how t@enerate BOR constraints for non-singular
predicates

e First, let us look at some non-singular expressidmst tespective
disjunctive normal forms (DNF), and their mutuallgguilar components

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 64

Non-Singular Expressions and DNF: Examples

Predicateff,) | DNF Mutually singular components m
ab(b + ¢ abb + abc ab(b + ¢

a(bc + bd abc + abd a(bc + bd

a(bc +!b+de) |abc +db +ade | gbc +!b + de

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 65

Generating BOR, Constraints for Non-Singular Expressions

* We proceed in two steps

— First we will examine th&leaning Impact (Mlprocedure for generating a
minimal set of constraints frompossibly non-singular predicate

— Next, we will examine the procedure to genekfeR constraint set for a
non-singular predicate

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 66

Meaning Impact (MI) Procedure (1)

Input: A Boolean expression E = ey + € +...¢, in minimal dis-
junctive normal form containing # terms. Terme;, | <i <n
contains /; > 0 literals.

Ouput: A set of constraints Sg that guarantees the detection of
missing or extra NOT operator fault in a faulty version
of E.

Procedure: MI -CSET

Step I For each term ¢;, 1 <7 < n, construct 7;, as the set of con-
straints that make ¢; true.

Step2 Let IS, =T, — =12y Lo Note that for i j, TS,N
TSg j _— ﬁ.

Step 3 Construct Sp by including one constraint from each
TS,,, 1 <i < n. Note that for each constraint ¢ € Sg. plc) =
true.

e — o I — Cre——
Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 67

Meaning Impact (MI) Procedure (2)

Step4 Let ¢/ denote the term obtained by complementing the j*
literalinterme;, for 1l <i <nandi<j< l;. We count the
literals in a term from left to right, the leftmost literal bein
the first. Construct 7 as the set of constraints that make ¢/
true,

Step 5 Let FS,/ = ¥y — Uy T Thus, for any constraint ¢ € FS,/,
p{c) = false. l

Step 6 Construct S% that is minimal and covers each FS,; at least
onee. :
Step 7 Construct the desired constraint set for £ as Sg = §L U S5

End of Procedure MI-CSET

| I——
68

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

MI Procedure: Example (1)

e Consider thenon-singulapredicatea(bc + !'bd)

* [ts DNF equivalent i& = abc+ albd

* Note thata, b, ¢, andd are Boolean variables and also referred to as

literals
— Each literal represents a condition
— For examplea could represent<s

e Recall that + is the Boolean OR operator, ! isBoelean NOT operator,
and as per common convention we have omitted tloéeBo AND
operator. For examplecis the same aslic

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 69

MI Procedure: Example (2)

 Step 0 Identify the DNF equivalent df ase, + e,, wheree, =[abgand
e, =|albd

* Step 1 Construct a constraint sgf for e, that make, true.
Similarly construcfl e, fOr & that makes, true
T ={(t t [, ¢t t[)}
T, = {(t. £t), & £ 0}

— Note that the fout’s in the first element oTeldenote the values of the

Boolean variablesg, b, ¢, andd, respectively. The second element, and others,
are to be interpreted similarly.

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 70

MI Procedure: Example (3)

e Step 2 From eacﬁl’el , remove the constraints that are in any ongJer
This gives ug % andTS&i
Note that this step will Iea‘d% N T% =[]

— There are no common constraibt%tweenTel andT%in our example.

Hence we get
TS ={tt 60, ¢t 1)
TSQJQ: {(t, f,t,0), tf,f 1)}

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 71

MI Procedure: Example (4)

» Step 3 ConstructSt; by selecting one element from each TS

—In our case, selecting one test each fﬂ'@lm andTSb?, we obtaina minimal set
of testghatmake E trueand cover each term &fas follows
Se={(t,t,t,f), f1f1)}

— Note that
0 There exist four possiblg'c
aFor each constraintin Stz we getE(x) = true

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 72

MI Procedure: Example (5)

e Step 4 For each term ik, obtain terms by complementing each literal,
one at a time

el, =[labc &, = dlic &, = atld

el, =[1d bd &, = ahd é, = altld

* From each terma above, derive constrainis that make=true.
We get the following six sets

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 73

MI Procedure: Example (0) - S—
. Fellz {(f,t,t,0), (f, t,t,f)}

. Fezlz {(t,f, t,0), ¢ f t,)}

* Fa = {(t,t,f, 1), tt,ff)}

. Felzz {(f, f, t,0), (f f f 1)}

*Fe ={(ttt1), ttf 0}

*Fe ={(tf,tf), ¢ f)}

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 74

MI Procedure: Example (7)

* Step 5 Now constructES, by removing fronf_ any constraint that
appeared in any of the sdtsconstructed earlier.

FS: =Fu

Fsz = {(tf,t,1))

FSes1 = Fe31 ﬁ
Constraints common with
T, andT, are removed.

FSel = Fel

2 2
FSz = {(tt,f, 1)
FSe32 = |:932

—
Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 75

MI Procedure: Example (8)

 Step 6 Now construcS'; by selecting one constraint from ede®,
Se={(f,t,t,f), ¢ f,t,f), ¢t f1),dftt)}

e Step 7:Now construct: = Stc [0 STc

S={[tttf) ff1), |(f, t,t,f) ¢ftf), ttf, {1t}

* Note: Each constraint i makesE true and each constraint$i
makesE false

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 76

BOR-MI-CSET Procedure (1)

* The BOR-MI-CSET procedure takegossibly non-singular expression

E as input and generates a constraint set that guardinésegection of
Boolean operator faults in the implementatioftof

* The BOR-MI-CSET procedure using the MI procedurecdbed earlier

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 77

BOR-MI-CSET Procedure (2)

Procedure for generating a minimal constraint
set for a predicate possibly containing nonsingular

expressions.

Inpur: A Boolean expression E.
Output: A set of constraints Sg that guarantees the detection of
Boolean operator faults in E.

Procedure: BOR-MI~CSET

Step 1 Partition E into a set of » mutually singular components, E =
{E\, By, ... Ep).

Step 2 Generate the BOR-constraint set for each singular compo-
nent in E using the BOR-CSET procedure.

Step 3 Generate the BOR constraint set for each non-singular
component in E using the MI-CSET procedure

Step 4 Combine the constraints generated in the previous two steps
using Step 2 from the BOR-CSET procedure to obtain the

constraint set for E.

End of Procedure BOR-MI-CSET

| ——
78

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BOR-MI-CSET: Example (1)

e Consider a non-singular Boolean expressioa:a(bc + !bd)

e Mutually singular components &f

e =-a € singular
e,=bc+ !bd € non-singular

* We use thé8OR-CSET procedurn® generate the constraint et e,

(singular componentandMI-CSET procedure foe, (non-singular
component)

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 79

BOR-MI-CSET: Example (2)

* For componeng, we get

S, = {th S, = {1

* Recall thats', is true constraint set fax andee1 IS false constraint set
for e,

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 80

BOR-MI-CSET: Example (3)

e Componeng, is a DNF expression. We can wrég= u + vwhereu =|b
andv =|'bd

 Let us now apply the MI-CSET procedure to obtainBQR constraint
set fore,

e As per Step 1 of the MI-CSET procedure we obtain
T, ={(t t.f), & t.[D}
T, = {(f.]9, (.[{] D)}

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 81

BOR-MI-CSET: Example (4)

* Applying Steps 2 and 3 ff, andT, we obtain

TS=T,={(tt 0, ¢} One possible choice. Can you

TS =T,={(f, 1, 1), (f,f,t)}/ think of other alternatives?
Se2 ={(t, t, D), (f, t, 1)}

* Next we apply Step 4 twandv. We obtain the following complemented
expressions from andv.
Note thatu =|bgandv =|!bd

u = w=H
v,=[dd w=1b

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 82

BOR-MI-CSET: Example (5)
e Continuing with Step 4 we obtain

Fo = (L L1 LDy Fo = {6 Rl & F ED)
F =l ey F ={(f) CE)}

* Next we apply Step 5 to theconstraint sets to obtain
FS, ={(ft, 1)} F§ ={t11), 1 1)}
FS, ={tf)} FS ={(t1) (11)}

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 83

BOR-MI-CSET: Example (6)

* Applying Step 6 to th&Ssets leads to the following
Se2: {(f,t,), @t f D)}
* Combing the true and false constraint set®fave get
S%: {(t, ,f), (f, t,v), ft,f),tf11)}
Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 84

BOR-MI-CSET: Example (7)

e Summary

S, ={(t)} S“el ={(f)} from BOR-CSET procedure
Stez ={(t,t,f), (f, t,)} S“ez ={(f,t,f), (t, f, t)} from MI-CSET procedure

* We now apply Step 2 of the BOR-CSET procedure tainlihe constraint
set for the entire expressi@n

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 85

BOR-MI-CSET: Example (8)
Obtained by applying Step 2 of BOR-CSET to an ANide

Sty, =Sty O Sy,

St = (ST, x{t.}) O ({t} x Sfy.) | True constraint: {t,t,), (.t)}
3 1 Iil False constraint: {(t, t, f), (t, f, t, f), @, t, f, 1)}
3

|:| True constraint: { t, f), (f, t, t)}

\ False constraint: {(t, f), (t, f, t)}
i
D/ \EI
N /N /N
b C b d

True constraintt “),
. Y
False constraint:

Apply MI-CSET

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 86

Summary (1)

* Most requirementsontain conditions under which functions are to be
executedPredicate testing procedures covered are excelleans to
generate tests to ensure that each condition isitedagjuately.

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 87

Summary (2)

* Usually one would combine equivalence partitioningyindary value

analysis, and predicate testing procedures to genestsfor a
requirement of the following type:

if condition then action 1, action 2, .

N

apply predicate testing or BVA

..actiom:
_

apply equivalence partitioning, BVA, etc., and
predicate testing if there are nested conditions

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 88

