
11

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas

ewong@utdallas.edu
http://www.utdallas.edu/~ewong

Requirements-based Test Generation

for

Predicate Testing

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Speaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical Sketch

� Professor & Director of International Outreach
Department of Computer Science
University of Texas at Dallas

� Guest Researcher
Computer Security Division
National Institute of Standards and Technology (NIST)

� Vice President, IEEE Reliability Society

� Secretary, ACM SIGAPP (Special Interest Group on Applied Computing)

� Principal Investigator, NSF TUES (Transforming Undergraduate Education in
Science, Technology, Engineering and Mathematics) Project
– Incorporating Software Testing into Multiple Computer Science and Software

Engineering Undergraduate Courses

� Founder & Steering Committee co-Chair for the SERE conference
(IEEE International Conference on Software Security and Reliability)
(http://paris.utdallas.edu/sere13)

2Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Learning ObjectivesLearning ObjectivesLearning ObjectivesLearning Objectives

�Equivalence Class partitioning

�Boundary value analysis

�Test generation from predicates

3

Essentialblack-boxtechniques
for generating tests for
functional testing

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Three TechniquesThree TechniquesThree TechniquesThree Techniques

� BOR
� BRO
� BRE

4Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

� We will now examine three techniques
– BOR (Boolean Operator)
– BRO (Boolean and Relational Operator), and
– BRE (Boolean Relational Expression)

for generating test cases that are guaranteed to detect certain faults in the
coding of conditions

� The conditions from which test cases are generated might arise from
requirements or might be embedded in the program to be tested.

� Conditions guard actions
– For example,

if condition thenaction

is a typical format of many functional requirements

Test Generation from Predicates Test Generation from Predicates Test Generation from Predicates Test Generation from Predicates (1)

5Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Test Generation from Predicates Test Generation from Predicates Test Generation from Predicates Test Generation from Predicates (2)
� A condition is represented formally as a predicate, also known as a

Boolean expression. For example, consider the requirement

“if the printer is ON andhas paper thensend document to printer”

This statement consists of aconditionpart and an actionpart.

� The following predicate represents the condition part of the statement
pr: (printerstatus= ON) ∧ (printertray != empty)

6Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

PredicatesPredicatesPredicatesPredicates

� Relational operators (relop): {<, ≤, >, ≥, =, ≠}
= and = = are equivalent

� Boolean operators (bop): {!, ∧, ∨, xor} also known as
{not, AND, OR, XOR}

� Relational expression: e1 relop e2 (e.g., a + b < c)
e1 and e2 are expressions whose values
can be compared using relop

� Simple predicate: A boolean variable or a relational expression
(e.g., x < 0)

� Compound predicate: Join one or more simple predicates using bop
(e.g., gender= = “female”∧ age> 65)

7Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Boolean Expressions Boolean Expressions Boolean Expressions Boolean Expressions (1)
� Boolean expression: one or more Boolean variablesjoined by bop.

– Example: (a ∧ b ∨ !c) where a, b, and c are also known as literals.

� Negation is also denoted by placing a bar over a Boolean expression.
such as in (a ∧ b)

� We also write ab for a ∧ b and a + b for a ∨ b when there is no confusion.

� Singular Boolean expression: When each literal appears only once.

– Example: (a ∧ b ∨ !c)

8Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

� Disjunctive normal form (DNF): Sum of product terms:

e.g., (pq) + (rs) + (ac).

� Conjunctive normal form (CNF): Product of sums:

e.g., (p + q)(r + s)(a + c).

� Any Boolean expression in DNF can be converted to an equivalent
CNF and vice versa.

– e.g., CNF: (p + !r)(p + s)(q + !r)(q + s) is equivalent to
DNF: (pq+ !rs)

Boolean Expressions Boolean Expressions Boolean Expressions Boolean Expressions (2)

9Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Boolean Expressions Boolean Expressions Boolean Expressions Boolean Expressions (3)
� Mutually singular: Boolean expressions e1 and e2 are mutually singular

when they do not share any literal

10Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Boolean Expressions: Syntax Tree RepresentationBoolean Expressions: Syntax Tree RepresentationBoolean Expressions: Syntax Tree RepresentationBoolean Expressions: Syntax Tree Representation

� Abstract syntax tree (AST) for (a + b) < c ∧ !p

� Internal nodes are labeled by boolean and relational operators

∧

(a + b) c

!

Root node (AND-node)

p

<

Leaf nodes

11Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Fault Model for Predicate TestingFault Model for Predicate TestingFault Model for Predicate TestingFault Model for Predicate Testing

� What kind of faults are we targeting when testing for the correct
implementation of predicates?

� Suppose that the specification of a software module requires that an
action be performed when the condition (a < b) ∨ (c > d) ∧ e is true.

� Here a, b, c, and d are integer variables and e is a Boolean variable.

12Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Boolean Operator FaultsBoolean Operator FaultsBoolean Operator FaultsBoolean Operator Faults

� Correct predicate: (a < b) ∨ (c > d) ∧ e

(a < b) ∧ (c > d) ∧ e Incorrect Boolean operator
(a < b) ∨ !(c > d) ∧ e Incorrect negation operator
(a < b) ∧ (c > d) ∨ e Incorrect Boolean operators
(a < b) ∨ (c > d) ∧ x Incorrect Boolean variable

13Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Relational Operator FaultsRelational Operator FaultsRelational Operator FaultsRelational Operator Faults

� Correct predicate: (a < b) ∨ (c > d) ∧ e

(a = = b) ∨ (c > d) ∧ e Incorrect relational operator
(a = = b) ∨ (c ≤ d) ∧ e Two relational operator faults
(a = = b) ∨ (c > d) ∨ e Incorrect relational and Boolean operators

14Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Missing or Extra Boolean Variable FaultsMissing or Extra Boolean Variable FaultsMissing or Extra Boolean Variable FaultsMissing or Extra Boolean Variable Faults

� Correct predicate: a ∨ b

� Missing Boolean variable fault: a

� Extra Boolean variable fault: a ∨ b ∧ c

15Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Goal of Predicate Testing Goal of Predicate Testing Goal of Predicate Testing Goal of Predicate Testing (1)
� Given a correct predicate pc, the goal of predicate testing is to generate a

test set T such that there is at least one test case t ∈ T for which pc and its
faulty version pi evaluate to differenttruth values (i.e., pc = true and
pi = false or vice versa)

16Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Goal of Predicate Testing Goal of Predicate Testing Goal of Predicate Testing Goal of Predicate Testing (2)
� As an example, suppose that pc: a < b + c and pi: a > b + c

Consider a test set T = { t1, t2} where
t1: <a = 0, b = 0, c = 0> and t2: <a = 0, b = 1, c = 1>

� The fault in pi is not revealed by t1 as both pc and pi evaluate to false
when evaluated against t1

� However, the fault is revealed by t2 as pc evaluates to true and pi to false
when evaluated against t2

17Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Predicate Constraints: BR symbolsPredicate Constraints: BR symbolsPredicate Constraints: BR symbolsPredicate Constraints: BR symbols

� Consider the following Boolean-Relational set of BR-symbols:
– BR={t, f, <, =, >}

� A BR symbol is a constrainton a Boolean variable or a relational
expression

� For example, consider the predicate E: a < b and the constraint “ > ”.
– A test case that satisfiesthis constraint for E must cause E to evaluate to false.

18Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Infeasible ConstraintsInfeasible ConstraintsInfeasible ConstraintsInfeasible Constraints

� A constraint C is considered infeasiblefor predicate pr if there exists no
input values for the variables in pr that satisfy C.

� For example, the constraint t (true) is infeasible for the predicate
(a > b) ∧ (b > d) if it is known that d > a

19Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

� Let pr denote a predicate with n, n > 0, ∨ and ∧ operators

� A predicate constraintC for predicate pr is a sequence of (n + 1) BR
symbols, one for each Boolean variable or relational expression in pr.
When clear from context, we refer to “predicate constraint” as simply
constraint.

� Test case t satisfiesC for predicate pr if each component of pr satisfies the
corresponding constraint in C when evaluated against t.
– Constraint C for predicate pr guides the development of a test case for pr (i.e.,

it offers hints on what the values of the variables should be for pr to satisfy C)

Predicate ConstraintsPredicate ConstraintsPredicate ConstraintsPredicate Constraints

20Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Predicate Constraints: ExamplePredicate Constraints: ExamplePredicate Constraints: ExamplePredicate Constraints: Example

21

� Consider the predicate pr: b ∧ (r < s) ∨ (u ≥ v) and a constraint C: (t, =, >)

� The following test casesatisfiesC for pr

<b = true, r = 1, s = 1, u = 1, v = 0>

� The following test case does not satisfy C for pr

<b = true, r = 1, s = 2, u = 1, v = 2>

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

True and False ConstraintsTrue and False ConstraintsTrue and False ConstraintsTrue and False Constraints

� pr(C) denotes the value of predicate pr evaluated using a test case that
satisfies C

� C is referred to as a true constraintwhen pr(C) is true and a false
constraintotherwise

� A set of constraints S is partitioned into subsets St and Sf, respectively,
such that for each C in St, pr(C) = true, and for any C in Sf, pr(C) = false.

� S = St ∪ Sf

22Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Predicate Testing: CriteriaPredicate Testing: CriteriaPredicate Testing: CriteriaPredicate Testing: Criteria

� Given a predicate pr, we want to generate a test set T such that

– T is minimal and
– T guarantees the detection of the faults (correspond to some fault model)

in the implementation of pr

� We will discuss three such criteria named
– BOR (Boolean Operator),
– BRO (Boolean and Relational Operator), and
– BRE (Boolean Relational Expression)

23Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Predicate Testing: Predicate Testing: Predicate Testing: Predicate Testing: BOR BOR BOR BOR Testing CriterionTesting CriterionTesting CriterionTesting Criterion

� A test set T that satisfies the BOR testing criterionfor a compound
predicate pr guarantees the detection of single or multiple Boolean
operator faultsin the implementation of pr

� T is referred to as a BOR-adequate test set and sometimes written as TBOR

24Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Predicate Testing:Predicate Testing:Predicate Testing:Predicate Testing: BRO BRO BRO BRO Testing CriterionTesting CriterionTesting CriterionTesting Criterion

� A test set T that satisfies the BRO testing criterionfor a compound
predicate pr guarantees the detection of single Boolean operator and
relational operator faultsin the implementation of pr

� T is referred to as a BRO-adequate test set and sometimes written as TBRO

25Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Predicate Testing:Predicate Testing:Predicate Testing:Predicate Testing: BRE BRE BRE BRE Testing CriterionTesting CriterionTesting CriterionTesting Criterion

� A test set T that satisfies the BRE testing criterionfor a compound
predicate pr guarantees the detection of single Boolean operator,
relational expression, and arithmetic expression faultsin the
implementation of pr

� T is referred to as a BRE-adequate test set and sometimes written as TBRE

26Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Predicate Testing: Guaranteeing Fault DetectionPredicate Testing: Guaranteeing Fault DetectionPredicate Testing: Guaranteeing Fault DetectionPredicate Testing: Guaranteeing Fault Detection

� Let Tx, x ∈ {BOR, BRO, BRE}, be a test set derived from predicate pr

Let pf be another predicate obtained from pr by injecting single
(or multiple) faultsof one of three kinds
– Boolean operator fault
– relational operator fault, and
– arithmetic expression fault

� Tx is said to guarantee the detection of faults in pf if for some t ∈ Tx,
pr(t) ≠ pf (t)

27Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

� Let pr = a < b ∧ c > d

� Constraint set S= {(t, t), (t, f), (f, t)}

� Let TBOR = { t1, t2, t3} is a BOR adequatetest set that satisfies S

t1: < a = 1, b = 2, c = 1, d = 0 > satisfies (t, t)
(i.e., a < b is true and c < d is also true)

t2: < a = 1, b = 2, c = 1, d = 2 > satisfies (t, f)
t3: < a = 1, b = 0, c = 1, d = 0 > satisfies (f, t)

Given to you at this moment

Guaranteeing Fault Detection: ExampleGuaranteeing Fault Detection: ExampleGuaranteeing Fault Detection: ExampleGuaranteeing Fault Detection: Example

28Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Guaranteeing Fault Detection: Guaranteeing Fault Detection: Guaranteeing Fault Detection: Guaranteeing Fault Detection: In Class Exercise In Class Exercise In Class Exercise In Class Exercise (1)
� Inject single or multiple Boolean operator faults in

pr: a < b ∧ c > d

and show that T guarantees the detection of each fault.

29Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Guaranteeing Fault Detection: Guaranteeing Fault Detection: Guaranteeing Fault Detection: Guaranteeing Fault Detection: In Class Exercise In Class Exercise In Class Exercise In Class Exercise (2)
� The following table lists pr and a total of 7 faulty predicates obtained by

inserting single and multiple Boolean operator faults in pr

� Each predicate is evaluated against the three test cases in T
– Each faulty predicate evaluates to a value different from that of pr for at least

one test case in T

30Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Guaranteeing Fault Detection: Guaranteeing Fault Detection: Guaranteeing Fault Detection: Guaranteeing Fault Detection: In Class Exercise In Class Exercise In Class Exercise In Class Exercise (3)
� Can we delete any of these three test cases in T and still guarantee

the detection of all the Boolean operator faults?

31Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Guaranteeing Fault Detection: Guaranteeing Fault Detection: Guaranteeing Fault Detection: Guaranteeing Fault Detection: In Class Exercise In Class Exercise In Class Exercise In Class Exercise (4)
� Suppose we remove t2, then the faulty predicate 4 in the previous

table cannot be distinguished from pr by tests t1 and t3 BRO

� In fact, if we remove t2 from T, then T is no longer BOR adequate
because the constraint (t, f) is not satisfied

� We can verify that if any column in the previous table is removed,
at least one of the faulty predicates will be left indistinguishable
by the tests in the remaining two columns

32Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Cross & Onto ProductCross & Onto ProductCross & Onto ProductCross & Onto Product

� The cross productof two sets A and B is defined as

A × B = {(a, b) | a ∈ A and b ∈ B}

� The onto productof two sets A and B is defined as

for finite sets A and B, A ⊗ B is a minimal set of pairs (u, v)
such that {(u, v) | u ∈ A, v ∈ B, and each element of A appears
at least once as u and each element of B appears once as v}

33Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Set Products: Example Set Products: Example Set Products: Example Set Products: Example (1)
� Let A = { t, =, >} and B = { f, <}

A × B = {(t, f), (t, <), (=, f), (=, <), (>, f), (>, <)}

A ⊗ B = {(t, f), (=, <), (>, <)}

� Any other possibilities for A ⊗ B?

34Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Set Products: Example Set Products: Example Set Products: Example Set Products: Example (2)
� Let A = { t, =, >} and B = { f, <}

� Any other possibilities for A ⊗ B?

A ⊗ B = {(t, <), (=, f), (>, <)} � second possibility
A ⊗ B = {(t, f), (=, <), (>, f)} � third possibility
A ⊗ B = {(t, <), (=, <), (>, f)} � fourth possibility

35Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Algorithm for Generation of BOR Constraint Sets Algorithm for Generation of BOR Constraint Sets Algorithm for Generation of BOR Constraint Sets Algorithm for Generation of BOR Constraint Sets (1)
� We will use the following notation:

pr is a predicate
AST (pr) is its abstract syntax tree
N1, N2, …. refer to various nodes in the AST (pr)
SN is the constraint set for node N in the syntax tree for pr

SN
t is the true constraint set for node N in the syntax tree for pr

SN
f is the false constraint set for node N in the syntax tree for pr

SN = SN
t ∪ SN

f

36Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

37

Algorithm for Generation of BOR Constraint Sets Algorithm for Generation of BOR Constraint Sets Algorithm for Generation of BOR Constraint Sets Algorithm for Generation of BOR Constraint Sets (2)

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

38

Algorithm for Generation of BOR Constraint Sets Algorithm for Generation of BOR Constraint Sets Algorithm for Generation of BOR Constraint Sets Algorithm for Generation of BOR Constraint Sets (3)

38Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Generation of BOR Constraint Set Generation of BOR Constraint Set Generation of BOR Constraint Set Generation of BOR Constraint Set (1)
� We want to generate TBOR for pr: a < b ∧ c > d

� First, generate syntax tree of pr

a < b c > d

∧

39Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Generation of the BOR Constraint Set Generation of the BOR Constraint Set Generation of the BOR Constraint Set Generation of the BOR Constraint Set (2)
� Second, label each leaf node with the constraint set {(t), (f)}

� We label the nodes as N1,N2, and so on for convenience.

� Notice that N1 andN2 are direct descendents ofN3 which is an
AND-node

a < b c > d

∧

N1 N2

N3

SN1
= {(t), (f)} SN2

= {(t), (f)}

40Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Generation of the BOR Constraint Set Generation of the BOR Constraint Set Generation of the BOR Constraint Set Generation of the BOR Constraint Set (3)

SN3
f = (SN1

f × { t2}) ∪ ({ t1} × SN2
f)

SN3
t = SN1

t ⊗ SN2
t = {(t)} ⊗ {(t)} = {(t, t)}

= ({(f)} × {(t)}) ∪ ({(t)} × {(f)})

= {(f, t)} ∪ {(t, f)}

= {(f, t), (t, f)}

{(t), (f)}

N1

a < b c > d

∧

{(t), (f)}

N2

N3

SN3
= {(t, t), (f, t), (t, f)}

False constraint

41

� Third, compute the constraint set for the next higher node in the syntax
tree, in this case N3

� For an AND node, the formulae used are the following.

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

� As per our objective, we have computed the BOR constraint set for the
root node of the AST(pr). We can now generate a test set using the BOR
constraint set associated with the root node.

SN3
= {(t, t), (f, t), (t, f)}

Generation of TGeneration of TGeneration of TGeneration of TBORBORBORBOR

TBOR = { t1, t2, t3}

t1 = < a = 1, b = 2, c = 4, d = 5 >
t2 = < a = 1, b = 0, c = 4, d = 5 >
t3 = < a = 1, b = 2, c = 3, d = 2 >

a < b c > d

∧

{(t), (f)} {(t), (f)}

N1
N2

N3

42

SN3
contains a sequence of three constraints and hence

we get a minimal test set consisting of three test
cases. Here is one possible test set.

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Another Example for TAnother Example for TAnother Example for TAnother Example for TBOR BOR BOR BOR (1)
� Generate the BOR-constraint sets for the predicate

(a + b) < c ∧ !p ∨ (r > s)

43Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Another Example for TAnother Example for TAnother Example for TAnother Example for TBOR BOR BOR BOR (2)

S1
t = { t}

S1
f = { f} S2

t = { t}
S2

f = { f}

S5
t = { t}

S5
f = { f}

S3
t = { f}

S3
f = { t}

S4
t = {(t, f)}

S4
f = {(f, f), (t, t)}

S6
t = {(t, f, f), (f, f, t)}

S6
f = {(f, f, f), (t, t, f)}

p

r > s
∧

a + b < c !
N1

N4

N2

N6

N5

N3

44Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

� The abstract syntax tree for (a + b) < c ∧ !p ∨ (r > s)

Generation of BRO Constraint SetGeneration of BRO Constraint SetGeneration of BRO Constraint SetGeneration of BRO Constraint Set

� Recall that a test set adequate with respect to a BRO constraint set for
predicate pr guarantees the detection of all combinations of single
Boolean operator and relational operator faults.

45Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BRO Constraint SetBRO Constraint SetBRO Constraint SetBRO Constraint Set

� The BRO constraint set Sfor relational expression e1 relop e2

S= {(>), (=), (<)}

� The separation of S into its true(St) and false(Sf) components depends in
relop

relop: > St = {(>)} Sf = {(=), (<)}
relop: ≥ St = {(>), (=)} Sf = {(<)}
relop: = St = {(=)} Sf = {(<), (>)}
relop: < St = {(<)} Sf = {(=), (>)}
relop: ≤ St = {(<), (=)} Sf = {(>)}

� Note: tN denotes an element of St
N

fN denotes an element of Sf
N

46Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Algorithm for Generation of BRO Constraint SetsAlgorithm for Generation of BRO Constraint SetsAlgorithm for Generation of BRO Constraint SetsAlgorithm for Generation of BRO Constraint Sets

47Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BRO Constraint Set: Example BRO Constraint Set: Example BRO Constraint Set: Example BRO Constraint Set: Example (1)
� pr: (a + b < c) ∧ !p ∨ (r > s)

�Step 1: Construct the AST for the given predicate

p

r > s∧

a + b < c !

N1

N4

N2

N6

N5

N3

48Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BRO Constraint Set: Example BRO Constraint Set: Example BRO Constraint Set: Example BRO Constraint Set: Example (2)
� Step 2: Label each leaf node with its constraint set S

True constraint {>}

False constraint {<, =}
True constraint {<}

False constraint {>, =}
True constraint {t}

False constraint {f}

p

r > s∧

a + b < c !
N1

N4

N2

N6

N5

N3

49Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BRO Constraint Set: Example BRO Constraint Set: Example BRO Constraint Set: Example BRO Constraint Set: Example (3)
� Step 2: Traverse the tree and compute constraint set for each internal

node

St
N3

= SN2
f = {(f)}

Sf
N3

= SN2
t = {(t)}

St
N4

= SN1
t ⊗ SN3

t = {(<)} ⊗ {(f)} = {(<, f)}

Sf
N4

= (Sf
N1

× {(tN3
)}) ∪ ({(tN1

)} × Sf
N3

)
= ({(>, =)} × {(f)}) ∪ ({(<)} × {(t)})
= {(>, f), (=, f)} ∪ {(<, t)}
= {(>, f), (=, f), (<, t)}

50Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BRO Constraint Set: Example BRO Constraint Set: Example BRO Constraint Set: Example BRO Constraint Set: Example (4)

True constraint {(<, f)}

False constraint {(>, f), (=, f), (<, t)}

True constraint {>}

False constraint {<, =}
True constraint {<}

False constraint {>, =}
True constraint {t}

False constraint {f}

True constraint {f}

False constraint {t}

p

r > s∧

a + b < c !
N1

N4

N2

N6

N5

N3

51Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

� Next compute the constraint set for the root node (this is an OR-node)

Sf
N6

= Sf
N4

⊗ Sf
N5

= {(>, f), (=, f), (<, t)} ⊗ {(=), (<)}
= {(>, f, =), (=, f, <), (<, t, =)}

St
N6

= (St
N4

× {(fN5
)}) ∪ ({(fN4

)} × St
N5

)
= ({(<, f)} × {(=)}) ∪ ({(>, f)} × {(>)})
= {(<, f, =)} ∪ {(>, f, >)}
= {(<, f, =), (>, f, >)}

52

BRO Constraint Set: Example BRO Constraint Set: Example BRO Constraint Set: Example BRO Constraint Set: Example (5)

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BRO Constraint Set: Example BRO Constraint Set: Example BRO Constraint Set: Example BRO Constraint Set: Example (6)

True constraint {(<, f, =), (>, f, >)}

False constraint {(>, f, =), (=, f, <), (<, t, =)}

Constraint set for pr: (a + b < c) ∧ !p ∨ (r > s)

True constraint {(<, f)}

False constraint {(>, f), (=, f), (<, t)}

True constraint {>}

False constraint {<, =}
True constraint {<}

False constraint {>, =}
True constraint {t}

False constraint {f}

p

r > s∧

a + b < c !
N1

N4

N2

N6

N5

N3

53Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BRO Constraint Set: InBRO Constraint Set: InBRO Constraint Set: InBRO Constraint Set: In----Class ExerciseClass ExerciseClass ExerciseClass Exercise

� Given the constraint set for pr: (a + b < c) ∧ !p ∨ (r > s), construct TBRO

{(>, f, =), (=, f, <), (<, t, =), (<, f, =), (>, f, >)}

54Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Generating the BRE Constraint Set Generating the BRE Constraint Set Generating the BRE Constraint Set Generating the BRE Constraint Set (1)
� We now show how to generate BRE constraints that lead to test cases

which guarantee the detection of a single occurrence of
Boolean operator, relation operator, arithmetic expression, or
combinationfault in a predicate

� The BRE constraint set for a Boolean variableremains { t, f} as with the
BOR and BRO constraint sets

� The BRE constraint set for a relational expressionis {(+ε), (=), (−ε)}
where ε > 0

55Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Generating the BRE Constraint Set Generating the BRE Constraint Set Generating the BRE Constraint Set Generating the BRE Constraint Set (2)
� The BRE constraint set Sfor a relational expression e1 relop e2 is

separated into subsets St and Sf based on the following relations

� Based on the conditions listed above, we can now separate the BRE
constraint S into its true and false components as follows

56Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Algorithm for Generation of BRE Constraint Sets Algorithm for Generation of BRE Constraint Sets Algorithm for Generation of BRE Constraint Sets Algorithm for Generation of BRE Constraint Sets (1)
� The procedure to generate a minimal BRE-constraint set is similar to that

for BRO and BOR. The only difference lies in the construction of the
constraint sets for the leaves.

57Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Algorithm for Generation of BRE Constraint Sets Algorithm for Generation of BRE Constraint Sets Algorithm for Generation of BRE Constraint Sets Algorithm for Generation of BRE Constraint Sets (2)

58Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BRE Constraint Set: Example BRE Constraint Set: Example BRE Constraint Set: Example BRE Constraint Set: Example (1)

� Generate the constraint set for the predicate pr: (a + b < c) ∧ !p ∨ (r > s)

p

r > s
∧

a + b < c !

N1

N4

N2

N6

N5

N3

∨

59Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BRE Constraint Set: Example BRE Constraint Set: Example BRE Constraint Set: Example BRE Constraint Set: Example (2)

BRE constraint set

BRO constraint set

60Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BRE Constraint Set: Example BRE Constraint Set: Example BRE Constraint Set: Example BRE Constraint Set: Example (3)
� A sample test set (TBRE) that satisfies the BRE constraints

� A sample test set (TBRO) that satisfies the BRO constraints

(εεεε = 1)

61Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

� Boolean expression: one or more Boolean variables joined by bop
– Example (a ∧ b ∨ !c), where a, b, and c are also known as literals

� Singular Boolean expression:When each literal appears only once
– Example (a ∧ b ∨ !c)

Singular Boolean ExpressionsSingular Boolean ExpressionsSingular Boolean ExpressionsSingular Boolean Expressions

62Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Mutually Singular Boolean ExpressionsMutually Singular Boolean ExpressionsMutually Singular Boolean ExpressionsMutually Singular Boolean Expressions

� Mutually singular: Boolean expressions e1 and e2 are mutually singular
when they do not share any literal

� Expression ei is considered a singular component of Eif and only if ei is
singularand is mutually singularwith each of the other elements of E

� Expression ei is considered a non-singular component of Eif and only if
it is non-singularand is mutually singularwith each of the remaining
elements of E

63Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BOR Constraints for NonBOR Constraints for NonBOR Constraints for NonBOR Constraints for Non----Singular ExpressionsSingular ExpressionsSingular ExpressionsSingular Expressions

� Test generation procedures described so far are for singular predicates.
Recall that a singular predicate contains only one occurrence of each
variable

� We will now learn how togenerate BOR constraints for non-singular
predicates

� First, let us look at some non-singular expressions, their respective
disjunctive normal forms (DNF), and their mutually singular components

64Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

NonNonNonNon----Singular Expressions and DNF: ExamplesSingular Expressions and DNF: ExamplesSingular Expressions and DNF: ExamplesSingular Expressions and DNF: Examples

Predicate (pr) DNF Mutually singular components in pr

ab(b + c) abb + abc a; b(b + c)

a(bc + bd) abc + abd a; (bc + bd)

a(bc + !b + de) abc + a!b + ade a; bc + !b + de

65Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Generating BOR Constraints for NonGenerating BOR Constraints for NonGenerating BOR Constraints for NonGenerating BOR Constraints for Non----Singular ExpressionsSingular ExpressionsSingular ExpressionsSingular Expressions

� We proceed in two steps

– First we will examine the Meaning Impact (MI) procedure for generating a
minimal set of constraints from a possibly non-singular predicate

– Next, we will examine the procedure to generate BOR constraint set for a
non-singular predicate

66Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Meaning Impact (MI) Procedure Meaning Impact (MI) Procedure Meaning Impact (MI) Procedure Meaning Impact (MI) Procedure (1)

67Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

68

Meaning Impact (MI) Procedure Meaning Impact (MI) Procedure Meaning Impact (MI) Procedure Meaning Impact (MI) Procedure (2)

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

MI Procedure: Example MI Procedure: Example MI Procedure: Example MI Procedure: Example (1)
� Consider the non-singularpredicate: a(bc + !bd)

� Its DNF equivalent is E = abc + a!bd

� Note that a, b, c, and d are Boolean variables and also referred to as
literals
– Each literal represents a condition
– For example, a could represent r < s

� Recall that + is the Boolean OR operator, ! is the Boolean NOT operator,
and as per common convention we have omitted the Boolean AND
operator. For example bc is the same as b ∧ c

69Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

� Step 0: Identify the DNF equivalent of E as e1 + e2, where e1 = abcand
e2 = a!bd

� Step 1: Construct a constraint set Te1
for e1 that makes e1 true.

Similarly construct Te2
for e2 that makes e2 true

Te1
= {(t, t, t, t), (t, t, t, f)}

Te2
= {(t, f, t, t), (t, f, f, t)}

– Note that the four t’s in the first element of Te1
denote the values of the

Boolean variables a, b, c, and d, respectively. The second element, and others,
are to be interpreted similarly.

MI Procedure: Example MI Procedure: Example MI Procedure: Example MI Procedure: Example (2)

70Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

MI Procedure: Example MI Procedure: Example MI Procedure: Example MI Procedure: Example (3)

� Step 2: From each Tei
, remove the constraints that are in any other Tej

This gives us TSei
and TSej

Note that this step will lead TSei
∩ TSej

= ∅

– There are no common constraints between Te1
and Te2

in our example.

Hence we get

TSe1
= {(t, t, t, t), (t, t, t, f)}

TSe2
= {(t, f, t, t), (t, f, f, t)}

71Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

MI Procedure: Example MI Procedure: Example MI Procedure: Example MI Procedure: Example (4)

� Step 3: Construct St
E by selecting one element from each TS

– In our case, selecting one test each from TSe1
and TSe2

, we obtain a minimal set

of teststhat make E trueand cover each term of E as follows

St
E = {(t, t, t, f), (t, f, f, t)}

– Note that
� There exist four possible St

E

�For each constraint x in St
E we get E(x) = true

72Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

e1
1 = !abc e21 = a!bc e3

1 = ab!c

e1
2 = !a!bd e2

2 = abd e32 = a!b!d

� Step 4: For each term in E, obtain terms by complementing each literal,
one at a time

� From each term eabove, derive constraints Fe that make e true.
We get the following six sets

73

MI Procedure: Example MI Procedure: Example MI Procedure: Example MI Procedure: Example (5)

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

MI Procedure: Example MI Procedure: Example MI Procedure: Example MI Procedure: Example (6)

� Fe1
1
= {(f, t, t, t), (f, t, t, f)}

� Fe2
1
= {(t, f, t, t), (t, f, t, f)}

� Fe3
1
= {(t, t, f, t), (t, t, f, f)}

� Fe1
2
= {(f, f, t, t), (f, f, f, t)}

� Fe2
2
= {(t, t, t, t), (t, t, f, t)}

� Fe3
2
= {(t, f, t, f), (t, f, f, f)}

74Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

� Step 5: Now construct FSe by removing from Fe any constraint that
appeared in any of the sets Te constructed earlier.

FSe1
1
= Fe1

1
FSe2

1
= {(t, f, t, f)}

FSe3
1
= Fe3

1

FSe1
2
= Fe1

2
FSe2

2
= {(t, t, f, t)}

FSe3
2
= Fe3

2

Constraints common with
Te1

and Te2
are removed.

75

MI Procedure: Example MI Procedure: Example MI Procedure: Example MI Procedure: Example (7)

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

� Step 6: Now construct Sf
E by selecting one constraint from each FSe

� Step 7:Now construct SE = St
E ∪ Sf

E

� Note: Each constraint in St
E makesE true and each constraint in Sf

E

makes E false

Sf
E = {(f, t, t, f), (t, f, t, f), (t, t, f, t), (f, f, t, t)}

SE = {(t, t, t, f), (t, f, f, t), (f, t, t, f), (t, f, t, f), (t, t, f, t), (f, f, t, t)}

76

MI Procedure: Example MI Procedure: Example MI Procedure: Example MI Procedure: Example (8)

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BORBORBORBOR----MIMIMIMI----CSET Procedure CSET Procedure CSET Procedure CSET Procedure (1)

� The BOR-MI-CSET procedure takes a possibly non-singular expression

E as input and generates a constraint set that guarantees the detection of

Boolean operator faults in the implementation of E

� The BOR-MI-CSET procedure using the MI procedure described earlier

77Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BORBORBORBOR----MIMIMIMI----CSET Procedure CSET Procedure CSET Procedure CSET Procedure (2)

78Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BORBORBORBOR----MIMIMIMI----CSET: Example CSET: Example CSET: Example CSET: Example (1)
� Consider a non-singular Boolean expression: E = a(bc + !bd)

� Mutually singular components of E

e1 = a � singular
e2 = bc + !bd � non-singular

� We use the BOR-CSET procedure to generate the constraint set for e1

(singular component) and MI-CSET procedure for e2 (non-singular

component)

79Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BORBORBORBOR----MIMIMIMI----CSET: Example CSET: Example CSET: Example CSET: Example (2)
� For component e1 we get

St
e1

= { t}. Sf
e1

= { f}

� Recall that St
e1

is true constraint set for e1 and Sf
e1

is false constraint set
for e1

80Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

� Component e2 is a DNF expression. We can write e2 = u + v where u = bc
and v = !bd

� Let us now apply the MI-CSET procedure to obtain the BOR constraint
set for e2

� As per Step 1 of the MI-CSET procedure we obtain
Tu = {(t, t, t), (t, t, f)}
Tv = {(f, t, t), (f, f, t)}

BORBORBORBOR----MIMIMIMI----CSET: Example CSET: Example CSET: Example CSET: Example (3)

81Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

� Applying Steps 2 and 3 to Tu and Tv we obtain

� Next we apply Step 4 to u and v. We obtain the following complemented
expressions from u and v.
Note that u = bcand v = !bd
u1 = !bc u2 = b!c
v1 = bd v2 = !b!d

BORBORBORBOR----MIMIMIMI----CSET: Example CSET: Example CSET: Example CSET: Example (4)

TSu = Tu = {(t, t, t), (t, t, f)}
TSv = Tv = {(f, t, t), (f, f, t)}

St
e2

= {(t, t, f), (f, t, t)}

82

One possible choice. Can you
think of other alternatives?

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

� Continuing with Step 4 we obtain

� Next we apply Step 5 to the F constraint sets to obtain

FSu1
= {(f, t, f)} FSu2

= {(t, f, t), (t, f, f)}

FSv1
= {(t, f, t)} FSv2

= {(f, t, f), (f, f, f)}

BORBORBORBOR----MIMIMIMI----CSET: Example CSET: Example CSET: Example CSET: Example (5)

83

Fu1
= {(f, t, t), (f, t, f)} Fu2

= {(t, f, t), (t, f, f)}

Fv1
= {(t, t, t), (t, f, t)} Fv2

= {(f, t, f), (f, f, f)}

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BORBORBORBOR----MIMIMIMI----CSET: Example CSET: Example CSET: Example CSET: Example (6)
� Applying Step 6 to the FSsets leads to the following

Sf
e2

= {(f, t, f), (t, f, t)}

� Combing the true and false constraint sets for e2 we get

Se2
= {(t, t, f), (f, t, t), (f, t, f), (t, f, t)}

84Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

� Summary

St
e1

= {(t)} Sf
e1

= {(f)} from BOR-CSET procedure
St

e2
= {(t, t, f), (f, t, t)} Sf

e2
= {(f, t, f), (t, f, t)} from MI-CSET procedure

� We now apply Step 2 of the BOR-CSET procedure to obtain the constraint
set for the entire expression E

BORBORBORBOR----MIMIMIMI----CSET: Example CSET: Example CSET: Example CSET: Example (7)

85Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

BORBORBORBOR----MIMIMIMI----CSET: Example CSET: Example CSET: Example CSET: Example (8)
Obtained by applying Step 2 of BOR-CSET to an AND node

St
N3

= St
N1

⊗ St
N2

Sf
N3

= (Sf
N1

× { t2}) ∪ ({ t1} × Sf
N2

)

True constraint: t
False constraint: f

a

∧∧∧∧

Apply MI-CSET

b c

∧∧∧∧

!b d

∧∧∧∧

∨∨∨∨

N1

N2

N3

True constraint: {(t, t, t, f), (t, f, t, t)}
False constraint: {(f, t, t, f), (t, f, t, f), (t, t, f, t)}

True constraint: {(t, t, f), (f, t, t)}
False constraint: {(f, t, f), (t, f, t)}

86Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Summary Summary Summary Summary (1)
� Most requirements contain conditions under which functions are to be

executed. Predicate testing procedures covered are excellent means to
generate tests to ensure that each condition is tested adequately.

87Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Summary Summary Summary Summary (2)
� Usually one would combine equivalence partitioning, boundary value

analysis, and predicate testing procedures to generate tests for a
requirement of the following type:

88

if condition then action 1, action 2, …action n;

apply predicate testing or BVA

apply equivalence partitioning, BVA, etc., and
predicate testing if there are nested conditions

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

