STAR Lahoratory.of Advar on Software Technology

Code Coverage Testing el Tool Support

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas

ewong@utdallas.edu
http://www.utdallas.edu/~ewong

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 1

Speaker Biographical SRetch

* Professor & Director of International Outreach
Department of Computer Science
University of Texas at Dallas

* Guest Researcher
Computer Security Division
National Institute of Standards and Technology (NIS

* Vice President, IEEE Reliability Society
e Secretary, ACM SIGAPP (Special Interest Group oplAgal Computing)

* Principal Investigator, NSF TUES (Transforming Urgtaduate Education in
Science, Technology, Engineering and MathematiocggeEt
— Incorporating Software Testing into Multiple Comgugcience and Software
Engineering Undergraduate Courses

* Founder & Steering Committee co-Chair for the SEREference
(IEEE International Conference on Software Secuartg Reliability
(http://paris.utdallas.edu/serel3)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 2

Our Focus

e We focus on testing programs
—subsystems or complete systems
—written in a formal language
—a large collection of techniques and tools

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 3

Testing for Correctness?

e |dentify theinput domairnof P
— Input domain of a programis the set of alValid inputs thatP can expect
— Thesizeof an input domain is the number of elements in it
— An input domain could be finite or infinite
— Finite input domains might still be very large!

* ExecuteP againstach elemeraf the input domain

* For each execution &, check ifP generates the correct output as per its
specificationS
— This form of testing is also known exhaustive testing
as we executP on all elements of the input domain.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 4

Testing for Correctness? Sorry!

* For most programsxhaustive testinig not feasible
— It will take severalight yearsto execute a program
on all inputs on the most powerful computers obidd

e \What is the alternative?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Confidence in Your Program

e Confidence is a measureafe’s beliein the correctness of the program.

* It is not measured in binary tern@scorrect or an incorrect program

* Instead, it is measured as tim@bability of correct operation of a
program when used in various scenarios.

* It can be measured, for example,tbgt completeness
— The extent to which a program has been tested o éound have been

removed.

[— ol T— ——
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 6

- b e i Ul e s AT - = R T -)
PETIIR pT , : s
F HEFE AL R -T.au % - L
r = FER ™ g O .IJ._,S_ ; wr
S e] B o

oyl SR > i
ok) | N T -
o 3 r
» * 1 " ? [.
s
i
-]
3 5 :
4 .

How and why does testing improve our
confidence in program correctness ? e

Example: Increase in Confidence

* We consider a non-programming example to illustrdtatus meant by
“Increase in confidenck

e Example: A rectangular field has been prepared espect to certain
specifications.

— One item in the specifications is
“There should be no stones remaining in the field

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Rectangular Field

e Search for stones inside a rectangular field

(0,W)
y
(0,0) < , (L,0)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Testing the Rectangular Field

* The field has been prepared and our task is tottestmake sure that it
has no stones.

* How should we organize our seafch

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 10

Partitioning the Field

* We divide the entire field intemaller search rectangles

* The length and breadth of each search rectanglezisialf that of the
smallesistone.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 11

Partitioning into Search Rectangles

Stone

width

<
PN W b g1 O N O

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

12

Input Domain

 Input domains the set of all possible inputs to the search process.

* In our example this is the set of all points in tleddfi
Thus, the input domain isfinite!

* To reduce the size of the input domainpeetition the field into
finite size rectangles

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 13

Rectangle Size

* The length and breadth of each search rectangleeiba@hthat of the
smallest stone.

* This ensures that each stone covers at least one rectang

* |s this always true?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 14

Constraints

e Testing must be completed in less tiramours

* Any stone found during testing is removed

e Upon completion of testing the probability of findia stone must be less
than®

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 15

Number of Search Rectangles

°Le
L: length of the field

W: width of the field
a: length of thesmalleststone
B: width of thesmalleststone

 Size of each rectanglea/R) * ([3/2)
* Number of rectanglesy= (L/a)*(W/)*4

e Assume that ld and W3 are integers.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

16

Time to Test

* Let ¢t be the time to look inside one rectangle.
Assume thaho rectangle is examined more than ance

* Let o be the overhead in moving from one rectangle tdheamo
 Total time to search=~* t+ (V- 1)* 0

* Testing withavrectangles is feasible only if < 3

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

17

Partitioning the Input Domain

* This set consists of all rectangleg (

* Number of partitions of the input domain is finit&)(

* However, ifT > % then the number of partitions is too large and
scanning each rectangle once is infeasible.

* \What should we do in such a situaffon

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 18

Option 1: Do a Limited Search

* Of the v rectangles we examine oniywheren is such that
(t*n+0* (nN—1)) <.

 This limited search will satisfy theme constraint.

o Will it satisfy theprobability constraint?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 19

Distribution of Stones

* To satisfy the probability constraint we mastn enough rectanglse
that the probability of finding a stone, after tegtirs less tharp.

e Let us assume that
—there ares stones remaining aftetest cycles.
— There areV; rectangles remaining aftetest cycles.

— Stones are distributedhiformly over the field

— An estimate of the probability of finding a stomea randomly selected
remaining search rectangle js=s /

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 20

Probability Constraint

» We will stop looking into rectanglespf < @

e Can we really apply this test method in practice?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

21

Why Not

* Number of stones in the field i®t known in advance

* Hence wecannot computthe probability of finding a stone after a
certain number of rectangles have been examined.

* The best we can do is $ganas many rectangles as we can and remove
the stones found.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 22

Coverage

 After a rectangle has been scanned for a stone, wbaaye rectangle
has beemovered

e Suppose that rectangles have been scanned from a totat dthen we
say that the coveragerns /.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 23

Coverage and Confidence

* What happens when coverage increases?
—As coverage increases so does our confidencé stoae-freé field

* In this particular example, when the coverage readi©v0%, all stones
have been found and removed.

* Can you think of a situation when this might notrbe

[—— o C— C—
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 24

Option 2: Reduce Number of Partitions

* If the number of rectangles to scan is too large,
we can increase the size of a rectangle.
—This reduces the number of rectangles.

* Increasing the size of a rectangle also implies that
there might be more than one stone within a rectang|
—Is it good for a tester?
—It also implies

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

25

Rectangle Size

* As a stone may now kemaller than a rectang)aletecting a stone inside
a rectangle (by examining only one pointhig guaranteed

* Despite this fact our confidence in a “stone-freeldi
still increases with coverage.

* However, when the coverage reaches 100%
we cannot guarantea “stone-free” field.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 26

Coverage versus Confidence

Does not imply that the field
_~| Is “stone-free”.

Confidence
H

0 Coverage 1(=100%)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 27

Rectangle Size

p = Probability of detecting a stone inside a

L, . .
P rectangle, given that the stoisdhere

t = time to complete the testing

...........

Rectangle size

small large

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 28

Analogy

* Field Program

e Stone Error

e Scan arectangle Test program on one input

* Remove stone Remove error

e Partition Subset of input domain

e Size of stone Size of an error

* Rectangle size Size of a partition (wrt “Program”)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 29

Confidence and Probability

* Increase in coverage increases @urfidencdan a “stone-free” field.

* It might notincrease th@robabilitythat the field is “stone-free.”

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 30

Review Questions

* What is the effect of reducing the partition sizepoobability
of finding errors?

* How does coverage affect our confidence in programectness?
* Does 100% coverage imply that a program is fautdre
* Indicate whether the following statements tares or false

— The objective of software testing isficove the correctnessf the program
being tested

— The reliability of a progranwill always increasas your confidence of the
program being correct increases

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 31

'ﬁ!’l;’“]
et -

P— o L AT
Sl oy - - ’-S‘;‘“
. 5 Y - TR

Thid (F A ; L] L

Y geat = + »

¥ L | -
3 3 i
:' 4 4 T
Haalt T v -
. o £ . &
* Ik v T r
. Mo
Xir i
- i
! . Pae
3 : S
iy 14 b -
T 3
. 2} .
: P &
‘-0._' L}

@ e What is coverage oGl
: and ' S
what role does it play in testing?

Coverage Principle

* The basic idea of coverage testing is that testiogngplete

when a well-defined set of tests is complete.
— Example
0 Pilots use pre-flight check lists
0 Shoppers use grocery lists
to assure the correct completion of their tasks

—In the same way testers can count the completateels of a test plan
0 Example
> Requirements
> Functionalities
> Blocks, Decisions (control-flow based)
> C-uses, P-uses and All-Uses (dataflow-based)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 33

The Role of Coverage in Testing

* |t provides a way ofmonitoring and measurirthe progress of testing
against explicijuantitativecompletion criteria

— Gives a clear measure of tbempletion of the testing task

— Example, for requirements testing
aHow many of the requirements have been tested?
aHow many tests have run per requirement?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 34

Topics

* Code Coverage testing and code inspection

* Code Coverage testing and functional testing
 Controlflow-based testing

 Dataflowbased testing

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 35

What is Code Coverage Testing

e It is “White Box Testin§
» Takes into accourihe structure of the softwabeing tested

* Measures how thoroughly the code has been testedesiplect to certain
metrics

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 36

Code Coverage Testing versus Code Inspection

» Code inspection is a technique whereby the sourceisadgpected for
possible errors

» Code coverage testingaslynamicmethod whereas code inspection is
a staticmethod

» Code coverage testing is a form of code inspection

— Code that is executed successfully is disregardiedigual inspection
— Code that is not executed is inspected

— One is not likely to replace testing by code insioec

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 37

Code Coverage Testing versus Functional Testing

* When test inputs are generated uginggram specifications
we say that we are doing functional testing
—Functional testing tests how well a program meets the
functionality requirements

* These two types of testing are complementary
—Basic functionalities should always be tested
—The set of tests generated from functional testiogiges
a good basis for code coverage testing

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 38

History of Code Coverage Testing

» Using profiling tools to assess the amount of code@ame during testing
(1960's)

 Usingt_, to give statement coverage data for C and Fortragrams
(1970’s)

* Two groups of test criteria
— Controlflow-based testing (block & decision)
— Dataflow-based testing (c-use, p-use and all-uses)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 39

Basic Block

* A basic block is a sequence of consecutive statementgogssions,
containing no branches except at the end, suchfi that element of the
sequence is executed all are.

enter main() {
c=0;
1=0;

while (i<10) {

c=c+1;
i=i+1;
}

print(c);
}

D @-o-®

exit

A program, its control flowgraph, basic blocks, aletision

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 40

Decision

» A decision is a boolean predicate with two possikle@s frue andfalse

vis(fp)
FILE *fp:
{

mt e;
whila (e = gete(fp)) = FOF) A
if (isaseiile) &% (isprintic)|
|
g 'mc Il e== ‘\t-dll c=)éi

putchar{c}ii Bxit
else
printf” Willda®, c):
exitil); C
D

—be e or ncondidonal
A-D, a—e arebasic blocks

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 41

EEEN———— B]
EEE——— e e
enter
main() {
@
i=0;
c-use (computational ise) while (i<10) { @ ~
c=c+l1;
p-use (predicate use)) =i+, definition @
; print(c);
} @ Cc-use
B (# of p- and c-uses covered)
All-uses coverage = (Iotal # of feasible p- and c-uses)
exit
enter
main{) {
5
i=0;
p-use
while (<10) { @ <
c=c+l1;
i=it1;
1 definition
print(c);
| -
exit
i B

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 42

I'mportance of Code Coverage Testing

* In general, a piece of code must be executed beftaelt in it can be
exposed

» Helps early fault detection

— Are system testers finding faults that should Has®en found and fixed by
developers?

— Relative cost of fixing a software fault

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 43

State of Practice

* A published study (ICSE’92)
— Coverage above 60-70% in system testing is vehcdif

* Don Knuth’s system testing of TeX (23,000 LOC)
— 85% block and 72% decision coverage (1992)

* Brian Kernigan’s testing of AWK
— 70% block and 59% decision coverage (1991)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

44

Efficient Coverage Testing (1)

 How much code is currently tested?
What is missing?
— Which statements were exercised?
— Which paths were traversed?
— Which def-use associations were exercised?.
— Which functions got invoked from where?

" with ¢ ATAC

_____ L -
I
I
I
I
I

Ive coverage

Cumulat

* Need help in creating tests?

|
I
|
with other tools :
|
I
|
— Which statement should | try to cover next? |

|
*“l"— with no tools
L | | |

Number of test cases

Analyzing the controlflow graph of the prograntited the
dominant blocks, decisions, and def-use pairs.

For example, when a test covers highly dominamtkd it
will cover many other blocks.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 45

Efficient Coverage Testing (2)

%* blacks = decisions % C-WUses * P-Uses function
oo TTTmmT T TEsmoTmTeTTTT TT oI TT ST e eI T T T @ SUIMIMary by
TA(22LAMN B5(11./17) 66 (46,770} &0 (67107 main F £
1002 100 (&) 100443 100 (&) print unciion
10013} 100 {12) 9 (17 ,718) 93 (14152 count
A4 (41351 B3 (29,7350 TACETFOR) a4 (26 31) == total ==
%= hlacks % decisions 2 C-Uses =z P-Uses source file
summary by file K& 79 (30,38) 74017 ,/23) 68 (50/74) T5112/16) mEdin. o
100¢13] 1006123 Q41713 9314715} wo. o
54 (45551 B3 (E29,35) TR(ETS9E) B4(2E/31) == total ==
=z blocks % decisions 2 C-Uses % P-Uses test
——— ==l summary by
589 (30,51 Jd (1=,35) A2 [F9 2] 32 (10,313 wordcount. 1
S52(30/51) 34 (127352 A2 (39,92 3Z (104310 wordcount. test cases
5O (30/51) 34 (12,35 A2 (30 /A2T 32 (10,310 wordocount. 3
EQD (35751 ET(Z0S3E5) A5 (41 /927 Tl (22,31 wordcount. 4
&4 (A2,E10 22 (20 3E) TR(ET O] 24 (EE 1) == 2all ==
block coverage summary by testcase owver all files |
N wordcount. 1 30 of 51 58 . 8%
N wordcount. 2 30 of 51 58 .8%
B wordcoount. 3 30 of 61 58 .8%
M wordcount. 4 35 of 61 6B.6%
bhlock coverage summary by file owver all selected tectcocases |
@ main.c 30 of 38 78 . o=
. we.c 13 of 13 100=]

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

46

Efficient Coverage Testing (3)

»Useprioritization andvisualizationto provide hot spots that give the most value wecage.
»Each color represents a different weight deterthimea control flow analysis using the
concept of superblocks and dominators

File Tool Options Sunmary TestCases Update GoBack Help
0 1 2 3 4 L b
. do ++p; while (isalpha(*p));
break;
case’ o’ :
month = 11;
do ++p; while (isalpha(*p)})
hreak; H i
T Codein white has alr eady been

e i covered by atest case and covering
it again will not add new coverage

}

= value = 0; nbhigits = 0;
while (isdigit(*p)) {

++nDigits;
value = wvalue * 10 + *p++ - “0°;
}
if (delim == *-7) [
if (wvalue < 1 || walue > 31 || nDigits = 2)

return -1;

} else {
B 500+ walue: Covering thisred block
o150 S — guar antees the execution of
else EERNSE, at least 8 additional blocks.

return year * 10000 + month * 100 + day;
‘?"}

XATAC ‘ - 121Lionfe :151

cmp? . ¢

bhlock

Coverage: ‘ Highlighting:

all prioritized

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 47

Efficient Coverage Testing (4)

— | —
File Tool Options Summary TestCases Update GoBack Help
PR do ++p; while (isalpha(*p));
break:
case’ o’ :
month = 11;
do ++p; while (isalpha(*ni)-
break; true
default:
return -1; false C . ith
i . overing elither trueor
dismiss
value = 0; nDigits = O; false branch guarantees
while (isdigit{*p)) { i
SinDigits; the execution of at |east
| value = walue * 10 + *p++ — *0°; another 8 branches.
if (delim == *-*> (¢
if (value < true 2
return
day = value false
} else { q q false
year = 1900 + value; dismiss
else if (nDigits == 41
year = wvalue; true
else return -1;
- } false
return year * 10000 +| dismiss hy5 . gay .
‘\-""‘-\-.,-r”-r }
ATAC File: Line: Coverage: Highl ight ing:
x cmp? . ¢ 121 of 151 decision all prioritized
— | —

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 48

Dominator &l Super Block (1)

» A super block consists of one or man&sic blockghatif one block in the
super block is executed all are

— If any statemenin a super block is executed, thalhstatements it must be
executed, provided the execution terminates onitipait

— A super block needs not be contiguous

» Block u dominates block if every path from entry to end, wacontainau
— u dominates if coveringv implies the coverage of
— Test execution cannot reackithout going throughu

« Given a program, identify a subset of super blocksssltmverage implies
that of all super blocks and, in turn, that of @iz blocks

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 49

Dominator &l Super Block, (2)

el
while (82 {
switch (e3¢
case 1. ed
break;
case ¥ eh;
while [eE) e7;
default:
if (eB){
eq;
continue;

do el10; while (e11]);
g1z

;

el3;

I
eld;

Control Flowgraph

An example C program

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Dominator <l Super Block, (3)

]
0 (29
(@) (2)
(19 (3) O @ ® T Tm
5 @ B ® O, (2 (B
(®) W @ & @
0 @ @
13
Predominator tree Postdominator tree
gopélr:ctigmlj r::ag:tsai\r{lsif :\Jery path from the emiry :xgo:;ﬂgrzzslt:; : i‘L—every path from v o the
* Quiz: Does node 4 or node 12 * Quiz: Does node 9 postdominate node
predominate node 13? Why? 8?7 Why?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 51

Dominator <l Super Block (4)

Bazic block dominator graph _Condensed dominator graph
(union of pre & postdominator trees) (Merging strongly connected components)

» A strongly connected componaita
basic block dominator graph has the
property that every node in the
component dominates all
other nodes in that component

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 52

Dominator &l Super Block, (5)

& E "
F@ ¢ F@

K

o

Super block dominator graph with the
initial weights associated with the leaves

Highlighted blocks show the covered
blocks after the initially heaviest leaf
18 covered. New weights of the

 Obtained by removing theomposite remaining leaves are also shown.

edgedn the right Figure on the

previous slide * Only need to create test cases that cover
« An edgee from a nodeai to a noder basic blocks 4 7,9, and 1Mnre from

is said to be a composite edge i each leaf noden the super block

also reachable fromwithout going dominator graph

throughe

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 53

Dominator <l Super Block_ (6)

» At most four test cases need to be developed to cOvet hasic blocks

100%

80%

60%

40%

20% -

cumulative blo ek coverage

10 7 g 4

basic-block coverage order

The order in which the targeted basic blocks are covered
and the corresponding cumulative coverages achieved.

* An alternative order is 10, 7, 4, and 9

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 54

Dominator <l Super Block, (1)
* Experimental results
basic |blocks that need
program | piocks | to be covered
sort 455 138 | 30%
spiff 1266 361 | 29%
mgr 3848 | 1043 | 27%
ion 4886 1280 | 26%
atac 8737 | 2574 | 29%
odin 9870 2344 24%
xlib 15580 5111 33%
tvo 17680 6267 35%

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

55

Weight Re-Computation (1)

* The weight of a given node is the number of nodashave not been
covered but will be if that node is covered

To arrive at node 18 requires the
execution also go through nodes 1, 2, 4,

7,12 and 13
R Node 18 isdlominated byodes 1, 2, 4,
7,12 and 13
™ T These nodes will be covered (if they
D havent been) by a test execution if that
\ . executl_on covers node 18 |
- Assuming none of the nodes is covered

P so far, we say that node 18 faaweight
of 7because covering it will increase the
coverage by at least 7 additional nades

* Why is it important to take a “conservative” approach?
— Will node 6 be covered by covering node 18?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 56

Weight Re-Computation (2)

T

waltHangllp

—_

Arriving at node 6 requires the execution only gtteough nodes 1, and 2

Assuming none of the nodes is covered so far, aydlsat node 6 has a weight of 3

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

57

Weight Re-Computation (3)

® The execution of certain tests may change the w&gfimodes that
are not covered by these tests.

S
waitHanglp
qv;rhaitHangUp

|
{ waittnswer) ¢ watHangUp)

® After a test is executed to cover node 18, the m€ig terms of
increasing the coverage) of node 6 is reduced Bdml.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 58

The X Suds Tool Suite

* Telcordia Technologies (formerly Bellcore or Bebr@munications
Research)

— ¥ Suds(Softwareunderstanding andiagnosissystems): a set of
software testing, analysis, and understanding tool€ famd C++
programs

a XATAC

a xSlice

0 XRegress
a xVue

a X Prof

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 59

XSuds Home Page

o= Telcordia..
Technologies

L
Performance from Experience

Telcordia Software Visualization
and

Analysis Toolsuite

B Ed Ywm Do
== [2] : I‘*I&IEI‘*‘I_I

| Lomator i 7P G 2o : Fiis] E3
i || kG | Dasnsders | Mdl Pile Toal Dptions Semmary TestCames Update GCaBack Help
s [e T Y 8o
Chapter 2 === Shelee)
LN
User Manual eERA(apy)s
£ ¥
ATAC: A Tutorial) RIS
oot {Tile, GLimect. Gwerdot, Gobarcth)
Tolese(Cile) 1
This chagter Butraies how the buic Beanues of J| L ':'“"“..“; Sreendl, dechar, Limect, wardct, chacct,

BoAECE G0

lndufuummnuvurhowmmrrmn

w.l terranclogy i o s Appenda A na
ba e epacted outp ramplee

The word counding program takes a5 arpamentsa !
ceapectively ndcating whether to coust bnes, wo
et and all bnes, words, and characters ars com|
the Beg smain e, we.e. Mrkartle, vpur) impat? |
Ehtfiem Spectfic Mmformation. These Ses are ¢

http://xsuds.argreenhouse.com

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 60

XATAC Demo: Coverage Testing of C Code

Telcordia Software Visualization
and Analysis Toolsuite (:Suds)

User’ s Manual

1£ (doline)
printf (" ¥71d", linect) ;

FiL

e =
bl oo | i suionis =

Il priorit

Source display afte
executing wordcount.1

ile: Line: coverag:
*s-Tutorial/matn.c | 58 of 96 Block

Compile code witlxATAC Initial display xSuds User’'s Manual

M — | 55.41]
R == | — e | ey | e ommm | oBn | e | e) pme | omm | ey |
Source display after 100 % block coverage after Source display after 100 % block & decision
executing wordcount.2 ~ executing wordcount.5 executing wordcount.6 coverage after executing

wordcount.9

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 61

Coverage Testing Tools for Java Code

e eXVantage ¢ XtremeVisual-aid novel testingand generation)
— A tool suite for code coverage prioritization, tgeheration, test execution,
debugging, and performance profiling of Java, @ @m+ programs

— Based on théBT (JavaBytecodeT esting) tool suite developed at UTD since
2002

* Clover
e Cobertura

* efc.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 62

The End

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

63

= [cygdrive/c/0-Place-Holder-Y/000-000-AS5SE-2007/11-xSuds-Tutorial

_Jalx

File Toocl Options Summary TestCases Update GoBack Help

Coverage: Highlighting: ‘

block all pricritized

xsuds
Update GoBack Help

File Tool Options

0
| do {

Summary TestCases

nzvy ;

perror (*argv) ;
return 1;

S
count (file, &linect, &woxrdct, &charct) ;

fclose(file) ;
print (deoline, doword, dochar, linect, wordct, charxct,

*argv) ;

}

tlinect 4= linect;
twordct += woxdct;
tcharct += charct;

} while (*++azxgv)

—;

linect, wordct, charct, file)

}

static print(deline, dowoxrd, deochar,
int doline, doword, dochar;

int linect, woxdct, charct:;

Coverage:

block

Highlighting:
all prioritized

File: Line: ‘

XATAC
*sz-Tutorial/main.c 54 of 96

NEE

Summary TestCases Update GoBack Help

if (!*argv) {
count (stdin, &linect, s&wordct, &chazrct);
print (doline, doword, dochar, linect, wordct, charct,
iy ;

return;

file = fopen(*argv, "r"):
if (file == NULL) {
perror (*argv) ;
return 1;
}
count (file, &linect, &wordct, &charct);
fcloze(file) ;
print (doline, doword, dochar, linect, wordct, charct,
*argv) ;
}
tlinect += linect;
twordct += wordct;
tcharct += charct;
} while(*++argv) ;

—:

static print (deline, doword, dochar, linect, wordct, charct, file)
int doline, doword, dochar;
int linect, wordct, charct:;
char *file;

}

File: Line: Coverage: Highlighting:
*ds-Tutorial/main.c 54 of %6

block all prioritized

xsuds -[ofx]

File Tool Options TestCases Update GoBack Help

long tcharct = 0;
int doline = 0;
int doword %
int dochar
FILE *file;

if (argc > 1 && argv[1][0] == '-') {
for (p = argv[l] + 1; *p; ++p)
switch(*p) {
case 'l'; :

fputs ("usage: wc [-1lwc] [files]\n",stderr);
return 1;
}
argv += 2;

++argv;
doline
doword

File: Line: Coverage: Highlighting:
*dg-Tuterial/main.c 20 of 96 block all prioritized

[

File Tecol Options Summa.ry TestCases Update GoBack Help

Disable Sort by ‘

block coverage summary by testcase ‘

8 of 51 15.7%

41 of 51 80. 4-%-

Coverage: Test cases:
block 2 of 2

[

File Tecol Options . Summary ;| TestCases Update GoBack Help

& by-type ® by-file & by-function Disable Sort_by‘

block coverage summary by file over selected testcases

® *1-xSuds-Tutorial/wc.c 13 of 13 100%|

#® *xSuds-Tutorial/main.c 38 of 3B

51 of 51 100%|

Coverage: Test cases:
block 5cf 5

— [l

File Tool Options Summary TestCases Update GoBack Help
0 =]

long tlinect = 0;

long twordct

long tcharct

int doline =

int doword

int dochar =

FILE *file;

if (argec > 1 && argv[1][0] == '-') {
for (p = argv([l] + 1; *p; ++p)
switch () {
case '1':
deoline = 1;
break;
case 'w':
doword il
break
case! feats
dochar T
break;
default:
fprintf (stderr, "invalid coption: -%c\n",
*p) ;

case '?':
fputs ("usage: wc [-1lwc] [files]\n",h stderxr) ;
return 1;

argv +=

++argv;

*ds-Tutorial/main.c 18 of 96

decision all prioritized

File: Line: ‘ Coverage: Highlighting: ‘

eXVantage Home Page

Avaya Labs Research eXVantage Software Testing

INTRODUCTION

eXVantage is a product line of exireme Visual-Aid Movel Testing and Generation tools. The eXantage
family of test tools focuses on providing code coverage information to software developers and testers on a
variety of platforms which may include various resource and performance constraints, i.e. embedded and
real-time systems. The primary capability of the tools in the family is to execute tests and show how much of
the code was executed during the tests, both as a percentage of the total code and as a display that shows
which individual lines of code were or were not executed. Members of the eX¥Vantage family have same, if
not all, of the following capabilities.

Program Structure Recovery and Analysis

What are the dependencies among classes ar other invokable program elements? (Class dependency
graph)

What is the control flow for the program? {(Control flow graph)

Which lines of code should have highest priority for testing so as to maximize coverage? (Friority analysis)
Isthe program consistent with established rules of style? (Style checker)

Coverage

Which lines of code are executed as a result of running tests?
Which methods are executed as a result of running tests?
Which packages are executed as a result of running tests?

Slicing
What lines of code were executed by failed tests? By successiul tests?

W. Eric Wong and J. Jenny Li, “An Integrated Saatfor Testing and Analyzing Java
Applications in an Industrial Setting,” ifroceedings of The 12th IEEE Asia-Pacific . _
Software Engineering Conferen@®PSEC), pp. 576-583, Taipei, Taiwan, December 2005 ﬁ

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 72

