STAR Laboratory.of Adva on Software Technology

Code Coverage Testing & Tool Support

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas

ewong@utdallas.edu
http://www.utdallas.edu/~ewong

— —
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 1

Speaker Biographical SRetch

* Professor & Director of International Outreach
Department of Computer Science
University of Texas at Dallas

* Guest Researcher
Computer Security Division
National Institute of Standards and Technology (NIS

* Vice President, IEEE Reliability Society
» Secretary, ACM SIGAPP (Special Interest Group onlisppComputing)

* Principal Investigator, NSF TUES (Transforming Urgtaduate Education in
Science, Technology, Engineering and MathematingeEt
— Incorporating Software Testing into Multiple CompuBsience and Software
Engineering Undergraduate Courses

* Founder & Steering Committee co-Chair for the SERHarence
(IEEE International Conference on Software Secuaity Reliability
(http://paris.utdallas.edu/serel3)

— —
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 2

Our Focus
* We focus on testing programs
—subsystems or complete systems
—written in a formal language
—a large collection of techniques and tools
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 3
Testing for Correctness?

* |dentify theinput domairof P
— Input domain of a program is the set of alvalid inputs thatP can expect
— Thesizeof an input domain is the number of elements in it
— An input domain could be finite or infinite
— Finite input domains might still be very large!

* ExecuteP againsteach elemeraf the input domain

* For each execution &f, check ifP generates the correct output as per it$
specificationS
— This form of testing is also known exhaustive testing
as we executP on all elements of the input domain.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 4

Testing for Correctness? Sorry!

* For most programsxhaustive testinig not feasible
— It will take severalight yearsto execute a program
on all inputs on the most powerful computers obtdd

¢ What is the alternative?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 5

Confidence in Your Program

* Confidence is a measureafe’s beliein the correctness of the program.
* It is not measured in binary ternascorrect or an incorrect program

* Instead, it is measured as tm@bability of correct operation of a
program when used in various scenarios.

* |t can be measured, for example,tbyt completeness
— The extent to which a program has been tested rmos dound have been
removed.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 6

How and why does testing improve our
confidence in program correctness ?

Example: Increase in Confidence

* We consider a non-programming example to illustvettat is meant by
“increase in confidenck

* Example: A rectangular field has been prepared witipect to certain
specifications.
— One item in the specifications is
“There should be no stones remaining in the field

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Rectangular Field

* Search for stones inside a rectangular field
o,w
Y]
(0,0) - (L,0)
X
—
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 9

Testing the Rectangular Field

* The field has been prepared and our task is tattesmake sure that it
has no stones.

* How should we organize our seafch

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 10

Partitioning the Field

* We divide the entire field intsmaller search rectangles

* The length and breadth of each search rectanglesihalfthat of the

smalleststone.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 11
Partitioning into Search Rectangles
Stone
-
8
[4 //
width g /
5 .
Y| 4
3
2
1
1 2 3 4 5 6
— length

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

12

Input Domain

* Input domainis the set of all possible inputs to the searclegss.

* In our example this is the set of all points in fiedd.
Thus, the input domain isfinite!

* To reduce the size of the input domainpeetition the field into
finite size rectangles

—
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 13
-
g -

* The length and breadth of each search rectangieeidhalf that of the
smallest stone.

* This ensures that each stone covers at least otangte.

* |s this always true?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 14

Constraints

* Testing must be completed in less tlamours

* Any stone found during testing is removed

* Upon completion of testing the probability of findia stone must be less

than®

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

15

Number of Search Rectangles

°Le
L: length of the field

W: width of the field
a: length of thesmalleststone
B: width of thesmalleststone

* Size of each rectanglaa/R) * (B/2)
* Number of rectanglesv= (L/a)*(W/pB)*4

* Assume that Lld and Wp are integers.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

16

Time to Test

* Let ¢ be the time to look inside one rectangle.
Assume thato rectangle is examined more than ance

* Let o be the overhead in moving from one rectangle tdaharo
* Total time to searcli=~* t+ (- 1)* 0

* Testing withgvrectangles is feasible only if <

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 17

Partitioning the Input Domain

* This set consists of all rectangleg) (
* Number of partitions of the input domain is fin{ts).

* However, ifT > 7 then the number of partitions is too large and
scanning each rectangle once is infeasible.

¢ What should we do in such a situaffon

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 18

Option 1: Do a Limited Search

» Of the ov rectangles we examine ontywheren is such that
(t*n+o0* (n—-1)) <4

* This limited search will satisfy th@me constraint.

* Will it satisfy theprobability constraint?

— —
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 19

Distribution of Stones

* To satisfy the probability constraint we mastin enough rectanglse
that the probability of finding a stone, after begt is less tharp.
* Let us assume that
— there ares stones remaining aftétest cycles.
— There are\ rectangles remaining aftetest cycles.
— Stones are distributachiformly over the field

— An estimate of the probability of finding a stomeai randomly selected
remaining search rectangle js=s /

— —
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 20

Probability Constraint

* We will stop looking into rectanglesjif < @

* Can we really apply this test method in practice?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 21
Why Not

* Number of stones in the field i®t known in advance

* Hence wecannot computthe probability of finding a stone after a

certain number of rectangles have been examined.

* The best we can do is $ganas many rectangles as we can and remove

the stones found.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

22

Coverage

* After a rectangle has been scanned for a stoneawéhat the rectangle
has beemrovered

* Suppose that rectangles have been scanned from a totat hen we
say that the coveragens /.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 23

Coverage and Confidence

* What happens when coverage increases?
—As coverage increases so does our confidencé stoae-freé field

* In this particular example, when the coverage read®0%, all stones
have been found and removed.

* Can you think of a situation when this might notrioe?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 24

Option 2: Reduce Number of Partitions

* If the number of rectangles to scan is too large,
we can increase the size of a rectangle.
—This reduces the number of rectangles.
* Increasing the size of a rectangle also impliet tha
there might be more than one stone within a reétang
—Is it good for a tester?
—ltalsoimplies...........
-
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 25
Rectangle Size

* As a stone may now kemaller than a rectang/eletecting a stone inside
a rectangle (by examining only one pointhig guaranteed

* Despite this fact our confidence in a “stone-fraeldf
still increases with coverage.

* However, when the coverage reaches 100%
we cannot guarantee “stone-free” field.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 26

Coverage versus Confidence

Does not imply that the field
_~|Is “stone-free”.

]

T

= 1 |

\..E '

Q 1

O :

0 Coverage 1(=100%)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 27
Rectangle Size

p = Probability of detecting a stone inside a

t, . .
P rectangle, given that the stoisahere

t = time to complete the testing

Rectangle size

small large

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 28

Analogy

¢ Field

* Stone

e Scan a rectangle
* Remove stone
e Partition

¢ Size of stone

* Rectangle size

Program

Error

Test program on one input
Remove error

Subset of input domain

Size of an error

Size of a partition (wrt “Program”)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 29

Confidence and Probability

* Increase in coverage increases oamfidencdn a “stone-free” field.

* It might notincrease th@robabilitythat the field is “stone-free.”

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 30

Review Questions

* What is the effect of reducing the partition sizepsobability
of finding errors?

* How does coverage affect our confidence in programectness?
* Does 100% coverage imply that a program is faek?®
* Indicate whether the following statements tare or false

— The objective of software testing isgmve the correctnesf the program
being tested

— The reliability of a progranvill always increas@as your confidence of the
program being correct increases

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 31

What is coverage
and
what role does it play in testing?

Coverage Principle

* The basic idea of coverage testing is that tessimgpmplete
when a well-defined set of tests is complete.
— Example
o Pilots use pre-flight check lists
o Shoppers use grocery lists
to assure the correct completion of their tasks

— In the same way testers can count the completedesls of a test plan
o Example
> Requirements
> Functionalities
> Blocks, Decisions (control-flow based)
» C-uses, P-uses and All-Uses (dataflow-based)

— —
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 33
B -

The Role of Coverage in Testing

* |t provides a way ofmonitoring and measurirthe progress of testing
against explicitjuantitativecompletion criteria

— Gives a clear measure of tbempletion of the testing task

— Example, for requirements testing
oHow many of the requirements have been tested?
aHow many tests have run per requirement?

— —
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 34

Topics

* Code Coverage testing and code inspection
* Code Coverage testing and functional testing
* Controlflow-based testing

* Dataflow-based testing

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 35

What is Code Coverage Testing

* Itis “White Box Testiny

 Takes into accourhe structure of the softwabeing tested

* Measures how thoroughly the code has been testadegpect to certain
metrics

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 36

Code Coverage Testing versus Code Inspection

» Code inspection is a technique whereby the sowde ts inspected for
possible errors

» Code coverage testingasliynamicmethod whereas code inspection is
a staticmethod

» Code coverage testing is a form of code inspection
— Code that is executed successfully is disregardeddaal inspection
— Code that is not executed is inspected
—One is not likely to replace testing by code insioec

— —
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 37

Code Coverage Testing versus Functional Testing

* When test inputs are generated usinggram specifications
we say that we are doing functional testing
—Functional testing tests how well a program mdws t
functionality requirements

* These two types of testing are complementary
—Basic functionalities should always be tested
—The set of tests generated from functional tegtitnyides
a good basis for code coverage testing

— —
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 38

History of Code Coverage Testing

* Using profiling tools to assess the amount of cooleerage during testing

(1960's)
* Usingt,,,
(1970's)
* Two groups of test criteria

— Controlflow-based testing (block & decision)
— Dataflow-based testing (c-use, p-use and all-uses)

to give statement coverage data for C and Fortragrams

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

39

Basic Block,

* A basic block is a sequence of consecutive statenmerexpressions,

containing no branches except at the end, suchfthat element of the

sequence is executed all are.

enter main() {
=l

@ =

while (i<10) {

N B
(&) o
H

exit

A program, its control flowgraph, basic blocks, atetision

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

40

Decision

« A decision is a boolean predicate with two possilalieiesrue andfalse

vis(p)
FILE *fm
{

int c;
while ((z = gete(fp)) != EIF) A
if (isascii(e) & (isprint(e)]
a
s | BAnG | e)
putchar(c);
B
else
printf(* \i030", €):
exit{0):
D
A-D, a—e arebasic blocks

srit

——&= e or inconditonal

—
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 41
-
enter
main() {
(&)
i=0;
c-use (computational use) while (i<10) { @ -
c=c+l;
p-use (predicate use)) =ikl definition @
ﬁ print(c);
’ &
b cuse
_ ___G#ofp and c-uses covered)
All-uses coverage = TToaT # of Teasible p- and c-uses)
exit
enter
main() {
©
i=0;
while (<10) { o
ert; A
i=itl;
} definition @ /
print(c);
’
exit
—
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 42

I'mportance of Code Coverage Testing

* In general, a piece of code must be executed baftaglt in it can be
exposed

* Helps early fault detection
— Are system testers finding faults that should hasen found and fixed by
developers?
— Relative cost of fixing a software fault

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 43

State of Practice

A published study (ICSE’92)
— Coverage above 60-70% in system testing is vericdlff

* Don Knuth'’s system testing of TeX (23,000 LOC)
—85% block and 72% decision coverage (1992)

* Brian Kernigan'’s testing of AWK
— 70% block and 59% decision coverage (1991)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 44

Efficient Coverage Testing (D

* How much code is currently tested?

What is missing?

— Which statements were exercised?
— Which paths were traversed?

— Which def-use associations were exercised?,

— Which functions got invoked from where?

* Need help in creating tests?
— Which statement should | try to cover next?

1ve coverage

Cumulat

|

|

with other tools |

| |
|

|

|

|
4‘-— with no tools
I | | I

Number of test cases

Analyzing the controlflow graph of the progranfited the

dominant blocks, decisions, and def-use pairs.

For example, when a test covers highly dominamthd it

will cover many other blocks.

—
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 45
-
Efficient C Testing (2)
. -
% blacks = decisions % C-Uses % P-Uses function
73¢22/a0) AS(1117) FF AR TN0) 0 (RN} =1 funotion by
100¢8) 106 ¢e) 100¢4) 100 (€3 unction
2 S4017/10) 90 (14/15) comnt
84443,/51)y 83 (20,35) T3CETFO2) 84 (26/31) == total ==
% blocks % decisions &% 0-Uses & P-Uses soures £ile
summary by file B&~ 70 (304383 T4(17,/23) 68(50/74) 7S(12/16) moin.
01 10 (123 Qa(1741R) Q314718 e e
81 (13613 EETO IS raie vy B {6 4 HL) - otal ——
& Llucks & decisions & G-Uses A P-Uses Lesl
~=l summary by
5530451 Sa(izsis) az¥35/02; 32 (1o/31y wordcomnt. 1
5o (30/81) 34¢12435) a2 (30492} 32 (10731) wordcomnt. 2 tost cascs
50 (30/81) 34(12435) az (30492} 32 (10731) wordcomnt. 3
€9 (35/51% 57 (z0/35) a5 (21792} 71 (227315 s dcuunlL. 4
a (437813 EEIECYe s FARTIR) fd (R i
black ¥ By wer all f£ilex \
M wordcount. 1 30 of 51
M wordcounl.2 30 of 51
W wordeoimt. 3 20 of 81
W wordcount.1 35 of 51
hiack covarage mmmary hy tile ovar ail salactad esfesses |
& main.c | 20 ot #x | 7o_a=
D we o [38 o o0 ‘ 100%]
—
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 46

Efficient Coverage Testing (3) o

»Useprioritization andvisualizationto provide hot spots that give the most value wvecage.
»Each color represents a different weight deterchimea control flow analysis using the
concept of superblocks and dominators

File Tool Options

Summary TestCases Update GoBack Help
0 1 2 3 1 5 6
P do ++p; while (isalpha(*p));
break;
case’o” :
month = 11;
do ++p; while (isalpha(*p)})

Codein white has already been
covered by atest case and covering
it again will not add new cover age

r value = 0; nDigits = 0;
while (isdigit(*p)) {
++nDigits;
value = value * 10 + *p++ - *0°;
}
if (delim == '—*) [f
if (value'<'1 || value > 31 || npigits > 2)

return -1

} else {
if (nDigits == 2)
year = 1900 + value;
else if (nDigits == 4)
ear = value;
else return -1;

Covering thisred block
guar antees the execution of
at least 8 additional blocks.

return year * 10000 + month * 100 + day;

1}
xATAC ‘ File: Line: ‘ Coverage: ‘ Hith%ghl.:ir.nq:
cmp?.c 121 of 151 block all prioritized
— —
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 47
e -

Efficient Coverage Testing (4)

File Tool oOptions Summary Testcases Update GoBack Help

P

do ++p; while (isalpha({*p));
break;
it = il
while (isalpha(<sy
return -1; . .
) Covering either true or
- value = 0; nbigits = 0; false branch guarantees
while (isdigit(*p)) { i
S+mbiqita. the execution of at |east
value = value * 10 + *p++ - 707; another 8 branches.
}
if (delim == rom «
if (value <[true |3 > 31 || SiSp—
return
day = value| false Erue
} else { dismiss false
- if (aDigits — ismi
year = 1900 + value; dismiss
else if (nDigits == 4\
= ear = wvalue; true
else return -1;
- } false
return year * 10000 +| dismiss ho ; gay;
}

Highlighting:

all prioritized

XATAC ‘ illlos ‘ Line: ‘ Coverage:

cmp?.c 121 of 151 decision

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 48

Dominator & Super Block (1)

A super block consists of one or mar&sic blockghatif one block in the
super block is executed all are

— If any statemenin a super block is executed, thahstatement# it must be
executed, provided the execution terminates onirtipai

— A super block needs not be contiguous

* Block u dominates block if every path from entry to end, vie.containau
—udominatey if coveringv implies the coverage af
— Test execution cannot reaehvithout going throughu

 Given a program, identify a subset of super blagkese coverage implies
that of all super blocks and, in turn, that oftalkic blocks

— —
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 49
B -

Dominator & Super Block, (2

el;
while (e2] 1
switch (3] {
case 1. ed
break;
case Z: ef;
while (eg) e7;
default:
if (e@){
es;
continue;

¥
do e10; while (e11);
etz

els;

It
el

Control Flowgraph

An example C program

— —
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 50

Dominator & Super Block, (3)

3

5
() (3))
@ B @)
©

®-G-E

Predomimtor iree Postdominator tree

wpostdominates v it every path from vto the

u predominates v it every path from the eniry exit node contains w.

node to v contains w.

* Quiz: Does node 4 or node 12 * Quiz: Does node 9 postdominate node
predominate node 13? Why? 8? Why?

I -

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 51

Y et - ——

Dominator e Super Block_ (4)

Basic block dominator graph ~Condensed dominator graph
(union of pre & postdominator trees) (Merging strongly connected components)

A strongly connected componerita
basic block dominator graph has the
property that every node in the
component dominates all

other nodes in that component

o — —
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 52

Dominator & Super Block, (5)

2D
[} E H
"

Super block dominator graph with the
initial weights associated with the leaves

« Obtained by removing theomposite
edgesdn the right Figure on the
previous slide

¢ An edgee from a nodes to a nodes
is said to be a composite edge i§
also reachable fromwithout going
throughe

3

Highlighted blocks show the covered
blocks after the initially heaviest leaf
i8 covered. New weights of the
remaining leaves are also shown.

* Only need to create test cases that cover

basic blocks 4, 7, 9, and 1®#ne from
each leaf nod@ the super block
dominator graph

— —
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 53
B -

Dominator & Super Block, (6)

« At most four test cases need to be developed terail/14 basic blocks

100% —

80% —

60%

40% —

20% -7

cumulative block soverage

basic-blosk coverage order

The order in which the targeted bagic blocks are covered
and the corresponding cumulative coverages achieved.

* An alternative order is 10, 7, 4, and 9

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 54

Dominator I Super Block, (7)

* Experimental results
basic |blocks that need
program | plocks | to be covered
sort 455 138 | 30%
spiff 1266 361 29%
mgr 3848 | 1043 | 2%
ion 4886 1280 26%
atac 8737 | 2574 | 29%
odin 9870 | 2344 | 24%
xlib 15580 | 5111 33%
tvo 17680 6267 35%
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 55
Weight Re-Computation (1)

* The weight of a given node is the number of notashave not been
covered but will be if that node is covered

-~

WatHangUp

To arrive at node 18 requires the
execution also go through nodes 1, 2, 4,
7,12 and 13

Node 18 islominated byodes 1, 2, 4,
7,12 and 13

These nodes will be covered (if they
havent been) by a test execution if that
execution covers node 18

Assuming none of the nodes is covered
so far, we say that node 18 feaweight

of 7because covering it will increase the
coverage by at least 7 additional nades

* Why is it important to take a “conservative” approac
— Will node 6 be covered by covering node 18?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 56

Weight Re-Computation (2)

~

waitHangUp

waitHangUp

Arriving at node 6 requires the execution only gieough nodes 1, and 2

Assuming none of the nodes is covered so far, ayeélgt node 6 has a weight of 3

—
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 57
-

Weight Re-Computation (3)
1 . -

® The execution of certain tests may change the weiginodes that
are not covered by these tests.

-
-~

TG
- i)

® After a test is executed to cover node 18, the hidig terms of
increasing the coverage) of node 6 is reduced 8dml.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 58

The X Suds Tool Suite

* Telcordia Technologies (formerly Bellcore or Bethi@munications
Research)

—xSuds(Softwareunderstanding andiagnosissystems): a set of
software testing, analysis, and understanding tool€ and C++
programs

a XATAC
o xSlice
o xRegress
a xVue
a xProf
-
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 59
XSuds Home Page
o2 Telcordian
Technologies
s 1 @Icordia Software Visualization
and
Analysis Toolsuite
Chapter2
e ATAC: A Tutorial L
FAQ
Paople
http://xsuds.argreenhouse.com
-

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 60

XATAC Demo: Coverage ‘Z”estingz‘ Code

Telcordia Software Visualization
and Analysis Toolsuite (:Suds)

Source display after

XxSuds User's Manual executing wordcount.1

ST oy eSS re——rT |
— || = R e - s | == e | == = ' v

Source display after 100 % block coverage after Source display after 100 % block & decision
executing wordcount.2 ~ executing wordcount.5 executing wordcount.6 coverage after executing
wordcount.9
| -
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 61

Coverage Testing Tools for Java CE

* eXVantage ¢XtremeVisual-id novel testingand generation]@
— A tool suite for code coverage prioritization, tgeheration, test execution,
debugging, and performance profiling of Java, C, @fé programs
— Based on théBT (JavaBytecodeTesting) tool suite developed at UTD since
2002

e Clover
e Cobertura

* etc.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 62

| —
—
—
Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 63

Icygdrive/c/0-Plac SSE-2007/11-xSuds-Tutorial

xsuds

File

Tool Options

=lal¥|

Summary TestCases Update GoBack Help

Coverage: Highlighting:

block all prioritized

e BE

File

S

File: Line:
XATAC =
*s-Tutorial/main.c 54 of 96

Tool Options Summary TestCases Update GoBack Help

s M ——

do f

o
NULT) {
perrox (*argv) ;

return 1;

1

count(file, slinect, swordct, &charct);

fclose(file) ;

print(doline, doword, dochar, linect, wordet, charct,
*argv) ;

}

tlinect += linect;

twordct += wordct;

tcharct += charct; X
} while (*++argv) ;

—;

static print(doline, doword, dochar, linect, wordct, charct, file)
int doline, doword, dochar;
linect, wordct, charct;

}

Coverage:
block

Highlighting:

all prioritized

=E

Summary TestCases Update GoBack Help

do {
LE (1*argv)
count (stdin, &linect, swordet, &charct):
print (doline, doword, dochar, linect, wordct, charct,
) -

return;

file = fopen(*argv, "z"):
if (file == NULL) {
perzrox (*argv) ;
return 1;
}
count (fifle, slinect, &wordct, &charct):
fclose (file) ;
print (doline, doword, dochar, linect, wordct, charct,
*argv) ;
}
tlinect += linect;
twordct += wordct;
tcharct += charct;
} while (*++azrgv) ;

—:

static print(doline, doword, dochar, linect, wordct, charct, file)
int doline, doword, dochar:
int linect, wordet, charct;
*file;

}

File: Line:
*ds-Tutorial/main.c 54 of 96

Coverage: Highlighting:

block all prieritized

xsuds [_[o]

File Tool Options Summary TestCases Update GoBack Help

long tchazct ;

int doline
doword
dochar = 0;
*file;

if (arge > 1 && argv[1][0] == '-') {
for (p = argv[l] + 1; *p; ++p)
switch(*p) {

fputs ("usage: wc [-lwc] [files]\n" stderr);
return 1;

doword = 1;

File: Line: Coverage: Highlighting:

*ds-Tutorial/main. 20 of 96 block all prieritized

GoBack Help

File Tool Options Surmary | TestCases Update
Disable Scxt_by‘

y by

35 of 51 ‘ 68 %_
8 of 51 ECEL

41 of 51

Coverage:
block

GoBack Help

File Tool Options surmary TestCases Update
Disable Sort by

@ by-type & by-file @ by-function

block coverage summary by file over selected testcases

& *1-xSuds-Tutorial/we.c ‘ 13 of 13 [100%,

*ysuds-Tutorial/main.c ‘ 38 of 38

100%),

S

nosuchfill

total 51 of 51 100%|

Test cases:

Coverage:
XATAC g SR
block 50f5

xsud [_]]

File Tool Options Summary TestCases Update GoBack Help
o |
long tlinect ;
long twordct
long tcharct
i doline = 0
doword

dochar
FILE *file;

if (arge > 1 && argv[1][0] ==
for (p = argvil] + 1;
switch () ¢
case '1':
doline
break;
case 'w':
doword = 1;
break;
case 'c':
dochar = 1;
break;
default:
fprintf (stderr, "invalid option: -%c\n",
*p);
case '2':
fputs('usage: we [-lwc] [filesl\n", stderr);
return 1;

18 of 96 decision all prioritized

i Line: ‘ Coverage: ‘ Highlighting: ‘

eXVantage Home Page

Avaya Labs Research eXVantage Software Testing

INTRODUCTION

exXVantage is a product line of eXtreme Visual-Ald Novel Testing and Generation tools. The eXVantage
family of test tools focuses on providing code coverage information to software developers and testers on a
wariety of platforms which may include various resource and performance constraints, i.e. embedded and
realtime systems. The primary capability of the tools in the family is to execute tests and show how much of
the code was executed during the tests, both as a percentage of the total code and as a display that shows
which individual lines of code were or were not executed. Members ofthe eXVantage family have some, if
not all, of the following capabilities.

Program Structure Recovery and Analysis

‘What are the dependencies among classes or other invokable program elements? (Class dependency
graph)

‘What is the control flow for the program? (Control flow graph)

ch lines of code should have highest prierity for testing so as to maximize coverage? (Prierity analysis)
Is the program consistent with established rules of style? (Style checker)

Coverage

Which lines of code are executed as a result of running tests?
Which methods are executed as a result of running tests?
Which packages are executed as a result of running tests?

Slicing
‘What lines of code were executed by failed tests? By successful tests?

W. Eric Wong and J. Jenny Li, “An Integrated Salatfor Testing and Analyzing Java
Applications in an Industrial Setting,” Rroceedings of The 12th IEEE Asia-Pacific
Software Engineering Conferen@®PSEC), pp. 576-583, Taipei, Taiwan, December 2005 !! J

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 72

