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Abstract

Coverage testing techniques, such as statement and de-
cision coverage, play a significant role in improving the
quality of software systems. Constructing a thorough
set of tests that yield high coverage, however, is often
a very tedious, time consuming task. In this paper we
present a technique to find a small subset of a program’s
statements and decisions with the property that cov-
ering the subset implies covering the rest. We intro-
duce the notion of a mega block which 1s a set of basic
blocks spanning multiple procedures with the property
that one basic block in it is executed iff every basic
block in it is executed. We also present an algorithm
to construct a data structure called the global domina-
tor graph showing dominator relationships among mega
blocks. A tester only needs to create test cases that are
aimed at executing one basic block from each of the leaf
nodes in this directed acyclic graph. Every other basic
block in the program will automatically be covered by
the same test set.

1 Introduction

The goal of coverage testing is to help software engineers
construct good test sets that exercise their programs
thoroughly [7, 19]. There are many coverage criteria,
such as statement and decision coverage, that can be
used to measure the goodness of a test set. Statement
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coverage criterion, sometimes also referred to as block
or node coverage, requires that the program under test
be run with enough inputs, or test cases, so that all
its statements (or basic blocks, or flow graph nodes)
get executed at least once. The motivation behind this
criterion is that a statement must be exercised before
a fault in 1t may be exposed. Decision coverage, sim-
ilarly, requires that all decisions (or branches, or flow
graph edges) must be exercised at least once. Develop-
ing a thorough set of test cases that yields high coverage,
however, can be a very tedious, time consuming process.

We have previously developed a technique [1] to find
a small subset of program’s statements and decisions
with the property that any test set that exercises all
statements or decisions in the subset will exercise all
statements or decisions in the program. That tech-
nique employed control flow analysis of individual func-
tions or procedures in the program. In this paper, we
present a stronger technique that also exploits the inter-
procedural control flow relations to find even smaller
subsets of program statements with the same property.
The results can only improve because the sizes of the
subsets 1dentified by our intra-procedural technique pro-
vide upper bounds on the sizes of the subsets identified
by our inter-procedural technique. We believe the latter
technique will enable users to achieve higher coverages
with significantly smaller test sets. Significantly smaller
test sets usually translate into significant time- and cost
savings.

We have also implemented the intra-procedural tech-
nique described in [1] in a coverage testing tool called
YATAC, which is one of the tools in a comprehensive
suite of software testing, debugging, understanding and
maintenance tools, called xSuds [2]. We are currently in
the process of implementing the inter-procedural tech-
nique described in this paper in yYATAC.

In [1] we also reported an experiment involving eight
software systems ranging from one to seventy five thou-
sand lines of code where we fond that, on the average,
test cases targeted to cover just 29% of the statements
and 32% of the decisions identified using our technique
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Figure 1: Example Program 1

ensured 100% statement and decision coverage, respec-
tively. Moreover, we found that if the targeted state-
ments and decisions were covered in the order prescribed
by our technique, covering the first one third of them,
on the average, implied covering over two thirds of all
statements and decisions. We plan to repeat the same
experiment with the new technique described here. We
expect substantial reductions in the sizes of statement
and decision subsets that need to be covered to ensure
full coverage.

Besides saving the user time, as mentioned in [1], our
techniques may also be used to reduce the space and
time overhead imposed by coverage testing tools, by re-
ducing the number of probes that need to be placed in
the program. We need not instrument every basic block
in the program. In the experiment mentioned above
we found that, on the average, only 35% of the basic
blocks in a program needed to be probed. If we know
whether or not the probed basic blocks were covered,
we could infer whether or not the remaining basic blocks
were covered. We expect the inter-procedural technique
described in this paper will improve this result signifi-
cantly.

In the next section, we briefly review the intra-
procedural, super block dominator graph algorithm we
presented in [1] and motivate the need for computing
global dominator graphs using an example. Then, in
Section 3 we develop our algorithm to compute the
global, inter-procedural dominator graph. In Section 4,
we discuss how to compute correct global dominator
graphs in the presence of interprocedural jump state-
ments. We end with a discussion of related and future
work 1n Section 5.

2 Background

In [1], we introduced the notion of a super block dom-
inator graph. A super block, S, of a procedure, P, is
a maximal set of basic blocks in P such that one ba-
sic block in S is executed #ff every basic block in S is

main

A B
Gy Gey
C

D E

€D}

S, Se 8
:

55 S; s9

Figure 2: Super block dominator graphs of individual
procedures in Example Program 1

executed by any test case that causes P to terminate
normally. A super block S; is said to dominate another
super block S; if execution of the latter implies that
of the former but not vice versa. The dominator re-
lationship among the super blocks of a procedure can
be nicely represented in the form of a directed acyclic
graph, G, where S; dominates S; iff S; is an ancestor
of S; in G. If we have a test set which causes all the
leaves of a super block dominator graph to be executed,
we can be sure that all super blocks, and hence all basic
blocks in the procedure must be executed by the same
test set. Thus testers only need to focus their attention
towards covering one basic block from each leaf super
block. Furthermore, the leaves may be weighted and
ordered according to the total number of uncovered ba-
sic blocks among all the ancestor super blocks of a leaf.
The exact same technique can be used to expedite de-
cision coverage, if instead of basic blocks, decisions, or
inter-block branches, are represented as nodes in a flow
graph. The yATAC tool mentioned above, explicitly
represents both basic blocks and decisions as nodes in
the same flow graph and performs a combined domina-
tor analysis involving both basic blocks and decisions.

We also presented a linear time algorithm in [1] (in
terms of the flow graph size) to determine the super
blocks of a procedure and construct its super block
dominator graph. The algorithm essentially builds pre-
and post-dominator trees of the procedure’s flow graph,
combines the two trees, and reduces the resulting graph
by merging its strongly connected components and elim-
inating composite edges implied by dominator transitiv-
ity.

Figure 1 shows an example program with seven pro-
cedures, with all the details not relevant for our current
purposes omitted (see [1] for a more comprehensive ex-
ample). The statements labeled blk; do not contain any
branching constructs. The numbers in the shaded cir-
cles to the left of the code are included only for reference
purposes. Figure 2 shows the super block dominator
graphs of all seven procedures. The procedure named



build_global_dominator_graph (C)

create a dummy function node, START;
for each function, F, that can be invoked from outside of P, do
add an edge (START, F) to C;
T := build_annotated_loop_tree(C, START);
G' := build_loop_tree_dominator_graph(START);
G" := add_root_super_block_dominator_relatioris(G
G := build_condensed_graph(G
} return G;

// Build the global dominator graph G of a program P with call grap

h

build_loop_tree_dominator_graph (R)
// Build the global dominator graph,Gof the subtree rooted at R
/I in the annotated loop tree;
for each child node, U, of R in the loop tree, do
Gy := build_loop_tree_dominator_graph (U);
if (type[R] = irreducible) then
initialize Gg with a dummy node D;
for each function 1 R do
Gg:= local_dominator_graph(F);
add an edge (D, root_node{pto Gg;
else
GR = local_dominator_graph(R);
EntryFunctions[@] := Functions[R];

call edges among them;
for each node W L, in order, do
incorporate_dominator_graph (GGg);

} return Gg;

sort the children of R topologically into a list, L, based on the annot.

al

incorporate_dominator_graph (GGg)
/I Incorporate the global dominator graph Gnto Gg;
S:=¢
for each A EntryFunctions[@] do
For each \J CallSites[F] do
if (V 0 Gg) then S := $1{V};
W := nearest_common_dominator ()5

} add an edge (W, root_nodeg(¥} to Gg;

add_root_super_block_dominator_relations (G)

for each function, F, do
R := RootSuperBlock[F];
for each \[J CallSites[F] do
} add an edge (R, V) to G;

/I Add dominator edges between all function call sites and the root
/I super blocks of the called functions to the global dominator grap

build_annotated_loop_tree (C, START)
C; /I Our adaptation of Havlak’s algorithm to build the loop nesting
/I tree of a flow graph, for use with a call graph, C, rooted at

/I START; Our changes to the algorithm are shown in bold;

Number the nodes of C using depth-first search from START,
numbering in preorder from 1 {Ng;
for w:= 1 to |N¢| do
nonBackPreds[w] := backPreds[w] @
header[w] := 1;
type[w] := nonheader;
for each edge (v, w) entering w in C do
if (isAncestor(w,v)) then add v to backPreds[w];
else add v to nonBackPreds[w];
header[1] := nil;
for w := [N¢|to 1 step -1 do
P =g
for each node ¥ backPreds[w] do
if (v #w) then add Find(v) to P;
else type[w] := self;
worklist := P;
if P #@then
type[w] := reducible;
LoopEntries[w] := {w};
while worklist# @ do
select a node X worklist and delete it from worklist;
for each node ¥J nonBackPreds[x] do
y' := Find(y);
if (not isAncestor(w, §)) then
type[w] := irreducible;
add y to nonBackPreds[w];
Add x to LoopEntries[w];
else if (y O P) and (y# w) then
add y to P and to worklist;
for each node X1 P do
header[x] := w;
Union(x, w);
for each node xO P do
for each annotated edge (X, y) in the loop tree do
y' = Find(y);
if (y' #w) then
replace (X, y) with a new annotated edge (w, Y|
for each non-back edge (w, y) in C, do
y' := Find(y);
if (y' #w) then
add an annotated call edge (w,"yto the loop tree;
G; for each irreducible loop header, w, in a bottom up order, do
for each xO LoopEntries[w], X #w, do
delete all annotated edges incident upon x;
merge the node containing x with w;
}retum the annotated loop tree;

ted

Figure 3: An algorithm to build global dominator graph of a program

D, for example, has two super blocks, sg and s7. As s7
is a leaf node, covering it would imply covering s¢. As s7
contains two basic blocks, covering either one of them,
say block 14, would imply covering the other. Thus the
user only needs to create one test case aimed at covering
block 14. The same test case will cover all other blocks
in D—blocks 13, 15, and 16—automatically.

Among the nine super blocks shown in Figure 2,
covering s; implies covering the most number of basic
blocks, viz., five. The user should, therefore, construct
a test case aimed at covering any one of the five basic
blocks in main. That test case will automatically cover
the other four basic blocks in main. Note, however, that
three of these statements are calls to other procedures.
Thus, at least some statements in the called procedures

must also be covered by the same test case. But the su-
per block dominator graph of main fails to capture this
fact because it contains only intra-procedural control
information—information that is strictly local to main.

In the next section we discuss how we can com-
bine the super block dominator graphs of individual
procedures and construct a graph that encodes inter-
procedural control information as well. We call it the
global dominator graph. To be consistent, we also re-
fer to the super block dominator graphs of individual
procedures as local dominator graphs.

Please note that the term dominator graph should
not be confused with the term dominator tree. The
former refers to dominator relationships among super
blocks (in case of a local dominator graph) or mega



Figure 4: Call graph of Example Program 1 with its
depth first search tree

blocks (in case of a global dominator graph) while the
latter always refers to dominator relationships among a
procedure’s flow graph nodes. The latter is always a tree
while the former may, in general, be a directed acyclic
graph. Hence the qualifiers graph and tree should be
used to differentiate between the two terms.

3 Global Dominator Graph

A test case that covers any one of the five statements
in main, as we mentioned above, must cover some state-
ments in other procedures as well. For example, it would
cover blocks 13 and 16 in D because block 3 in main is
a call to procedure D. The same holds true for blocks
6 and 7 in A and block 18 in F. Block 6 in A, how-
ever, is a call to procedure B. Thus covering it, in turn,
would imply covering blocks 8 and 9 in B, and so on.
It turns out that covering any one of the five blocks
in main would imply covering fourteen of the eighteen
blocks in the program. By the same reasoning, it can
be deduced that covering blocks 14 or 15 in D would
imply covering seventeen of the eighteen basic blocks in
the program. We would, however, need to build a global
dominator graph that captures inter-procedural domi-
nator relationships to be able to deduce such inferences.

One way to construct a global dominator graph
would be to build a global flow graph and apply a similar
technique on it as the one we use to construct the local
dominator graph of a procedure. But, then, we wouldn’t
be able to use the practical, linear or near linear domi-
nator tree algorithms [10, 16] to construct the pre- and
post-dominator trees of the global flow graph because of
the presence of certain invalid, inter-procedural control
paths in the global flow graph that fail to preserve the
calling contexts of called procedures. It would, however,
be easy to modify some of the simpler dominator tree
algorithms [23, 3] to work with the global flow graph

Figure 5: Annotated loop nesting tree of Example Pro-
gram 1

while still preserving the calling contexts of procedures,
but those algorithms would have quadratic complexity
in the size of the global flow graph which would make
them impractical for use with real applications.

The approach we use, instead, is to first build the lo-
cal dominator graphs of all procedures and then merge
them using the call graph of the program. This would
be straight forward if the call graphs were always acyclic
graphs. If that were true, we could simply perform
a topological sort of the call graph and construct the
global dominator graph by sequentially merging the in-
dividual local dominator graphs in the order prescribed
by the topological sort. To merge the local dominator
graph of a procedure, P, in the global dominator graph,
G, we would find all call sites of P in G, then find the
nearest common dominator, A, of all those call sites,
and attach the root node of the local dominator graph
of P to A.

Call graphs, however, may be cyclic. They may, in
fact, be irreducible graphs. To handle such graphs, we
have adapted Havlak’s algorithm to build a loop nest-
ing tree of a flow graph [12] for use with call graphs.
Havlak’s algorithm, which build’s upon Tarjan’s algo-
rithm for testing flow graph reducibility [26], essentially
performs a depth first search of the graph to find all
loop headers with incoming back edges and then exam-
ines the corresponding loops in reverse order to check if
they have any “external” entry points besides the loop
header, and simultaneously constructs the loop nesting
tree in a bottom up manner. We have augmented this
algorithm to add a second, orthogonal set of edges to
the loop nesting tree reflecting the flow, or call, rela-
tionships among sibling loops or nonheader nodes. We
then use this annotated loop tree to drive the order in
which local dominator graphs of individual procedures
are merged to build the global dominator graph.

Figure 3 shows our algorithm for building the global
dominator graph including our adaptation of Havlak’s



Figure 6: Initial global dominator graph of Example
Program 1

Figure 8: Intermediate global dominator graph of Ex-
ample Program 1

loop nesting tree algorithm. The statements in bold
in the latter show our changes to his algorithm. The
two for loops in bold towards the end of the large for
loop add the annotated edges mentioned above to the
loop nesting tree. The top level for loop in bold at the
end of the algorithm merges nodes representing multi-
ple loop entries of irreducible loops into single nodes.
Unlike Havlak’s algorithm, this step in our adaptation
of the same ensures that we always end up with a
unique annotated loop nesting tree irrespective of the
depth first search tree chosen in the first step of the
algorithm. For brevity, we have omitted details of cer-
tain straight forward functions in the algorithm such as
build_condensed_graph, which merges the strongly con-
nected regions of a graph into single nodes and elimi-
nates any composite edges that are implied by transitive
reduction of other edges from the graph [18].

Figure 4 shows the depth first search tree (in solid
lines) along with back edges (in dashed lines) and
forward- and cross edges (in dotted lines), for the call
graph of Example Program 1. Figure 5 shows the cor-
responding annotated loop nesting tree, with tree edges
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Figure 7: Call sites and root super blocks of procedures
in Example Program 1
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Figure 9: Final global dominator graph of Example
Program 1

shown in solid lines and the annotated edges shown in
dotted lines. All internal nodes in the loop nesting tree
represent loop headers (the start node is an exception
and can be ignored for our purposes) while the leaves
represent either self loops or nonheader nodes. Loop
headers are further classified as being headers of re-
ducible or irreducible loops. For a reducible loop, its
header node lists its sole entry point. For an irreducible
loop, it lists all of its entry points.

Figure 5 shows that there are two loops in the cor-
responding call graph: An irreducible loop that can be
entered via A or D, and a reducible loop headed by B.
The tree edge between the two loops implies that the
latter is nested within the former. As there is no an-
notated edge between the two siblings, B and E| their
dominator graphs may be incorporated in the domina-
tor graph of their parent in any order. The two outgo-
ing, annotated edges from main, however, require that
its dominator graph be incorporated in the global dom-
inator graph before those of its two siblings. Note that
if a call graph had no cycles, there would be no inter-
nal nodes in its annotated loop tree (besides the start
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Figure 10: Example Program 2

Figure 12: Call graph of Example Program 2 with its
depth first search tree

node) and all procedures would become the children of
the start node (see, e.g., the call graph in Figure 12
and its annotated loop tree in Figure 13). In that case,
the annotated edges among them would represent the
call graph itself, and the local dominator graphs of vari-
ous procedures would be merged in the topological sort
order of the call graph.

Figure 6 shows an intermediate step in the construc-
tion of the global dominator graph just after the local
dominator graphs of all procedures have been merged
in the order dictated by the annotated loop tree. Note
that the global dominator graph at this stage is a di-
rected acyclic graph. The next step is to add new edges
to the graph that reflect the dominator relationships
between call sites of procedures and their root super
blocks. The root node of the local dominator graph of
a procedure, P, contains its top level basic blocks that
must all be executed every time P is invoked. In other
words, the root super block of P dominates all call sites
of P. Thus we add edges from the root super blocks of
all procedures to all super blocks that contain a call to
those procedures. Figure 7 lists the root super blocks
of all procedures along with their call sites for Example
Program 1.

Figure 8 shows the global dominator graph after the
dominator edges from the root super blocks of all pro-
cedures to the corresponding call sites have been added
to 1t. The resulting graph, as the figure shows, may
contain cycles. All super blocks in a strongly connected
region of this graph dominate each other. Thus any
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Figure 11: Super block dominator graphs of individual
functions in Example Program 2

Figure 13: Annotated loop nesting tree of Example
Program 2

test case that executes one super block in it must exe-
cute all super blocks in it. We refer to these strongly
connected regions as mega blocks. The final step in the
construction of the global dominator graph is to find
and merge all strongly connected components of this
graph and delete any composite edges that can be in-
duced by composition of other edges. As the nodes of
the final global dominator graph represent mega blocks,
we sometimes also refer to it as the mega block domi-
nator graph. Figure 9 shows the final, global dominator
graph of Example Program 1. Although it is a tree
in this case, it is a directed acyclic graph in general
(see, e.g., the global dominator graph in Figure 21). As
our example global dominator graph has two leaves, the
tester only needs to construct two test cases aimed at
covering one basic block from each leaf. Those two tests
will automatically cause all basic blocks in the program
to be covered.

The nodes of a mega block dominator graph may be
weighted according to the number of uncovered basic
blocks among their ancestor nodes. Figure 9 shows the
initial weights associated with all three mega blocks.
They indicate that the tester should first try to cover
a basic block in mg, say block 15. Covering it will en-
sure covering seventeen of the eighteen basic blocks in
the program (we have omitted the dummy start block).
Next, covering block 11 will result in full block coverage.

Figure 10 shows another example program and Fig-
ure 11 shows the local, super block dominator graphs
of all its procedures. Figure 12 shows the correspond-
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Figure 14: Intermediate global dominator graph of Ex-
ample Program 2
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Figure 16: Example Program 3

ing call graph along with its depth-first-search tree and
Figure 13 shows its annotated loop nesting tree. Note
that all procedures of this program constitute the leaves
of its loop nesting tree as its call graph is acyclic. The
annotated edges in its loop nesting tree, therefore, rep-
resent the call graph itself. Figure 14 shows a step in
the construction of the corresponding global dominator
graph just after the dominator edges from root super
blocks of all procedures to their corresponding call sites
have been added and Figure 15 shows the final, global
dominator graph after the strongly connected regions of
the graph in Figure 14 have been merged and the redun-
dant edges removed from the resulting graph. Note that
the global dominator graph has only two leaves with ba-
sic blocks 7 and 11, both with the initial weight of 11.
Thus designing a test case that covers either of the two
leaf basic blocks would cover eleven of the twelve basic
blocks in the program. A second test case covering the
other, remaining leaf would ensure 100% block coverage
of the program.

Although we have used the block coverage criterion
in our examples above, the same algorithm works for
decision coverage as well. In fact, we can perform a
combined analysis taking both blocks and decisions into
account at once.

Preliminary analysis of our algorithm indicates that
the time it takes to complete is dominated by the
time spent in the incorporate_dominator_graph proce-

Figure 15: Final global dominator graph of Example
Program 2

Figure 17: Call graph of Example Program 3 with its
depth first search tree

dure. The rest of the steps can be easily accomplished in
time linear in the size of the annotated loop nesting tree.
The time spent in the incorporate_dominator_graph pro-
cedure 1s, in turn, dominated by the time spent in calls
to the nearest_common_dominator function. The latter
determines the nearest common ancestor, or dominator,
of a given set of nodes in a partially constructed global
dominator graph. A simple, brute force algorithm to do
the same would take O(E+N.log(N)) time where N and
E denote the number of nodes and edges in the global
dominator graph, respectively. As this function may be
invoked at most p times, where p denotes the number
of procedures in the program, the time complexity of
our algorithm would, at worst, be O(p.(E + N.log(N))).
We suspect, however, that a much more efficient algo-
rithm for finding the nearest common dominator of two
or more nodes in a directed acyclic graph exists which
would substantially improve the worst case complexity
of our algorithm.

4 Handling Inter-procedural
Jump Statements

Neither of the two examples we presented above con-
tained any exit or halt statements available in most pro-
cedural programming languages. These statements in-
terrupt the normal backtracking of control up the pro-
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Figure 18: Annotated flow graphs of the procedures in
Example Program 3

Figure 20: Intermediate global dominator graph of Ex-
ample Program 3

cedure call stack, and hence affect the computation of
super and mega blocks as well as computation of domi-
nator relationships among them. Consider, for example,
Example Program 3 in Figure 16, which is identical to
Example Program 2 in Figure 10 except that block 11 in
procedure D has been replaced with an exit statement.
In Example Program 2, blocks 2, 4, 5, 6, 8, 10, and
12 belonged to the same mega block (as shown in the
global dominator graph in Figure 15) because execution
of any one of these blocks implies that of all others. The
same, however, does not hold true for Example Program
3 because of the presence of the exit statement in proce-
dure D. Execution of block 4 no longer implies that of
block 5 because the procedure invoked by block 4, viz.,
D, may not always return to its call site. Furthermore,
the exit statement in D not only affects D alone but it
affects all its ancestors in the call graph, viz., B and A,
as well. Calls to B and A do not always return to their
call sites either because of the exit statement in D. To
denote this fact, we mark all procedures that contain
an exit statement, as well as all their ancestors, with
an asterisk in the call graph of the program. Figure 17
shows the marked call graph of Example Program 3.

If a node in a flow graph contains a call to a marked
procedure then we know that control may not necessar-
ily pass from this node to its successor node; an exit
statement in the called procedure or one of its descen-
dents may prevent the control from ever reaching the
call site’s successor node. This, in turn, implies that
a node representing a call site of a marked procedure
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Figure 19: Super block dominator graphs of individual
procedures in Example Program 3
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Figure 21: Final global dominator graph of Example
Program 3

and 1its successor node may never belong the same su-
per block. To denote this fact, we mark all call sites
of all marked procedures with an asterisk in all proce-
dure flow graphs. We further augment each procedure
flow graph by adding a new, dummy exit node to it and
creating edges from all marked call site nodes to the
dummy exit node signifying the fact that control may
be hijacked by an exit statement during the execution of
the called procedure. We complete our augmentation of
a procedure flow graph by adding edges from its normal
return nodes to the dummy exit node signifying normal
procedure returns. Figure 18 shows the augmented flow
graphs of all procedures in Example Program 3. The
dotted edge from node 2 to the dummy exit node of
procedure A, for example, indicates that control does
not always flow to node 3 after it has reached node 2
because the procedure called at node 2 does not always
return.

Once we have created the augmented flow graphs of
all procedures, we can use the normal, local domina-
tor graph algorithm [1] on them to compute their super
block dominator graphs. Then we can use the algo-
rithm presented in Section 3 above to merge these super
block dominator graphs and obtain the global domina-
tor graph of the program. Figure 19 shows the super
block dominator graphs obtained using the augmented
flow graphs in Figure 18. Note how the super block
dominator graphs of procedures A, B, and D differ from
the corresponding super block dominator graphs of Ex-
ample Program 2 in Figure 11. Figures 20 and 21 show



the intermediate and final steps in construction of the
global dominator graph of Example Program 3, respec-
tively. Note how the global dominator graph of Example
Program 3 in Figure 21 differs from the global domina-
tor graph of Example Program 2 in Figure 15. Block 12,
for example, dominates block 11 in Example Program
2 but it is a leaf node in the global dominator graph
of Example Program 3. Also the mega block contain-
ing the blocks 2, 4, 5, 6, 8, 10, and 12 for Example
Program 2 has been split into three mega blocks for Ex-
ample Program 2—one containing blocks 2, 4, and 10,
one containing blocks 5, 6, and 8, and one containing
block 12 by itself.

Other inter-procedural jump statements such as
longjump calls in languages such as C and C++, and
throw-catch exception handling constructs in languages
such as Java and C+4, may be handled in a similar
fashion. With these statements we not only need to
identify the procedures enclosing such statements but
we also need to determine the procedures enclosing the
target locations of those jump statements. Then, in-
stead of marking all ancestors of a procedure that con-
tains such a jump statement, we only need to mark its
ancestors in the call graph up to, but not including, the
procedure that contains the target location.

5 Related and Future Work

We are not aware of any other work in the literature
that addresses the same problem we have addressed in
this paper, viz. computation of dominator graphs at the
inter-procedural level. At the intra-procedural level, we
are only aware of one other work that addresses a similar
problem: Bertolino and Marre’s work on finding path
covers in a flow graph [6]. Their “unconstrained arcs”
are analogous to the leaves of our edge partion domina-
tor graph in [1]. Our super blocks in [1] are also anal-
ogous to Ball’s “weak regions” in [4] and Podgurski’s
control dependence regions arising from forward control
dependences in [21].

Loyall and Mathisen present an algorithm to com-
pute control dependences among procedures that may
possibly contain exit statements [17]. Harrold, Rother-
mel and Sinha have developed algorithms to com-
pute inter-procedural control dependences among flow
graph nodes that also account for the presence of inter-
procedural jump statements in programs [11, 25]. If
we were to partition all nodes into equivalence classes
based on inter-procedural control dependences obtained
using their algorithms, we would end up with “strong”
inter-procedural control regions analogous to the intra-
procedural control regions obtained using algorithms
such as those presented in [13] and [20]. Our mega
blocks represent a much coarser partitioning of flow

graph nodes compared to these inter-procedural strong
control regions: Our one mega block consists of multiple
such inter-procedural control regions.

The probe determination problem mentioned in Sec-
tion 1 1s a special case of the more general optimal profil-
ing problem discussed in the literature [5, 8, 14, 22, 24].
Our techniques provide a relatively light weight solution
for this special case compared to other techniques aimed
at solving the general problem.

As mentioned earlier, our inter-procedural algorithm
uses an adaptation of Havlak’s loop nesting tree algo-
rithm [12] which, in turn, is an adaptation of Tarjan’s
algorithm for testing flow graph reducibility [26].

The effectiveness of our inter-procedural dominator
graph algorithm is a function of how accurate the call
graph of the program is. When programs contain pro-
cedure variables, certain edges may be missing from
the call graph that is input to our algorithm. This
may result in misleading weights being assigned to basic
blocks. This may not pose a big problem for coverage
testing purposes. In the presence of inaccurate infor-
mation, users may fail to achieve the level of coverage
they would anticipate with individual tests. They may,
at worst, have to develop more test cases to achieve the
desired coverage. If the same techniques are used for ef-
ficient probing purposes, however, as mentioned in Sec-
tion 1, presence of incomplete information in the input
may lead to incorrect computation of coverage results.
Algorithms to compute call graphs in the presence of
procedure variables (see, e.g., [9, 15]) may offer partial
solutions to this problem.

We are presently implementing the inter-procedural
algorithm described in this paper in the yATAC tool
mentioned in Section 1. Once this implementation is
ready, we plan to conduct experiments evaluating its ef-
fectiveness along the same lines as the experiment we
reported in [1]. Our algorithm based on the use of aug-
mented loop nesting tree to drive merging of local dom-
inator graphs to construct the global dominator graph
may also be used as a framework to solve other inter-
procedural control analysis problems. We also plan to
investigate development of such a framework.
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