
1

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas

ewong@utdallas.edu
http://www.utdallas.edu/~ewong

Controlflow-based Coverage Criteria

Dataflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

2

Speaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical Sketch

� Professor & Director of International Outreach
Department of Computer Science
University of Texas at Dallas

� Guest Researcher
Computer Security Division
National Institute of Standards and Technology (NIST)

� Vice President, IEEE Reliability Society

� Secretary, ACM SIGAPP (Special Interest Group on Applied Computing)

� Principal Investigator, NSF TUES (Transforming Undergraduate Education in
Science, Technology, Engineering and Mathematics) Project
– Incorporating Software Testing into Multiple Computer Science and Software

Engineering Undergraduate Courses

� Founder & Steering Committee co-Chair for the SERE conference
(IEEE International Conference on Software Security and Reliability)
(http://paris.utdallas.edu/sere13)

Dataflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

3Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 3333

OutlineOutlineOutlineOutline

� Block/Statement Coverage
� Decision Coverage
� Condition Coverage
� Multiple Condition Coverage

4

Statement and Block Coverage

5

Declarations and Basic BlocksDeclarations and Basic BlocksDeclarations and Basic BlocksDeclarations and Basic Blocks

� Any program written in a procedural language consists of a sequence of
statements. Some of these statements are declarative, such as the #define
and int statements in C, while others are executable, such as the
assignment, if, and while statements in C and Java.

� Recall that a basic block is a sequence of consecutive statements that has
exactly one entry point and one exit point.
– For any procedural language, adequacy with respect to the statement coverage

and block coverage criteria are defined next.

� Notation: (P, R) denotes program P subject to requirement R.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 5

6

Statement CoverageStatement CoverageStatement CoverageStatement Coverage

� The statement coverage of T with respect to (P, R) is computed as
Sc / (Se − Si), where Sc is the number of statements covered, Si is the
number of unreachable statements, and Se is the total number of
executable statements in the program, i.e., the size of the coverage
domain.

� T is considered adequate with respect to the statement coverage criterion
if the statement coverage of T with respect to (P, R) is 1.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 6

7

Block CoverageBlock CoverageBlock CoverageBlock Coverage

� The block coverage of T with respect to (P, R) is computed as
Bc / (Be − Bi), where Bc is the number of blocks covered, Bi is the number
of unreachable blocks, and Be is the total number of executable blocks in
the program, i.e., the size of the block coverage domain.

� T is considered adequate with respect to the block coverage criterion if
the statement coverage of T with respect to (P, R) is 1.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 7

8

Example: Statement CoverageExample: Statement CoverageExample: Statement CoverageExample: Statement Coverage

� Coverage domain: Se = {4, 5, 6, 7, 8, 9, 12, 13} Let T1 = { t1:< x = −1,
y = −1 >, t2:< x = 1, y = 1 >}

� Statements covered:

– t1: 4, 5, 6, 7, 8 and 13
– t2: 4, 5, 6, 12, and 13

� Sc = 7, Si = 1, Se = 8. The statement coverage for T1 is 7 / (8 − 1) = 1.
Hence we conclude that T1 is adequate for (P, R) with respect to the
statement coverage criterion. Note: 9 is unreachable.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 8

9

Example: Block Coverage Example: Block Coverage Example: Block Coverage Example: Block Coverage (1)
� Coverage domain: Be={1, 2, 3, 4, 5}

� Blocks covered:
– t1: Blocks 1, 2, 5
– t2, t3: same coverage as of t1.

� Be = 5 , Bc = 3, Bi = 1.
– Block coverage for T2= 3 / (5 − 1) = 0.75.
– Hence T2 is not adequate for (P, R) with

respect to the block coverage criterion.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 9

10

Example: Block Coverage Example: Block Coverage Example: Block Coverage Example: Block Coverage (2)
� T1 is adequate w.r.t. block coverage criterion. Verify this statement!

� Also, if test t2 in T1 is added to T2, we obtain a test set adequate with
respect to the block coverage criterion for the program under
consideration.

� Verify this statement!

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 10

11

Coverage ValuesCoverage ValuesCoverage ValuesCoverage Values

� The formulae given for computing various types of code coverage yield
a coverage value between 0 and 1. However, while specifying a coverage
value, one might instead use percentages. For example, a statement
coverage of 0.65 is the same as 65% statement coverage.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 11

12

Condition and Decision Coverage

13

ConditionsConditionsConditionsConditions

� Any expression that evaluates to trueor falseconstitutes a condition.
Such an expression is also known as a predicate.

� Given that A, B, and D are Boolean variables, and x andy are integers,
A, x > y, A OR B, A AND (x < y), (A AND B) are sample conditions.

� Note that in programming language C, x and x + y are valid conditions,
and the constants 1 and 0 correspond to, respectively, true and false.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 13

14

Simple and Compound ConditionsSimple and Compound ConditionsSimple and Compound ConditionsSimple and Compound Conditions

� A simple condition does not use any Boolean operators except for the not
operator. It is made up of variables and at most one relational operator
from the set {<, ≤, >, ≥, ==, ≠}.

� Simple conditions are also referred to as atomic or elementary conditions
because they cannot be parsed any further into
two or more conditions.

� A compound condition is made up of two or more simple conditions
joined by one or more Boolean operators.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 14

15

Conditions as DecisionsConditions as DecisionsConditions as DecisionsConditions as Decisions

� Any condition can serve as a decision in an appropriate contextwithin a
program. Most high level languages provide if, while, and switch
statements to serve as contexts for decisions.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 15

16

Outcomes of a DecisionOutcomes of a DecisionOutcomes of a DecisionOutcomes of a Decision

� A decision can have three possible outcomes: true, false, and undefined.

� In some cases the evaluation of a condition might fail in which case the
corresponding decision's outcome is undefined.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 16

17

Undefined ConditionUndefined ConditionUndefined ConditionUndefined Condition

� The condition inside the if statement on line 6 will remain undefined
because the loop at lines 2-4 will never end. Thus the decision on line 6
evaluates to undefined.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 17

18

Coupled ConditionsCoupled ConditionsCoupled ConditionsCoupled Conditions

� How many simple conditions are there in the compound condition:
D = (A AND B) OR (C AND A)? The first occurrence of A is said to be
coupled to its second occurrence.

� Does D contain three or four simple conditions? Both answers are correct
depending on one's point of view. Indeed, there are three distinct
conditions A , B, and C. The answer is four when one is interested in the
number of occurrencesof simple conditions in a compound condition.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 18

19

Conditions within AssignmentsConditions within AssignmentsConditions within AssignmentsConditions within Assignments

� Strictly speaking, a condition becomes a decision only when it is used in
the appropriate context such as within an if statement.

� At line 4, x < y does not constitute a decision and neither does A × B.
1. A = x < y; // A simple condition assigned to a Boolean variable A.
2. X = P or Q; // A compound condition assigned to a Boolean variable x
3. x = y + z × s; if(x)…// The condition will be true if x = 1 and false otherwise
4. A = x < y; x = A× B; // A is used in a subsequent expression for x but not as a decision

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 19

20

Decision CoverageDecision CoverageDecision CoverageDecision Coverage

� A decision is considered covered if the flow of control has been diverted
to all possible destinationsthat correspond to this decision, i.e.,
all outcomes of the decision have been taken.

� This implies that, for example, the expression in the if or a while
statement has evaluated to true in some execution of the program under
test and to false in the same or another execution.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 20

21

Decision Coverage: Switch StatementDecision Coverage: Switch StatementDecision Coverage: Switch StatementDecision Coverage: Switch Statement

� Decision implied by the switch statement is considered covered if during
one or more executions of the program under test the flow of control has
been diverted to all possible destinations.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 21

22

Decision Coverage: ExampleDecision Coverage: ExampleDecision Coverage: ExampleDecision Coverage: Example (1)
� Requirement:

– The following code inputs an integer x, and if x < 0, transforms it into a
positive value before invoking foo-1 to compute the output z.

– It is supposed to compute z using foo-2 when x ≥ 0.
– It has a bug.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 22

23

� Consider the test set T = { t1:< x = –5 >}.
– It is adequate with respect to statement and block coverage criteria, but does

not reveal the bug.

� Another test set T’ = { t1:< x = –5 > t2:< x = 3 >} does reveal the bug. It
covers the decision whereas T does not. Check!

� This example illustrates how and why decision coverage might help in
revealing a bug that is not revealed by a test set adequate with respect to
statement and block coverage.

Decision Coverage: ExampleDecision Coverage: ExampleDecision Coverage: ExampleDecision Coverage: Example (2)

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 23

24

Decision Coverage: ComputationDecision Coverage: ComputationDecision Coverage: ComputationDecision Coverage: Computation

� The decision coverageof T with respect to (P, R) is computed as
Dc / (De − Di), where Dc is the number of decisions covered.

� Di is the number of infeasible decisions, and De is the total number of
decisions in the program, i.e., the size of the decision coverage domain.

� T is considered adequate with respect to the decision coverage criterion
if the decision coverage of T with respect to (P, R) is 1.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 24

25

Decision Coverage: DomainDecision Coverage: DomainDecision Coverage: DomainDecision Coverage: Domain

� The domain of decision coverage consists of all decisions in the program

under test.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 25

26

Condition CoverageCondition CoverageCondition CoverageCondition Coverage

� A decision can be composed of a simple condition such as x < 0, or of
a more complex condition, such as ((x < 0 AND y < 0) OR (p ≥ q)).

� AND, OR, XOR are the logical operators that connect two or more
simple conditions to form a compound condition.

� A simple condition is considered covered if it evaluates to true and false
in one or more executions of the program in which it occurs.

� A compound condition is considered covered if each simple condition it
is comprised of is also covered.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 26

27

Decision and Condition CoverageDecision and Condition CoverageDecision and Condition CoverageDecision and Condition Coverage (1)
� Decision coverage is concerned with the coverage of decisions regardless

of whether or not a decision corresponds to a simple or a compound
condition. Thus in the statement

1. if (x < 0 and y < 0) {
2. z = foo(x, y)

� There is only one decision that leads control to line 2 if the compound
condition inside the if evaluates to true.

� However, a compound condition might evaluate to true or false in one of
several ways.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 27

Question
if (x < 0)

if (y < 0)
z=foo(x, y);

How many decision?

28

Decision and Condition CoverageDecision and Condition CoverageDecision and Condition CoverageDecision and Condition Coverage (2)
� Referring to the following code

1. if (x < 0 and y < 0) {
2. z = foo(x, y)

� The condition at line 1 evaluates to false when x ≥ 0 regardless of the
value of y.

� Another condition, such as (x < 0 OR y < 0), evaluates to trueregardless
of the value of y, when x < 0.

� With this evaluation characteristic in view, compilers often generate code
that uses short circuit evaluation of compound conditions.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 28

29

Decision and Condition CoverageDecision and Condition CoverageDecision and Condition CoverageDecision and Condition Coverage (3)
� Here is a possible translation:

� We now see two decisions, one corresponding to each simple condition in
the if statement.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 29

30

Condition CoverageCondition CoverageCondition CoverageCondition Coverage

� The condition coverage of T with respect to (P, R) is computed as
Cc / (Ce − Ci) , where

– Cc is the number of simple conditions covered,
– Ci is the number of infeasible simple conditions, and
– Ce is the total number of simple conditions in the program.

� T is considered adequate with respect to the condition coverage criterion
if the condition coverage of T with respect to (P, R) is 1.

� An alternate formula where each simple condition contributes 2, 1, or 0
to Cc depending on whether it is covered, partially covered, or not
covered, respectively, is:

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 30

31

Condition Coverage: ExampleCondition Coverage: ExampleCondition Coverage: ExampleCondition Coverage: Example (1)
� Partial specifications for computing z

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 31

This program has a bug based on the specification.

32

Condition Coverage: ExampleCondition Coverage: ExampleCondition Coverage: ExampleCondition Coverage: Example (2)
� Consider the test set

� Check that T is adequate with respect to the statement, block, and
decision coverage criteria and the program behaves correctly against t1
and t2.

� Cc = 1, Ce = 2, Ci = 0. Hence, condition coverage for T = 0.5.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 32

33

Condition Coverage: ExampleCondition Coverage: ExampleCondition Coverage: ExampleCondition Coverage: Example (3)
� Add the following test case to T: t3: < x = 3, y = 4 >

� Check that the enhanced test set T is adequate with respect to the
condition coverage criterion and possibly reveals a bug in the program.

– The programs shows z = foo2(x, y)
– But the specifications says z = foo1(x, y)

� Under what conditions will the bug be revealed by t3?

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 33

34

Condition/Decision CoverageCondition/Decision CoverageCondition/Decision CoverageCondition/Decision Coverage

� When a decision is composed of a compound condition, decision
coverage does not imply that each simple condition within a compound
condition has taken both values trueand false.

� Condition coverage ensures that each component simple condition within
a condition has taken both values trueand false.

� Question: Does the condition coverage require each decision to take all its
outcomes?

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 34

35

Condition/Decision Coverage: ExampleCondition/Decision Coverage: ExampleCondition/Decision Coverage: ExampleCondition/Decision Coverage: Example

� Consider the following program and two test sets.

� In-class exercise:
– Is T1 is adequate with respect to decision coverage?
– Is T1 is adequate with respect to condition coverage?
– How about T2?

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 35

36

Condition/Decision Coverage: DefinitionCondition/Decision Coverage: DefinitionCondition/Decision Coverage: DefinitionCondition/Decision Coverage: Definition

� The condition/decision coverage of T with respect to (P, R) is computed
as (Cc + Dc) / ((Ce − Ci) +(De − Di), where

– Cc is the number of simple conditions covered
– Dc is the number of decisions covered,
– Ce and De are the number of simple conditions and decisions respectively
– Ci and Di are the number of infeasible simple conditions and decisions,

respectively.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 36

37

Condition/Decision Coverage: ExampleCondition/Decision Coverage: ExampleCondition/Decision Coverage: ExampleCondition/Decision Coverage: Example

� In-class exercise: Is T adequate with respect to the condition/decision
coverage criterion?

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 37

38

Multiple Condition Coverage

39

Multiple Condition CoverageMultiple Condition CoverageMultiple Condition CoverageMultiple Condition Coverage

� Consider a compound condition with two or more simple conditions.
Using condition coverage on some compound condition C implies that
each simple condition within C needs to be evaluated to trueand false.

� However, does it imply that all combinationsof the values of the
individual simple conditions in C have been exercised?

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 39

40

Multiple Condition Coverage/Simple Condition CoverageMultiple Condition Coverage/Simple Condition CoverageMultiple Condition Coverage/Simple Condition CoverageMultiple Condition Coverage/Simple Condition Coverage

� Multiple condition coverage versus simple condition coverage is similar
to uni-dimensional equivalence class partitioning versus
multi-dimensional equivalence partitioning.
� considered separately versus considered simultaneously

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 40

41

Multiple Condition Coverage: ExampleMultiple Condition Coverage: ExampleMultiple Condition Coverage: ExampleMultiple Condition Coverage: Example

� Consider D = (A < B) OR (A > C) composed of two simple conditions
A < B and A > C.The four possible combinations of the outcomes of
these two simple conditions are enumerated in the table.

– Check: Is T 100% w.r.t. the decision coverage?
– Check: Is T 100% w.r.t. the condition coverage?
– Check: Does T cover all four combinations?
– Check: Does T ’ cover all four combinations?

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 41

42

Multiple Condition Coverage: DefinitionMultiple Condition Coverage: DefinitionMultiple Condition Coverage: DefinitionMultiple Condition Coverage: Definition (1)
� Suppose that the program under test contains a total of n decisions.

Assume also that each decision contains k1, k2, …, kn simple conditions.
Each decision has several combinations of values of its constituent simple
conditions.

� For example, decision i will have a total of combinations. Thus the
total number of combinationsto be covered is

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 42

1

2 i

n
k

i =
∑

43

Multiple Condition Coverage: DefinitionMultiple Condition Coverage: DefinitionMultiple Condition Coverage: DefinitionMultiple Condition Coverage: Definition (2)
� The multiple conditioncoverage of T with respect to (P, R) is computed

as Cc / (Ce − Ci), where:

– Cc is the number ofcombinationscovered,
– Ci is the number of infeasible simple combinations, and
– Ce is the total number of combinations in the program.

� T is considered adequate with respect to the multiple condition coverage
criterion if the condition coverage of T with respect to (P, R) is 1.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 43

44

Multiple Condition Coverage: ExampleMultiple Condition Coverage: ExampleMultiple Condition Coverage: ExampleMultiple Condition Coverage: Example (1)
� Consider the following program with specifications in the table.

� There is an obvious bug in the program: computation of S for one of the
four combinations, line 3 in the table, has been left out.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 44

45

Multiple Condition Coverage: ExampleMultiple Condition Coverage: ExampleMultiple Condition Coverage: ExampleMultiple Condition Coverage: Example (2)
� Is T adequate w.r.t. decision coverage?
� Multiple condition coverage?
� Does it reveal the bug?

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 45

46

Multiple Condition Coverage: ExampleMultiple Condition Coverage: ExampleMultiple Condition Coverage: ExampleMultiple Condition Coverage: Example (3)
� Is T’100% with respect to the decision coverage?
� Does T’reveal the bug?

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 46

47

Multiple Condition Coverage: ExampleMultiple Condition Coverage: ExampleMultiple Condition Coverage: ExampleMultiple Condition Coverage: Example (4)
� In-class exercise:

– Is T ’100% w.r.t. simple condition coverage?
– Is T ’100% w.r.t. multiple condition coverage?

� Now add a test to T’ to cover the uncovered combinations.
– Does your test reveal the bug?
– If yes, then under what conditions?

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 47

